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ABSTRACT

In this paper, we first investigate the representation learned in convolutional neural
networks at the filter-wise granularity by computing the mutual information be-
tween channels of higher conv-layers and input or output variables. Then we iden-
tify the approximate minimal sufficient statistics of learned representation based
on the information bottleneck principle and propose a novel approach to automat-
ically compress a neural network. This approach prunes a large trained network
structurally and automatically by extracting relevant information backpropagately
layer by layer in the post-training phase. Our experimental results match the two
fundamental data processing inequalities, and prove that mutual information is a
fundamental element for examining the efficiency of the internal representations
at the filter-wise granularity. In addition, using the information bottleneck prin-
ciple to interpret structure compression is an efficient method to get closer to the
information theoretic limit of compression/prediction problem. Finally, from the
observed results, we argue that compression is causally linked to the improved
generalization performance.

1 INTRODUCTION

Despite massive model compression approaches are proposed, there is still lacking comprehen-
sive theoretical understanding of the compression methods that developed with iteratively retraining
strategy. Previous work Tishby & Zaslavsky (Apr. 2015) proposed to analyze and understand Deep
Neural Networks (DNNs) with the theoretical framework of IB principle Tishby et al. (Sep. 1999),
which showed that any DNN can be quantified in the Information Plane: the Mutual Information
values that each layer preserved on the input and output variables. They argued that both the optimal
architecture, number of layers and features/connections are related with the information bottleneck
trade-off between compression and prediction for each layer. Following Tishby & Zaslavsky (Apr.
2015), the authors of Shwartz-Ziv & Tishby (2017) give a new view that separating the training
optimization process of SGD into two phases: the fitting phase and the compression phase, they also
observed that compression cannot be linked to architectural simplicity, whether these claims all hold
true is the subject of an ongoing debate Saxe et al. (May 2018). Subsequently, several works (see
(Kolchinsky et al., Sep.2018), (Alemi et al., Apr. 2017)) proposed different methods for performing
IB for discrete or continuous, possibly non-Gaussian features by claiming that computing mutual
information in the IB functional Tishby & Zaslavsky (Apr. 2015) is, in general, computationally
challenging. Achille & Soatto. (2017) and Achille & Soatto (2018) further analyze and control the
characteristics of representations with IB-based principle. To bring the practice in line with the
theory, they proposed to replace mutual information terms with tractable bounds in order to obtain
objective functions that can be computed and optimized using neural-network-based methods. Fur-
ther, Amjad & Geiger (2019) argued that the IB functional does not capture desirable properties
of intermediate representations, such as allowing robustness to noise and deploying such architec-
turally/computationally economical CNNs on embedded/edge devices with limited computational
resources and real-time processing constraints. They also showed that the IB functional leads to an
ill-posed optimization problem in deterministic DNNs by either being infinite for almost all param-
eter settings or by being a piecewise constant function of parameters, hence it is not fit for training
DNNs, these problems might be solved by replacing the IB functional with a more well-behaved
cost function as a remedy.
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1.1 CONTRIBUTIONS

Rather than adding to the debate or providing new tractable bounds to replace IB terms for obtaining
feasible SGD-optimized cost functions, inspired by Amjad & Geiger (2019), Yu et al. (2018) and
HH & J. (1999), in this paper we review the IB functional from the perspective of considering the
desired property of representation simplicity for architecturally/computationally economical bene-
fits. We first analyze the interpretability of learned representation at the filter-wise granularity for the
CNNs, then we simply replace the IB functional compression term with a filter selection function
to select the most informative filters for discriminating objects and use the highly correlated AUC
value to replace the original IB prediction term. More precisely, (a) we analyze how much infor-
mation each filter captured from both the information-theoretic and human visualization semantics’
view on any trained CNNs, which is qualified collectively with two quantities: the virtualization
of information plane, and the overlapped heatmaps synthesized from selected high-informative and
low-informative filters respectively. (b) we propose the post-training filter selection approach based
on the IB principle. Given large trained CNNs, we evaluate the final AUC results while incremen-
tally pruning/selecting filters ranked by informative scores preserved on the input and output labels,
which is equivalent to minimize the IB functional. (c) Finally, we turn to the general problem of
model compression against proposing a automatic framework to make each latent representation
layer as simple as possible without changing the original network structure and the object func-
tions. The framework works backpropagately by first applying the filter selection approach to the
top intermediate representation layer, then refining relevant information preserved on class labels
in the subsequent layers, all of the low-informative and redundant filters are pruned off during the
post-training phase without retraining. Our experimental results admit the statement of significant
pruning after training without performance degradation and complement the general research area
of lacking interpretability regards model compression. Moreover, our compression results demon-
strate that structure compression is in some extent causally linked to the improved generalization
performance.

To the end, our work fits the thinking of compressing CNNs structurely using a modified IB func-
tional to instill the property of representation simplicity with explicitly clear interpretability in the
post-training phase. Hence it is very flexible, theoretically guided and practically interpretable for
accelerating structure compression.

2 RELATED WORKS

The authors of paper Tishby & Zaslavsky (Apr. 2015) started to introduce the new idea of using
the IB principle to analyze and understand the inner workings of DNNs, and formulated the goal
of deep learning as an information theoretic trade-off between compression and prediction. They
suggested that DNNs should learn to extract the most efficient informative features, or approximate
minimal sufficient statistics, with the most compact architecture (i.e. minimal number of layers,
with minimal number of units within each layer). They argued that compression is thus necessary
for generalization, the hidden layers must compress the input in order to reach the optimal point
on the information curve where it gives the trade-off between the complexity and the accuracy of
the representation. They also suggested the IB functional as an optimization criterion for training
DNNs. Several works have been published as a follow up of Tishby & Zaslavsky (Apr. 2015)
either from experimental and theoretical IB-based DNN analysis or IB-based DNN training and
optimization. On the one hand, in paper Shwartz-Ziv & Tishby (2017) they suggested to open the
black box of deep neural network with information. Whereas the authors of Saxe et al. (May 2018)
disagreed with them analytically and empirically to present none of those claims hold true. On the
other hand, Amjad & Geiger (2019) stated that the successes reported in IB-based training methods
such as Kolchinsky et al. (Sep.2018) and Alemi et al. (Apr. 2017) in terms of goals of generalization,
adversarial robustness cannot be attributed to the use of IB functional but should be considered as
an outcome of making DNNs stochastic.

Further, Amjad & Geiger (2019) defined a list of properties of an intermediate representation de-
sirable for the classification task, such as sufficient, maximally compressed, admitting a simple
decision function and robust, which presented that the goal formulated in Tishby & Zaslavsky (Apr.
2015) is not sufficient for the classification tasks. In addition, the IB functional would not produce
architecturally economical intermediate representations without possible remedies.
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Meanwhile, despite there is already an ample amount of research on compressing neural network
((LeCun et al., 1990), (Hassibi & Stork., 1993), (Han et al., 2015), (Li et al., 2017)), we will dis-
cuss those which are highly related to our work. Recently proposed Dai et al. (2018) compressed
DNNs using the information bottleneck principle instantiated via a tractable variational bound, in
which network are trained to regularize most of neurons approximately uninformative. Similarly,
the entropy-based framework proposed in work Luo & Wu. (2017) pruned several unimportant fil-
ters, whereas we go deeper to prune those both highly informative and redundant filters but helpless
for discriminating class labels. In addition, instead of pruning and retraining iteratively with a com-
pression rate as a hyperparameter for deciding the pruning boundary, we compress the network
backpropagately to optimize an expected setting of AUC result, and this structure compression can
be applied in any layer for any flexible AUC result.

To the end, seldom works investigated this topic from the view of both information theory and
interpretability but Li et al. (2019), we address it by connecting the IB principle with architec-
turally/computationally economical benefits to open the black box of model compression .

3 POST-TRAINING FILTER SELECTION USING INFORMATION BOTTLENECK

Suppose that Y is a binary class variable, X are features at the input of the CNNs, and X̂ is a latent
representation for the input X , the IB compression term I(X; X̂) can be seen as a data-dependent
regularization term that depends on the representation X̂ rather than the parameters of the CNN
(see (Amjad & Geiger, 2019)), which means it is not necessary to be optimized in the parameter
training process. Instead we compress I(X; X̂) during the post-training phase to utilize the facility
of transferring learning. By this way a large state-of-the-art CNN model can be compressed to fit a
small dataset. Suppose there are high dimensional filters T ∈ RC in one intermediate convolutional
layer that each characterizing some properties of the input, in other words, the amount of informa-
tion that the convolutional layer gained from input X is preserved in C joint information sources
{T1, T2, ... , TC}, as suggested in work Yu et al. (2018), the IB functional is formulated as

RIB = I
(
X̂;Y

)
− βI

(
X; X̂

)
= I ({T1, T2, ... , TC} ;Y ) − βI (X; {T1, T2, ... , TC})

(1)

For some trade-off parameter β > 0. The positive Lagrange multiplier operates as a trade-off pa-
rameter between the complexity of the representation I(X; X̂) and the amount of preserved relevant
information I(X̂;Y ).

As mentioned earlier in work HH & J. (1999), it is easy to see that the joint mutual information has
the property

I (X;T1, T2, ... , TC) − I (X;T1, T2, ... , TC−1) = I (TC ;X|T1, ..., TC−1) > 0 (2)

Which means that discarding variable TC will always decrease the mutual information. Therefore,
we reformulate the original IB problem of finding the optimum minimal representation X̂ as to
construct a simple and elegant algorithm to select the minimal subset k << C filters, TS ∈ Rk ,
that perform optimally based on the joint mutual information with respect to the input and output
variables. In general, we would like to maximize the mutual information between the subset of
selected filters TS and the target variable Y while using the minimal size of k filters in the same
layer.

S̃ = arg max
S

I(TS ;Y ), s.t.|S| = k, (3)

where k is the number of filters we want to select.The original trade-off parameter β is implicitly

becoming into the cardinality of subset TS dividing the cardinality of T filters: β =
|TS |
|T |

.

But minimizing this subset is an NP-hard optimisation problem, because the set of possible com-
binations of filters grows exponentially. We solve it with the simplest greedy step-wise pruning
algorithm conversely. Filters are pruned incrementally, one or a group of filters at a time, greedy
step-wise filter pruning thus selects the filters that at each step results in almost no degradation on
the IB prediction term. Such filter selection method can be guided with both saliency and selection
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criterion, the selection criterion is based on the generalization error on a test data set which can be
approximated by the AUC results RAUC . While the saliency criterion is implemented by ranking
the filters according to its relevance to the input and output variables, which is interpretable as well
to let one understand and know how far it can reach the information theoretic limit.

Let S
t−1

= {c1, ..., ct−1} be the set of selected pruned filters before time step t and TS ∪ TS = T ,
then our greedy step-wise method selects the next pruned filter set ct such that

ct = arg max
∆S/∈St−1

I(T
S

t−1∪∆S
; y), ∆S ∈ St−1, (4)

where ∆S is determined by the criterion

I (Ti;X) > ... > I (Tj ;X) (5)

bidirectionally and iteratively. The pruned filters are selected bidirectionally due to the observations
that filters can be quantified as high-informative and low-informative ones as shown in 5.3 and 5.4,
those high-informative filters in the subsequent layers might learn environmental information for
upper layers to discriminate objects from around, so we first maximally prune the low-informative
filters, then prune the high-informative filters incrementally in the precise of not hurting expected
performance. At last considering the redundant problem mentioned in Abbasi-Asl & Yu. (2017), the
filters with intermediate information scores are iteratively pruned off with greedy small step-wise
selection method.

For example, given a trained large CNN that achieved state-of-the-art prediction precision I(T ;Y )
on the supervised classification task, we assume I(T ;Y ) is directly bounded by some constant
AUC result RAUC . Thus we wish to find such a TS for any arbitrary small 0 < δ < 1 that can
produce a R̂AUC allow |RAUC − R̂AUC | < δ. More precisely, we select such a subset TS by
progressively pruning candidate filters in terms of the mutual information ranking list bidirectionally
and iteratively sample on the rest of list at last. The candidates are those either low-informative
on the input variable and output variable or those capturing massive redundant information on the
environment that are not helpful for discriminating the object.

In particularly, let the binary class variable is Y k, k ∈ {0, 1}, for the binary class variable Y k, we
may get three ranking subset Sk∈{0,1,01}, corresponding to different MI scores list between each
filter and the input and output variable assembles

{
Y 0, Y 1, Y 0 ∪ Y 1

}
respectively. It is intriguing

to find out that different combinations of this saliency criterion reveal non-trivial roles of filters
playing on the classification task, (as seen in 5.5).

4 AUTOMATIC BACKPROPAGATION INFORMATION COMPRESSION

Figure 1: Automatic Backpropagation Information Compression Flow

We assume that for guaranteeing the expected prediction precision, the upper layers need to be
compressed first due to their close spatial association with the output layer, so the filter selection
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approach is applied layer by layer backpropagately to extract relevant information preserved on
class labels. Specifically, the automatic backpropagation information compression flow of Figure
1 shows that the most relevant filters on the top conv-layer are retained, then we freeze this conv-
layer and select the informative filters in the subsequent layers to hold the AUC performance, this is
achieved one layer at a time.

min
∀s∈S

S̃i = min
∀s∈S

γ. arg max
Si

I(TSi ;Y |{TSi+1 , ..., TSL
}), s.t.|Si| = ki

∝ min
∀s∈S

γ. arg max
Si

(RAUC |{TSi+1 , ..., TSL
})

(6)

Where ki is the number of filters we want to retain at each layer i ∈ [L, 1], γ is used to flexibly adjust
the expected RAUC . To this end, we select the most informative filters contribute to state-of-the-
art prediction performance in a layer-wise way, by pruning low-informative or massively redundant
filters which plays non-trivial roles on the prediction of class labels.

5 NUMERICAL EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

For the numerical studies in this paper we explored state-of-the-art classification convolutional neu-
ral networks VGG-16 and ResNet-50, with standard settings and no other architecture constraints.
Using the pre-trained ImageNet weights, the networks were fine-tuned with classical SGD algo-
rithms on the CUB200-2011 Wah et al. (2011) and the Pascal VOC Part Chen et al. (2014) to
demonstrate the interpretability and effectiveness of our approach.

5.2 MUTUAL INFORMATION CALCULATION

Mutual Information is a Shannon entropy-based measure of dependence between random variables,
it is increasingly popular used to evaluate the quality of representation learned for DNN. However,
MI is notoriously difficult to compute, particularly in continuous and high-dimensional settings.
Therefore several methods are developed to apply them to deep neural networks which are com-
putationally more efficient. The binning-based approach yielding discrete latent representation is
attractive because of its computational efficiency when the numbers of bins is not too large, which
is illustrated by the empirical mutual information plots from Shwartz-Ziv & Tishby (2017) and Saxe
et al. (May 2018). The kernel density approach of Kolchinsky et.al.Kolchinsky & Tracey (19, 2017)
consists in fitting a mixture of Gaussians (MoG) to samples of the variable of interest and sub-
sequently compute an upper bound on the entropy of the MoG [48]. The method of Kraskov et
al.Kraskov et al. (2004) used nearest neighbor distances between samples to directly build an esti-
mate of the entropy. Recently, Belghazi et al. (2018) proposed a new non-parametric estimator for
mutual information which involves the optimization of a neural network to tighten a bound. It is
unfortunately computationally hard to test how these estimators behave in high dimension, as even
for a known distribution the computation of the entropy is intractable in most cases. In our work,
we apply the binning approach to obtain a finite MI value for analyzing how much information each
filter captured, the neuron’s relu output are binned into 100 equal intervals between the lowest and
highest activation values. Though this binning approach may not exactly estimate the real mutual
information, it is highly correlated with the mutual information as argued in work Goldfeld et al.
(Nov. 2018).

5.3 VISUALIZATION OF INFORMATION PLANE

As an extension work of Shwartz-Ziv & Tishby (2017), we visualize the information paths of
CNNs in the information plane at the filter-wise granularity and analyze architectures of VGG-16
and ResNet-50 in terms of their efficiency in preserving the relevant information in each chan-
nel. The three colors of dots in Figure 2 (a) and (b) represent information preserved on filters for
layers block5 conv3, block5 conv2, block4 conv3 of VGG-16 and activation 49, activation 40,
activation 22 of ResNet-50 respectively, our experimental results are consistent with the successive
Markov chain and DPI explanation of a K-layers CNN for both VGG-16 and ResNet-50, where as
layers go deeper, the information preserved on labels is getting lost. (a) and (b) also show that filters
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Figure 2: (a) and (b) Information Plane of filters (c) and (d) High activations distribution of high-
informative filters

can be quantified with mutual information, and suggest that those low-informative filters could be
discarded without significant performance degradation. More interestingly, we make an hypothesis
from results of (a) and (b) that ResNet-50 might extract more disentangled features and the informa-
tive filters are more decentralized than VGG-16. VGG-16 is more apt to optimize a fraction of filters
which dominate most of the patterns of target objects. (c) and (d) represent the top ten activations
produced by top 40 high-informative filters on 5 random sampled pictures for VGG-16 and ResNet-
50 respectively, which further verified our previous hypothesis that VGG-16 has centralized filters
almost learn everything need to predict the labels than ResNet-50. We can intuitively understand
these conclusions in next section.

5.4 VISUALIZATION OF OVERLAPPED HEATMAPS TO THE ORIGINAL IMAGES

Figure 3: Overlapped heatmaps to the original images.

We explore the semantic interpretability of learned representations in CNNs on the CUB200-2011
and Pascal VOC Part dataset by visualizing how many information these filters captured. The
CUB200-2011 dataset contains 200 species of birds with N = 1960 samples, and the Pascal VOC
Part dataset select the cat class with N = 441 pictures, each of them are trained as the positive sam-
ples of a binary class separately, and the negative samples are selected from Places dataset Zhou et al.
(2014) with N = 2000 and N = 500 samples respectively. Figure 3(a) and (b) are the overlapped
heatmaps to the CUB200-2011 dataset that selected respectively from top 40 high-informative and
low-informative filters of block5 conv3 layer in VGG-16. Obviously, (a) demonstrates that the top
40 high-informative filters perfectly highlight object part patterns such as the head part to describe
its characteristics. Oppositely, (b) shows that the top low-informative filters almost learned nothing
useful knowledge. Based on these observations, pruning the low-informative filters is plausible to
achieve the architecturally/computationally economical benefits. Similarly, Figure 3(d) jointly ver-
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ifies above results on the Pascal VOC Part dataset. Figure 3(c) are the overlapped heatmaps that
selected from top 40 high-informative filters at layer block5 conv2 in VGG-16, which represent
that these top 40 informative filters actually learned the environments information around the tar-
get object. However, they are probably unimportant for discriminating the target class, and can be
pruned off, which is further demonstrated in the 5.5 section. In addition, observations tell that some
filters with intermediate information scores might learn redundant information, these numbers can
be pruned off without performance degradation.

To the end, experimental results show that our method has captured the most important information
encoded in the filters of the mid-level layers in CNNs, the meaningful and useful characteristics of
learned representations can be visualized and explained from the information theoretic perspective.

5.5 COMPRESSION RESULT

Figure 4: AUC results with respect to different numbers of pruned filters

In Figure 4(a), the three curves are generated by pruning low-informative filters with respect to dif-
ferent ranking list mentioned in section 3. More interestingly, it shows that the RAUC still holds 1
after pruning low-informative 506 filters of total 512 in the block5 conv3 layer with the criterion
Y 1, we attribute this phenomenon to the success of finding the correct order of informative filters,
which learned sufficient representations on the positive samples. This result further evaluates our
hypothesis that VGG-16 has seldom key filters playing non-trivial roles on the classification tasks.
Whereas the performance degraded largely on the criterion Y 0, since filters are ranked by the rel-
evance with negative samples, intuitively speaking, these high-informative filters selected by Y 0

probably learned the representations irrelevant with the positive samples. So pruning these high-
informative filters affects to predict the objects correctly. Regarding the criterion Y 0∪Y 1, the result
is a little degraded, this is because this ranking list is a mixture order of Y 0 and Y 1. Based on these
observations, our automatic backpropagation information compression method ranks the filters with
the criterion Y 0 for state-of-the-art performance.

Figure 4(b) shows RAUC vs compressing ratio results in layers block5 conv3, block5 conv2,
block4 conv3 of VGG-16 using our automatic backpropagation information compression method
on the cat category of Pascal VOC Part dataset. As the compression ratio increasingly grows up,
the generalization performance is gradually improved as well. This phenomenon represents that
compression in some extent causes improved generalization performance.

Below results in Table 1 show that to guarantee an expected AUC result 0.997, great compression
ratio is achieved with our automatic backpropagation information compression method, which also
reveal that the learned representation behaves like a bottleneck to distort relevant information, and
this distortion rate is getting smaller as layer goes deeper.

6 DISCUSSION

Motivated by the work in Amjad & Geiger (2019), we propose a novel post-training filter selection
approach to achieve structure compression using the information bottleneck principle. We explore
the desired properties of representation simplicity by replacing the IB functional compression term
with a filter selection function, and correlating the IB prediction term with AUC results. Our exper-
imental results give an insight on interpreting the inner working mechanism of model compression
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Table 1: Overall performance of our approach to prune filters on the VGG-16 model with prior fixed
AUC threshold 0.997.

Layer # Number of Filters # Parameters
Original Pruned Original Pruned Percentage

Conv1-1 64 3 1.75K 84 5%
Conv1-2 64 3 36.06K 1.69K 5%
Conv2-1 128 24 72.13K 13.52K 19%
Conv2-2 128 6 144.13K 6.76K 5%
Conv3-1 256 63 288.25K 70.94K 25%
Conv3-2 256 72 576.25K 162.07K 28%
Conv3-3 256 55 576.25K 123.80K 21%
Conv4-1 512 234 1.15M 526.73K 46%
Conv4-2 512 350 2.30M 1.58M 69%
Conv4-3 512 270 2.30M 1.22M 53%
Conv5-1 512 336 2.30M 1.51M 66%
Conv5-2 512 450 2.30M 2.03M 88%
Conv5-3 512 506 2.30M 2.28M 99%
Dense1 - - 6.42M 6.20M 97%
Dense2 - - 257 0 0%
Total - - 21.14M 15.72M 74%

on supervised CNN classification tasks, which also demonstrate that the quality of filters can be
evaluated from the information theoretic view. Precisely, the questions of how much relevant in-
formation each filter captured on class labels, how many filters are minimally sufficient to do the
classification tasks in each hidden layer, are partly answered by visualizing the information plane
and overlapped heatmaps at the filter-wise granularity. Additionally, the automatic backpropagation
information compression method proposed in this work admitted the statement of significant prun-
ing after training without performance degradation, with which one may step further to guide model
architecture design on the direction of deepness or wideness. More importantly, on the case where
a large trained model should be applied to a small dataset, the experimental results demonstrate that
our method can compress the model while improve the generalization performance.
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