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ABSTRACT

Symbolic regression is a type of discrete optimization problem that involves search-
ing expressions that fit given data points. In many cases, other mathematical
constraints about the unknown expression not only provide more information be-
yond just values at some inputs, but also effectively constrain the search space. We
identify the asymptotic constraints of leading polynomial powers as the function
approaches 0 and∞ as useful constraints and create a system to use them for sym-
bolic regression. The first part of the system is a conditional expression generating
neural network which preferentially generates expressions with the desired leading
powers, producing novel expressions outside the training domain. The second part,
which we call Neural-Guided Monte Carlo Tree Search, uses the network during a
search to find an expression that conforms to a set of data points and desired leading
powers. Lastly, we provide an extensive experimental validation on thousands of
target expressions showing the efficacy of our system compared to exiting methods
for finding unknown functions outside of the training set.

1 INTRODUCTION

The long standing problem of symbolic regression tries to search expressions in large space that fit
given data points (Koza & Koza, 1992; Schmidt & Lipson, 2009). These mathematical expressions
are much more like discovered mathematical laws that have been an essential part of the natural
sciences for centuries. Since the size of the search space increases exponentially with the length of
expressions, current search methods can only scale to find expressions of limited length. Moreover,
current symbolic regression techniques fail to exploit a key value of mathematical expressions that
has traditionally been well used by natural scientists. Symbolically derivable properties such as
bounds, limits, and derivatives can provide significant guidance to finding an appropriate expression.

In this work, we consider one such property corresponding to the behavior of the unknown function
as it approaches 0 and∞. Many expressions have a defined leading polynomial power in these limits.
For examples when x→∞, 2x2 + 5x has a leading power of 2 (because the expression behaves like
x2) and 1/x2 + 1/x has a leading power of −1. We call these properties “asymptotic constraints”
because this kind of property is known a priori for some physical systems before the detailed law is
derived. For example, most materials have a heat capacity proportional to T 3 at low temperatures T
and the gravitational field of planets (at distance r) should behave as 1/r as r →∞.

Asymptotic constraints not only provide more information about the expression, leading to better
extrapolation, but also constrain the search in the desired semantic subspace, making the search more
tractable in much larger space. These constraints can not be simply incorporated using syntactic
restrictions over the grammar of expressions. We present a system to effectively use asymptotic
constraints for symbolic regression, which has two main parts. The first is a conditional expression
generating neural network (NN) of the desired polynomial leading powers that generates novel
expressions (both syntactically and semantically) and, more surprisingly, generalize to leading powers
not in the training set. The second part is a Neural-Guided Monte Carlo Tree Search (NG-MCTS)
that uses this NN to probabilistically guide the search at every step.

Finally, we provide an extensive empirical evaluation of the system compared to several strong
baseline techniques. We examine both the NG-MCTS and conditional expression generating NN
alone. In sharp contrast to almost all previous symbolic regression work, we evaluate our technique on
thousands of target expressions and show that NG-MCTS can successfully find the target expressions
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in a much larger fraction of cases (71%) than other methods (23%) with search space sizes of more
than 1050 expressions.

In summary, this paper makes the following key contributions: 1) We identify asymptotic constraints
as important additional information for symbolic regression tasks. 2) We develop a conditional
expression generating NN to learn a distribution over (syntactically-valid) expressions conditioned
on the asymptotic constraints. 3) We develop the NG-MCTS algorithm that uses the conditional
expression generating NN to efficiently guide the MCTS in large space. 4) We extensively evaluate
our expression generating NN to demonstrate generalization for leading powers, and show that the
NG-MCTS algorithm significantly outperforms previous techniques on thousands of tasks.

2 PROBLEM DEFINITION

In order to demonstrate how prior knowledge can be incorporated into symbolic regression, we
construct a symbolic space using a context-free grammar G:

O → S

S → S‘+’T | S‘−’T | S‘*’T | S‘/’T | T
T → ‘(’S‘)’ | ‘x’ | ‘1’

(1)

This expression space covers a rich family of rational expressions, and the size of the space can be
further parameterized by a bound on the maximum sequence length. For an expression f(x), the
leading power at x0 is defined as Px→x0 [f ] = p s.t. limx→x0 f(x)/xp = non-zero constant. In this
paper, we consider the leading powers at x0 ∈ {0,∞} as additional specification.

Let S(G, k) denote the space of all expressions in the Grammar G with a maximum sequence
length k. Conventional symbolic regression searches for a desired expression f(x) in the space
of expressions S(G, k) that conforms to a set of data points {(x, f(x)) |x ∈ Dtrain}, i.e. find a
g(x) ∈ S(G, k) : φ(g(x),Dtrain), where φ denotes the acceptance criterion, usually root mean square
error (RMSE). With the additional specification of leading powers c(0) and c(∞) at 0 and∞, the
problem becomes: find a g(x) ∈ S(G, k) : φ(g(x),Dtrain)∧(Px→0[g] = c(0))∧(Px→∞[g] = c(∞)).

3 CONDITIONAL EXPRESSION GENERATING NEURAL NETWORK

It is difficult to directly incorporate the asymptotic constraints as syntactic restrictions over the
grammar. We, therefore, develop a neural architecture that learns to generate expressions in the
grammar conditioned on the given asymptotic constraints.
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Figure 1: Model architecture. (a) Exemplary expression. (b) Leading powers of 1/(x+ 1) at 0 and
∞. (c) Parse tree of 1/(x+ 1). (d) Production rule sequence, the preorder traversal of production
rules in the parse tree. (e) Architecture of the model to predict the next production rule from the
partial sequence. (f) Using the network in (e) conditioned on desired leading powers to guide MCTS.

Figure 1(a) and (c) show an example of how an expression is parsed as a parse tree by the grammar
defined in Eq. (1). The parse tree in Figure 1(c) can be serialized into a production rule sequence
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r1, . . . , rL by a preorder traversal (Figure 1(d)), where L denotes the length of the production rule
sequence. Figure 1(b) shows the leading powers of the exemplary expression in Figure 1(a). The
conditional distribution of an expression is parameterized as a sequential model

pθ(f |c(0), c(∞)) =

L−1∏
t=1

pθ(rt+1|r1, . . . , rt, c(0), c(∞)). (2)

We build a NN (as shown in Figure 1(e)) to predict the next production rule rt+1 from a partial
sequence r1, . . . , rt and conditions c(0), c(∞). During training, each expression in the training set
is first parsed as a production rule sequence. Then a partial sequence of length t ∈ {1, . . . , L− 1}
is sampled randomly as the input and the (t + 1)-th production rule is selected as the output (see
blue and orange text in Figure 1(d)). Each production rule of the partial sequence is represented
as an embedding vector of size 10. The conditions are concatenated with each embedding vector.
This sequence of embedding vectors are fed into a bidirectional Gated Recurrent Units (GRU) (Cho
et al., 2014) with 1000 units. A softmax layer is applied to the final output of GRU to obtain the raw
probability distribution over the next production rules in Eq. (1).

Note that not all the production rules are grammatically valid as the next production rule for a given
partial sequence. The partial sequence is equivalent to a partial parse tree. The next production rule
expands the leftmost non-terminal symbol in the partial parse tree. For the partial sequence colored
in blue in Figure 1(d), the next production rule expands non-terminal symbol T , which constrains
the next production rule to only those with left-hand-side symbol T . We use a stack to keep track
of non-terminal symbols in a partial sequence as described in GVAE (Kusner et al., 2017). A mask
of valid production rules is computed from the input partial sequence. This mask is applied to the
raw probability distribution and the result is normalized to 1 as the output probability distribution.
The training loss is calculated as the cross entropy between the output probability distribution and
the next target production rule. It is trained from partial sequences sampled from expressions in the
training set using validation loss for early stopping.1

4 NEURAL-GUIDED MONTE CARLO TREE SEARCH

We now briefly describe the NG-MCTS algorithm that uses the conditional expression generating
NN to guide the symbolic regression search. The discrepancy between the best found expression
g(x) and the desired f(x) is evaluated on data points and leading powers. The error on data
points is measured by RMSE ∆g{·} =

√∑
x∈D{·}(f(x)− g(x))2/|D{·}| on training points Dtrain :

{1.2, 1.6, 2.0, 2.4, 2.8}, points in interpolation region Dinterpolation : {1.4, 1.8, 2.2, 2.6} and points
in extrapolation region Dextrapolation : {5, 6, 7, 8, 9}. The error on leading powers is measured
by sum of absolute errors at 0 and∞, ∆P [g] = |Px→0[f ] − Px→0[g]| + |Px→∞[f ] − Px→∞[g]|.
The default choice of objective function for symbolic regression algorithms is ∆gtrain alone. With
additional leading powers constraint, the objective function can be defined as ∆gtrain +∆P [g], which
minimizes both the RMSE on the training points and the absolute difference of the leading powers.

Most symbolic regression algorithms are based on EA (Schmidt & Lipson, 2009), where it is nontrivial
to incorporate our conditional expression generating NN to guide the generation strategy in a step-by-
step manner, as the mutation and cross-over operators perform transformations on fully completed
expressions. However, it is possible to incorporate a probability distribution over expressions in many
heuristic search algorithms such as Monte Carlo Tree Search (MCTS). MCTS is a heuristic search
algorithm that has been shown to perform exceedingly well in problems with large combinatorial
space, such as mastering the game of Go (Silver et al., 2016) and planning chemical syntheses (Segler
et al., 2018). In MCTS for symbolic regression, a partial parse tree sequence r1, . . . , rt can be defined
as a state st and the next production rule is a set of actions {a}. In the selection step, we use a
variant of the PUCT algorithm (Silver et al., 2016; Rosin, 2011) for exploration. For MCTS, the prior
probability distribution p(ai|st) is uniform among all valid actions.

We develop NG-MCTS by incorporating the conditional expression generating NN into MCTS for
symbolic regression. Figure 1(f) presents a visual overview of NG-MCTS. In particular, the prior
probability distribution p(ai|st, c(0), c(∞)) is computed by our conditional expression generating

1Model implemented in TensorFlow (Abadi et al., 2016) and available in submitted materials.
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Table 1: Results of symbolic regression methods. Search expressions in holdout sets M [f ] ≤ 4,
M [f ] = 5 and M [f ] = 6 with data points on Dtrain and / or leading powers Px→0[f ] and Px→∞[f ].
The options are marked by on (

√
), off (×) and not available (–). If the RMSEs of the best found

expression g(x) in interpolation and extrapolation are both smaller than 10−9 and ∆P [g] = 0, it is
solved. If g(x) is non-terminal or∞, it is invalid. Hard includes expressions in the holdout set which
are not solved by any of the six methods. The medians of ∆gtrain, ∆gint., ∆gext. and the median
absolute errors of leading powers ∆P [g] for hard expressions are reported.

M [f ] Method Neural Objective Function Solved Invalid Hard

Guided Dtrain Px→0,∞[f ] Percent Percent Percent ∆gtrain ∆gint. ∆gext. ∆P [g]

≤ 4

MCTS ×
√

× 0.54% 2.93%

23.66%

0.728 0.598 0.723 3
MCTS (PW-only) × ×

√
0.24% 0.00% – 2.069 2.823 1

MCTS + PW ×
√ √

0.20% 0.39% 0.967 0.836 0.541 2
NG-MCTS

√ √ √
71.22% 0.00% 0.225 0.194 0.084 0

EA –
√

× 12.83% 3.32% 0.186 0.162 0.358 3
EA + PW –

√ √
23.37% 0.44% 0.376 0.322 0.152 0

GVAE‡ –
√

× 10.00% 0.00% 90.00% 0.217 0.159 0.599 2
GVAE + PW‡ –

√ √
10.00% 0.00% 90.00% 0.386 0.324 0.056 0

= 5

MCTS ×
√

× 0.00% 3.90%

58.00%

0.857 0.738 0.950 5
MCTS (PW-only) × ×

√
0.00% 0.00% – 1.890 1.027 3

MCTS + PW ×
√ √

0.10% 3.50% 1.105 0.914 0.600 4
NG-MCTS

√ √ √
32.10% 0.00% 0.247 0.229 0.020 0

EA –
√

× 2.90% 4.20% 0.227 0.204 0.155 4
EA + PW –

√ √
9.20% 2.30% 0.366 0.365 0.109 0

GVAE‡ –
√

× 0.00% 0.00% 100.00% 0.233 0.259 0.164 4
GVAE + PW‡ –

√ √
3.33% 0.00% 96.67% 0.649 0.565 0.383 2

= 6

MCTS ×
√

× 0.00% 6.33%

71.25%

1.027 0.819 0.852 6
MCTS (PW-only) × ×

√
0.00% 0.00% – 2.223 7.145 4

MCTS + PW ×
√ √

0.08% 7.33% 1.228 1.051 0.891 4
NG-MCTS

√ √ √
17.33% 0.17% 0.236 0.209 0.008 0

EA –
√

× 1.25% 5.08% 0.219 0.191 0.084 5
EA + PW –

√ √
4.92% 6.92% 0.329 0.285 0.047 0

GVAE‡ –
√

× 0.00% 0.00% 100.00% 0.260 0.206 0.037 5
GVAE + PW‡ –

√ √
0.00% 0.00% 100.00% 0.595 0.436 0.087 3

‡ Evaluated on the subset of holdout sets. Hard are unsolved expressions in the subset (Appendix H).

NN on the partial sequence and the desired conditions. We run MCTS for 500 simulations for each
desired expression f(x). The exploration strength is set to 50 and the production rule sequence length
limit is set to 100. The total number of expressions in this combinatorial space is 3× 1093. We run
evolutionary algorithm (EA) (Appendix G) and grammar variational autoencoder (GVAE) (Kusner
et al., 2017) (Appendix H) with comparable computational setup for comparison.

5 EVALUATION

Dataset and Search Space: We denote the leading power constraint as a pair of integers
(Px→0[f ], Px→∞[f ]) and define the complexity of a condition by M [f ] = |Px→0[f ]|+ |Px→∞[f ]|.
Obviously, expressions with M [f ] = 4 are more complicated to construct than those with M [f ] = 0.
We create a dataset balanced on each condition, as described in Appendix A. The conditional expres-
sion generating NN is trained on 28837 expressions and validated on 4095 expressions, both with
M [f ] ≤ 4. The training expressions are sampled sparsely, which are only 10−23 of the expressions
within 31 production rules. Symbolic regression tasks are evaluated on 4250 expressions in holdout
sets with M [f ] ≤ 4,= 5,= 6. The challenges are: 1) conditions M [f ] = 5, 6 do not exist in training
set; 2) the search spaces of M [f ] = 5, 6 are 107 and 1011 times larger than the training set.

5.1 EVALUATION OF SYMBOLIC REGRESSION TASKS

We now present the evaluation of our NG-MCTS method, where each step in the search is guided
by the conditional expression generating NN. Recent developments of symbolic regression meth-
ods (Kusner et al., 2017; Sahoo et al., 2018) compare methods on only a few expressions, which may
cause the performance to depend on random seed for initialization and delicate tuning. To mitigate
this, we apply different symbolic regression methods to search for expressions in holdout sets with
thousands of expressions and compare their results in Table 1. Additional comparison on a subset of
holdout sets is reported in Appendix H.
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Figure 2: Extrapolation errors of symbolic re-
gression methods in holdout set M [f ] = 5.
Each expression is a point, where log10 ∆gext.
obtained by NG-MCTS is on x-axis and those
obtained by other three methods are on the y-axis.

Figure 3: Plot of force field expressions
found by each method. Grey area is the
region to compute interpolation error ∆gint.
and light blue area is the region to compute
extrapolation error ∆gext..

We first discuss the results for holdout set M [f ] ≤ 4. Conventional symbolic regression only fits on
the data points Dtrain. EA solves 12.83% expressions, while MCTS only solves 0.54% expressions.
This suggests that compared to EA, MCTS is not efficient in searching a large space with limited
number of simulations. The median errors ∆P [g] are both 3 for hard expressions (expressions
unsolved by all methods), which are large as maximum M [f ] for this set is 4.

In order to examine the effect of leading powers, we use leading powers alone in MCTS (PW-ONLY).
The median of ∆P [g] for hard expressions is reduced to 1 but the medians of ∆gint. and ∆gext.
are significantly higher. We then add leading powers to the objective function together with data
points. MCTS + PW does not have a notable difference to MCTS. However, EA + PW improves
solved expressions to 23.37% and ∆P [g] of hard expressions is 0. This indicates adding leading
power constraints in the objective function is helpful for symbolic regression. Most importantly, we
observe step-wise guidance of NN conditioned on leading powers can lead to even more significant
improvements compared to adding them in the objective function. NG-MCTS solves 71.22%
expressions in the holdout set, three times over the best EA + PW. Note that both MCTS + PW and
EA + PW have access to the same input information. Although EA has the lowest medians of ∆gtrain
and ∆gint., NG-MCTS is only slightly worse. On the other hand, NG-MCTS outperforms on ∆gext.
and ∆P [g], which indicates that step-wise guidance of leading powers helps to generalize better in
extrapolation than all other methods.

We also apply the aforementioned methods to search expressions in holdout sets M [f ] = 5 and
M [f ] = 6. The percentage of solved expressions decreases asM [f ] increases as largerM [f ] requires
learning expressions with more complex syntactic structure. The median of ∆P [g] also increases with
larger M [f ] for the other methods, but the value for NG-MCTS is always zero. This demonstrates
that our NN model is able to successfully guide the NG-MCTS even for leading powers not appearing
in the training set. Due to the restriction on the computational time of Bayesian optimization for
GVAE, we evaluate GVAE + PW on a subset of holdout sets (Appendix H). GVAE+ PW fails in
holdout sets M [f ] = 5, 6. Overall, NG-MCTS still significantly outperforms other methods in solved
percentage and extrapolation. Figure 2 compares ∆gext. for each expression among different methods
in holdout set M [f ] = 5. The upper right cluster in each plot represents expressions unsolved by both
methods. Most of the plotted points are above the 1:1 line (dashed), which shows that NG-MCTS
outperforms the others for most unsolved expressions in extrapolation. Examples of expressions
solved by NG-MCTS but unsolved by EA + PW and vice versa are presented in Appendix J. We also
perform similar experiments with Gaussian noise on Dtrain and NG-MCTS still outperforms all other
methods ( Appendix K).

5.2 CASE STUDY: FORCE FIELD POTENTIAL

Molecular dynamics simulations (Alder & Wainwright, 1959) study the dynamic evolution of physical
systems, with extensive applications in physics, quantum chemistry, biology and material science. The
interaction of atoms or coarse-grained particles (Kmiecik et al., 2016) is described by potential energy
function called force field, which is derived from experiments or computations of quantum mechanics
algorithms. Typically, researchers know the interactions in short and long ranges, which are examples

5



Under review as a conference paper at ICLR 2020

Table 2: Results of force field expressions found by each method.

Method Expression Found ∆gtrain ∆gint. ∆gext. ∆P [g]

NG-MCTS 1− x + (1/x) + x× x 0.00 0.00 0.00 0
GVAE (x)− (1/x)/(x× x/x) + x 0.47 0.29 34.9 2
GVAE + PW ((1/x)− x + x)− ((1− x)× x) 1.0 1.0 1.0 0
EA (x + x) 0.52 0.46 34.8 3
EA + PW ((1/x) + (x× x)) 1.15 1.10 6.16 0

of asymptotic constraints. We propose a force field potential U(x) = 1/x + x + (x − 1)2 with
Coulomb interaction, uniform electric field and harmonic interaction. Assuming the true potential
is unknown, the goal is to discover this expression. As a physical potential, besides values at
Dtrain : {1.2, 1.6, 2.0, 2.4, 2.8}, researchers also know the short (x→ 0) and long range (x→∞)
behaviors as leading powers. Table 2 shows the expressions found by NG-MCTS, GVAE, GVAE +
PW, EA and EA + PW, which are plotted in Figure 3. NG-MCTS can find the desired expression.
The second best method is GVAE + PW, differing by a constant of 1 from the true expression.

5.3 EVALUATION OF CONDITIONAL EXPRESSION GENERATING NN

NG-MCTS significantly outperforms other methods on searching expressions in large space. To
better understand the effective guidance from NN, we demonstrate its ability to generate syntactically
and semantically novel expressions given desired conditions. In order to examine the NN alone, we
directly sample from the model by Eq. (2) instead of using MCTS. The model predicts the probability
distribution over the next production rules from the starting rule r1 : O → S and desired condition
(c(0), c(∞)). The next production rule is sampled from distribution pθ(r2|r1, c(0), c(∞)) and then
appended to r1. Then r3 is sampled from pθ(r3|r1, r2, c(0), c(∞)) and appended to [r1, r2]. This
procedure is repeated until [r1, . . . , rL] form a parse tree where all the leaf nodes are terminal, or the
length of generated sequence reaches the prespecified limit, which is set to 100 for our experiments.

Baseline Models We compare NN with a number of baseline models that provide a probability
distribution over the next production rules. All these distributions are masked by the valid production
rules computed from the partial sequence before sampling. For each desired condition within
|Px→0[f ]| ≤ 9 and |Px→∞[f ]| ≤ 9, k = 100 expressions are generated.

We consider the following baseline models: i) Neural Network No Condition (NNNC): same setup
as NN except no conditioning on leading powers, ii) Random: uniform distribution over valid next
production rules, iii) Full History (FH): using full partial sequence and conditions to sample next
production rule from its empirical distribution, iv) Full History No Condition (FHNC), v) Limited
History (LH) (l): sampling next production rule from its empirical distribution given only the last
l rules in the partial sequence, and vi) Limited History No Condition (LHNC) (l). Note that the
aforementioned empirical distributions are derived from the training set {f}. For limited history
models, if l exceeds the length of the partial sequence, we instead take the full partial sequence. More
details about the baseline models can be found in Appendix B.

Metrics We propose four metrics to evaluate the performance. For each condition (c(0), c(∞)), k
expressions {gi} are generated from model pθ(f |c(0), c(∞)). i) Success Rate: proportion of generated
expressions with leading powers (Px→0[gi], Px→∞[gi]) that match the desired condition, ii) Mean
L1-distance: the mean L1-distance between (Px→0[gi], Px→∞[gi]) and (c(0), c(∞)), iii) Syntactic
Novelty Rate: proportion of generated expressions that satisfy the condition and are syntactically
novel (no syntactic duplicate of generated expression in the training set), and iv) Semantic Novelty
Rate: proportion of expressions satisfying the condition and are semantically novel (the expression
obtained after normalizing the generated expression does not exist in the training set). For example,
expressions x+ 1 and (1) +x are syntactically different, but semantically duplicate. We use simplify
function in SymPy (Meurer et al., 2017) to normalize expressions. To avoid inflating the rates of
syntactic and semantic novelty, we only count the number of unique syntactic and semantic novelties
in terms of their expressions and simplified expressions, respectively.

Quantitative Evaluation Table 3 compares the model performance of baseline and NN models
measured by different metrics. We define M [f ] ≤ 4 as in-sample condition region and M [f ] > 4 as
out-of-sample condition region. In both regions, the generalization ability of the model is reflected by
the number of syntactic and semantic novelties it generates, not just the number of successes. For
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Table 3: Metrics for conditional expression generating NN and baseline models.

Model
M [f ] ≤ 4 M [f ] > 4 M [f ] ≤ 4 = 5 = 6 =7

Syn (%) Sem (%) Total Num Expressions Num Conditions Mean L1-DistSuc Syn Sem with Suc

NN 35.0 2.7 1465 1416 1084 115 0.8 1.4 2.5 4.3
NNNC 1.8 0.2 7 7 7 7 4.0 5.6 6.5 7.5
Random 0.7 0.0 0 0 0 0 10.9 11.7 12.4 12.6
FH 0.0 0.0 0 0 0 0 0.0 18.0 18.0 18.0
FHNC 0.0 0.0 0 0 0 0 4.2 5.7 6.6 7.5
LH (2) 5.0 1.1 0 0 0 0 3.1 18.0 18.0 18.0
LH (4) 10.3 2.1 0 0 0 0 2.5 18.0 18.0 18.0
LH (8) 14.6 2.4 0 0 0 0 1.8 18.0 18.0 18.0
LH (16) 1.2 0.1 0 0 0 0 0.1 18.0 18.0 18.0
LHNC (2) 1.4 0.3 7 7 7 6 4.2 5.6 6.9 7.5
LHNC (4) 1.2 0.3 6 6 6 6 3.9 5.7 6.4 7.3
LHNC (8) 1.5 0.3 8 8 8 6 4.2 5.9 6.7 7.6
LHNC (16) 0.2 0.1 3 3 3 2 4.3 5.7 6.6 7.5

example, FH behaves as a look-up table based method (i.e., sampling from the training set) so it
has 100% success rate in in-sample condition region. However, it is not able to generate any novel
expressions. NN has the best performance on the syntactic and semantic novelty rates in both the in-
sample (35% and 2.7%) and out-of-sample (1416 and 1084) condition regions by a significant margin.
This indicates the generalization ability of the model to generate unseen expressions matching a
desired condition. It is worth pointing out that NNNC performs much worse than NN, which indicates
that NN is not only learning the distribution of expressions in the dataset, but instead is also learning
a conditional distribution to map leading powers to the corresponding expression distributions.

Furthermore, the L1-distance measures the deviation from the desired condition when not matching
exactly. NN has the least mean L1-distance in the out-of-sample condition region. This suggests that
for the unmatched expressions, NN prefers expressions with leading powers closer to the desired
condition than all other models. NN outperforms the other models not only on the metrics aggregated
over all conditions, but also for individual conditions. Figure 4 shows the metrics for NN and LHNC
(8) on each condition. NN performs better in the in-sample region (inside the red boundary) and also
generalizes to more conditions in the out-of-sample region (outside the red boundary).

Figure 4: Visualizing metrics for conditional expression generating NN and LHNC (8) on each
condition within |Px→0[f ]| ≤ 9 and |Px→∞[f ]| ≤ 9. Conditions with M [f ] ≤ 4 are inside the red
boundary and points with 0 value are left blank.

Qualitative Evaluation To better comprehend the learned NN model and its generative behavior,
we also perform a task of expression completion given a structure template of the form 1/�−�
and a variety of desired conditions in Table 4. For each condition, 1000 expressions are generated by
NN and the probability of each syntactically unique expression is computed from its occurrence. We
first start with c(0) = 0, c(∞) = 1. The completed expression g(x) is required to be a nonzero constant
as x→ 0 and g(x)→ x as x→∞. The top three probabilities are close since this task is relatively
easy to complete. We then repeat the task on c(0) = −1, c(∞) = 1 and c(0) = −2, c(∞) = 2, which
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are still in the in-sample condition region and the model can still complete expressions that match the
desired conditions. We also show examples of c(0) = −3, c(∞) = 2, which is in the out-of-sample
condition region. Note that to match condition c(∞) = −3, more complicated completion such as
1/(x ∗ (x ∗ x)) has to be constructed by the model. Even in this challenging case, the model can still
generate some expressions that match the desired condition. We also show examples of the syntactic
novelties learned by model in Appendix L.

6 RELATED WORK

Table 4: Examples of top-3 probable expression
completions for different desired conditions.

M [f ] c(0) c(∞) Expression Probability Match

1 0 1
1/ (1 + 1) − x 7.8%

√

1/ (1 + x) − x 7.7%
√

1/ x − x 7.0% ×

2 -1 1
1/ (x + x) − x 17.3%

√

1/ (x) − x 12.0%
√

1/ x − x 6.8%
√

4 -2 2
1/ (x ∗ x) − (x ∗ x) 48.5%

√

1/ x − (x ∗ x) 12.5% ×

1/ (x ∗ x) − x 7.6% ×

5 -3 2
1/ (x ∗ x) − (x ∗ x) 29.5% ×

1/ (x ∗ x) − (x ∗ (x ∗ x)) 19.3% ×

1/ (x ∗ (x ∗ x)) − (x ∗ x) 12.9%
√

Symbolic Regression: Schmidt & Lipson (2009)
present a symbolic regression technique to learn
natural laws from experimental data. The symbolic
space is defined by operators +, −, ∗, /, sin, cos,
constants, and variables. An expression is repre-
sented as a graph, where intermediate nodes rep-
resent operators and leaves represent coefficients
and variables. The EA varies the structures to
search new expressions using a score that accounts
for both accuracy and the complexity of the ex-
pression. This approach has been further used to
get empirical expressions in electronic engineer-
ing (Ceperic et al., 2014), water resources (Klotz
et al., 2017), and social science (Truscott & Korns,
2014). GVAE (Kusner et al., 2017) was recently
proposed to learn a generative model of structured
arithmetic expressions and molecules, where the
latent representation captures the underlying structure. This model was further shown to improve a
Bayesian optimization based method for symbolic regression.

Similar to these approaches, most other approaches search for expressions from scratch using only
data points (Schmidt & Lipson, 2009; Ramachandran et al., 2017; Ouyang et al., 2018) without other
symbolic constraints about the desired expression. Abu-Mostafa (1994) suggests incorporating prior
knowledge of a similar form to our property constraints, but actually implements those priors by
adding additional data points and terms in the loss function.

Neural Program Synthesis: Program synthesis is the task of learning programs in a domain-specific
language (DSL) that satisfy a given specification (Gulwani et al., 2017). It is closely related to
symbolic regression, where the DSL can be considered as a grammar defining the space of expressions.
Some recent works use neural networks for learning programs (Devlin et al., 2017; Balog et al., 2016;
Parisotto et al., 2017; Vijayakumar et al., 2018). RobustFill (Devlin et al., 2017) trains an encoder-
decoder model that learns to decode programs as a sequence of tokens given a set of input-output
examples. For more complex DSL grammars such as Karel that consists of nested control-flow, an
additional grammar mask is used to ensure syntactic validity of the decoded programs (Bunel et al.,
2018). However, these approaches only use examples as specification. Our technique can be useful to
guide search for programs where the program space is defined using grammars such as SyGuS with
additional semantic constraints other than only examples (Alur et al., 2013; Si et al., 2018).

7 CONCLUSION

We introduce the idea of using asymptotic constraints as additional specification for symbolic
regression. Our conditional expression generating NN successfully favors generating expressions
with the desired leading powers and generalizing syntactically and semantically. This model is used
in Neural-Guided Monte Carlo Tree Search (NG-MCTS) to effectively perform symbolic regression.
Our experiments demonstrate the robustness and superiority of our technique on thousands of desired
expressions, a much larger evaluation set than benchmarks considered in existing literature. One
surprising aspect of this work is the generalization of our expression generating NN to more complex
leading powers. We plan to further extend the applicability of this model to cover other symbolically
derivable properties of expressions relevant for realistic modeling problems.
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Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Runhai Ouyang, Stefano Curtarolo, Emre Ahmetcik, Matthias Scheffler, and Luca M Ghiringhelli.
Sisso: a compressed-sensing method for identifying the best low-dimensional descriptor in an
immensity of offered candidates. Physical Review Materials, 2(8):083802, 2018.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. ICLR, 2017. URL http://arxiv.org/abs/
1611.01855.

Markus Quade, Markus Abel, Kamran Shafi, Robert K Niven, and Bernd R Noack. Prediction of
dynamical systems by symbolic regression. Physical Review E, 94(1):012214, 2016.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017. URL http://arxiv.org/abs/1710.05941.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203–230, 2011.

Subham S Sahoo, Christoph H Lampert, and Georg Martius. Learning equations for extrapolation
and control. arXiv preprint arXiv:1806.07259, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555(7698):604, 2018.

Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a meta-solver for syntax-
guided program synthesis. ICLR, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Philip Truscott and Michael F Korns. Explaining unemployment rates with symbolic regression. In
Genetic Programming Theory and Practice XI, pp. 119–135. Springer, 2014.

Ashwin J. Vijayakumar, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit
Gulwani. Neural-guided deductive search for real-time program synthesis from examples. CoRR,
abs/1804.01186, 2018.

10

https://doi.org/10.7717/peerj-cs.103
http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1710.05941


Under review as a conference paper at ICLR 2020

A DATASET

To create an initial dataset, we first enumerate all possible parse trees from
O → S

S → S‘+’T | S‘−’T | S‘*’T | S‘/’T | T
T → ‘(’S‘)’ | ‘x’ | ‘1’

within ten production rules. Then we repeat the following downsampling and augmentation operations
for four times to expand the dataset for longer expressions and diverse conditions.

Downsampling Expressions are grouped by their simplified expressions computed by
SymPy (Meurer et al., 2017). We select 20 shortest expressions in terms of string length from
each group. These expressions are kept to ensure syntactical diversity and avoid having too long
expressions.

Augmentation For each kept expression, five new expressions are created by randomly replacing
one of the 1 or x symbols by (1/x), (x/(1 + x)), (x/(1− x)), (1/(1 + x)), (1/(1− x)), (1− x),
(1 + x), (x ∗ x), (x ∗ (1 + x)), (x ∗ (1− x)). These five newly created expressions are added back to
the pool of kept expressions to form an expanded set of expressions.

After repeating the above operations for four times, we apply the downsampling step again in the end.
To make the dataset balanced on each condition, we keep 1000 shortest expressions in terms of string
length for each condition. In this way, we efficiently create an expanded dataset which is not only
balanced on each condition but also contains a large variety of expressions with much longer length
than the initial dataset. Compared to enumerating all possible expressions given the maximum length,
the created dataset is much sparser and smaller.

For each pair of integer leading powers satisfying M [f ] ≤ 4, 1000 shortest expressions are selected
to obtain 41000 expressions in total. They are randomly split into three sets. The first two are training
(28837) and validation (4095) sets. For the remaining expressions, 50 expressions with unique
simplified expressions are sampled from each condition for M [f ] ≤ 4, to form a holdout set with
2050 expressions. In the same way, we also create a holdout set of 1000 expressions for M [f ] = 5
and 1200 expressions for M [f ] = 6. These conditions do not exist in training and validation sets.

Table A.1: Minimum, median and maximum of the lengths of the production rule sequence. Space
size is the number of possible expressions within the maximum length of the production rule sequence.

Name Length Number of Expressions Space Size
Min Median Max

training M [f ] ≤ 4 3 19 31 28837 2.2× 1027

holdout M [f ] ≤ 4 7 19 31 2050 2.2× 1027

holdout M [f ] = 5 15 27 39 1000 8.9× 1034

holdout M [f ] = 6 11 31 43 1200 5.8× 1038

Figure A.1 shows the histogram of lengths of the production rule sequence for expressions in
the training set and holdout sets. Table A.1 shows the minimum, median and maximum of the
lengths of the production rule sequence. The last column, space size, shows the number of possible
expressions within the maximum length of the production rule sequence (including those non-
terminal expressions). It is computed recursively as follows. Let N∗,i denote the number of possible
expressions with length ≤ i and whose production rule sequences start with symbol ∗, where ∗ can
be O,S and T . Then we have

NS,i = 4

i−1∑
p=0

(NS,p ·NT,i−1−p) +NT,i−1;

NT,i = NS,i−1 + 2,

and the initial condition is NS,0 = NT,0 = 1. We can obtain NS,i using the recursive formula. The
quantity of interest NO,i = NS,i−1 given that the first production rule is pre-defined as O → S.
Holdout sets M [f ] = 5, 6 not only contain expressions of higher leading powers but also of longer
length, which is challenging for generalization both semantically and syntactically.

11



Under review as a conference paper at ICLR 2020

Figure A.1: Histograms of lengths of the production rule sequence.

B DETAILS OF THE BASELINE MODELS

We provide more details of the baseline models we proposed to be compared with our NN model.
Using the same notation as in Eq. (2), the conditional distribution of the next production rule given
the partial sequence and the desired condition is denoted by

p(rt+1|r1, . . . , rt, c(0), c(∞)).

The baseline models are essentially different ways to approximate the conditional distribution using
empirical distributions.

Limited History (LH) (l) The conditional distribution is approximated by the empirical conditional
distribution given at most the last l production rules of the partial sequence and the desired condition.
We derive the empirical conditional distribution from the training set by first finding all the partial
sequences therein that match the given partial sequence and desired condition. Then we compute
the proportion of each production rule that appears as the next production rule of the found partial
sequences. The proportional is therefore the empirical conditional distribution. To avoid introducing
an invalid next production rule, the empirical conditional distribution is multiplied by the production
rule mask of valid next production rules, and renormalized.

pLH(l) = p̂(rt+1|rt−l+1, . . . , rt, c
(0), c(∞)).

Full History (FH) The conditional distribution is approximated by the empirical conditional
distribution given the full partial sequence and the desired condition. The empirical conditional
distribution is derived from the training set similarly as the LH model.

pFH = p̂(rt+1|r1, . . . , rt, c(0), c(∞)).

Limited History No Condition (LHNC) (l) The conditional distribution is approximated by the
empirical conditional distribution given at most the last l production rules of the partial sequence
only, where the desired condition is ignored. The empirical conditional distribution is derived from
the training set similarly as the LH model.

pLHNC(l) = p̂(rt+1|rt−l+1, . . . , rt).
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Full History No Condition (FHNC) The conditional distribution is approximated by the empirical
conditional distribution given the full partial sequence only, where the desired condition is ignored.
The empirical conditional distribution is derived from the training set similarly as the LH model.

pFHNC = p̂(rt+1|r1, . . . , rt).

C DETAILS OF AGGREGATING METRICS ON DIFFERENT LEVELS

The metrics are aggregated on different levels. We compute the average of success rates, syntactic
novelty rates and semantic novelty rates over all the conditions in the in-sample condition region. The
out-of-sample condition region is not bounded, and hence we consider the region within |Px→0[f ]| ≤
9 and |Px→∞[f ]| ≤ 9. Since the average can be arbitrarily small if the boundary is arbitrarily large,
instead we compute the total number of success, syntactic novelty and semantic novelty expressions
over all the conditions in the out-of-sample region.

The L1-distance is not well defined for an expression which is non-terminal or∞. For both cases, we
specify the L1-distance as 18, which is the L1-distance between conditions (0, 0) and (9, 9).

D DIVERSITY OF GENERATED EXPRESSIONS

Figure D.1: Cumulative counts of unique expressions and unique simplified expressions that
satisfy the desired condition among expressions generated by the NN model on various desired
conditions. Left: desired condition (c(0), c(∞)) = (0, 0). Middle: desired condition (c(0), c(∞)) =
(5, 5). Right: desired condition (c(0), c(∞)) = (−2,−3).

A model that generates expressions with a high success rate (i.e., satisfying the desired condition
most of the times) but lacking of diversity is problematic. To demonstrate the diversity of ex-
pressions generated by our NN model, we generate 1000 expressions on each desired condition,
and compute the cumulative counts of unique expressions and unique simplified expressions that
satisfy the desired condition among the first number of expressions of the 1000 generated expres-
sions, respectively. Figure D.1 shows the cumulative counts on three typical desired conditions
(c(0), c(∞)) = (0, 0), (5, 5), (−2,−3). We can observe that the counts steadily increase as the num-
ber of generated expressions under consideration increases. Even with 1000 expressions, the counts
have not been saturated.

E ADDITIONAL PLOTS OF METRICS FOR EXPRESSION GENERATING NN AND
BASELINE MODELS

Due to the space limit of the paper, Figure 4 in the main text only contains the plots of metrics on
each condition for LHNC (8) and NN. Additional plots of all the baseline models in Table 3 are
presented in this section. Figure E.1 contains NN, NNNC and Random. Figure E.2 contains FH and
FHNC. Figure E.3 contains LH (2), LH (4), LH (8) and LH (16). Figure E.4 contains LHNC (2),
LHNC (4), LHNC (8) and LHNC (16).
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Figure E.1: Metrics for NN, NNNC and Random models on each condition within |Px→0[f ]| ≤ 9
and |Px→inf [f ]| ≤ 9. Each column corresponds to a metric: success rate, mean L1-distance, syntactic
novelty rate and semantic novelty rate, respectively. Conditions with M [f ] ≤ 4 are inside the red
boundary. Conditions with zero success rate, syntactic novelty rate or semantic novelty rate are left
blank in the corresponding plots.

F SELECTION STEP IN MONTE CARLO TREE SEARCH

In the selection step, we use a variant of the PUCT algorithm (Silver et al., 2016; Rosin, 2011) for
exploration,

U(st, a) = cpuctP (st, a)

√∑
bN(st, b)

1 +N(st, a)
, (3)

where N(st, a) is the number of visits to the current node,
∑
bN(st, b) is the number of visits to

the parent of the current node, cpuct controls the strength of exploration and P (st, a) is the prior
probability of action a. This strategy initially prefers an action with high prior probability and low
visits for similar tree node quality Q(st, a).

G EVOLUTIONARY ALGORITHM

We implemented the conventional symbolic regression approach with EA using DEAP (Fortin et al.,
2012), a popular package for symbolic regression research (Quade et al., 2016; Claveria et al., 2016).
We define a set of required primitives: +, −, ∗, /, x and 1. An expression is represented as a tree
where all the primitives are nodes. We start with a population of 10 individual trees with the maximum
tree height set to 50. The probability of mating two individuals is 0.1, and of mutating an individual
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Figure E.2: Metrics for FH and FHNC models on each condition within |Px→0[f ]| ≤ 9 and
|Px→inf [f ]| ≤ 9. Each column corresponds to a metric: success rate, mean L1-distance, syntactic
novelty rate and semantic novelty rate, respectively. Conditions with M [f ] ≤ 4 are inside the red
boundary. Conditions with zero success rate, syntactic novelty rate or semantic novelty rate are left
blank in the corresponding plots.

is 0.5 (chosen based on a hyperparameter search, see Appendix I). The limit of number of evaluations
for a new offspring is set to 500 so that it is comparable to the number of simulations in MCTS.

H GRAMMAR VARIATIONAL AUTOENCODER

We would like to point out that the dataset in this paper is more challenging for GVAE than the
dataset used in Grammar Variational Autoencoder (GVAE) paper (Kusner et al., 2017), although it is
constructed with fewer production rules. First, the maximum length of production rule sequences in
GVAE paper is 15, while the maximum length is 31 in our training set and 43 in holdout set. The
RNN decoder usually has difficulties in learning longer sequence due to e.g. exposure bias (Bengio
et al., 2015). Second, while our maximum length is more than doubled, our training set only contains
28837 expressions compared to 100000 in GVAE paper. Samples in our training set are sparser in the
syntactic space than those of the GVAE paper.

We trained a GVAE using the the open-sourced code2 with the following modifications: 1) using
context-free grammar in our paper 2) setting the max length to 100 so it is comparable with MCTS
and EA experiments in our paper. The GVAE paper reported reconstruction accuracy 0.537. On our
validation set, the reconstruction accuracy is 0.102.

During each iteration in Bayesian optimization, 500 data in the training set are randomly selected
to model the posterior distribution and the model will suggest 50 new expressions. These 50 new
expressions will be evaluated and concatenated into the training set. For each symbolic regression
task, we ran 5 iterations. The only difference from the setting in Kusner et al. (2017) is that instead
of averaging over 10 repetitions, we average over 2 repetitions so the total number of evaluation is
2× 5× 50 = 500 for searching each expression, which is comparable to the setting of MCTS and
EA.

Due to the restriction on the computational time of Bayesian optimization for GVAE, we evaluate
GVAE on a subset of holdout sets. 30 expressions are randomly selected from each of the holdout

2https://github.com/mkusner/grammarVAE
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Figure E.3: Metrics for LH models with different history length on each condition within
|Px→0[f ]| ≤ 9 and |Px→inf [f ]| ≤ 9. Each column corresponds to a metric: success rate, mean
L1-distance, syntactic novelty rate and semantic novelty rate, respectively. Conditions withM [f ] ≤ 4
are inside the red boundary. Conditions with zero success rate, syntactic novelty rate or semantic
novelty rate are left blank in the corresponding plots.

sets (M <= 4,= 5,= 6) in Section 5 and symbolic regression tasks are performed on these 120
expressions. We report the results of NG-MCTS, GVAE and GVAE+PW (including the error of
leading powers to the score function in Bayesian optimization) evaluated on median extrapolation
RMSE and absolute error of leading powers in Table H.1. GVAE + PW has better ∆P [g] comparing
to GVAE. NG-MCTS significantly outperforms GVAE and GVAE + PW on solved percentage and
extrapolation error ∆gext..
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Figure E.4: Metrics for LHNC models with different history length on each condition within
|Px→0[f ]| ≤ 9 and |Px→inf [f ]| ≤ 9. Each column corresponds to a metric: success rate, mean
L1-distance, syntactic novelty rate and semantic novelty rate, respectively. Conditions withM [f ] ≤ 4
are inside the red boundary. Conditions with zero success rate, syntactic novelty rate or semantic
novelty rate are left blank in the corresponding plots.

I CHOICE OF HYPERPARAMETERS

NN is trained with batch size 256 for 107 steps. The initial learning rate is 0.001. It decays
exponentially every 105 steps with a base of 0.99.

The hyperparameters of MCTS (exploration strength = 50) and EA (the probability of mating two
individuals = 0.1, the probability of mutating an individual = 0.5) are selected by hyperparameter
searching to maximize the solved percentage in holdout set M [f ] ≤ 4 with both Dtrain and Px→0[f ],
Px→∞[f ] provided.
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Table H.1: Comparison with GVAE on subset of holdout sets.

M [f ] Method Neural Objective Function Solved Invalid Unsolved

Guided Dtrain Px→0,∞[f ] Percent Percent Percent ∆gtrain ∆gint. ∆gext. ∆P [g]

≤ 4
NG-MCTS

√ √ √
83.33% 0.00% 16.67% 0.436 1.000 0.009 0

GVAE –
√

× 10.00% 0.00% 90.00% 0.217 0.159 0.599 2
GVAE + PW –

√ √
10.00% 0.00% 90.00% 0.386 0.324 0.056 0

= 5
NG-MCTS

√ √ √
60.00% 0.00% 40.00% 0.088 0.086 0.011 0

GVAE –
√

× 0.00% 0.00% 100.00% 0.233 0.259 0.164 4
GVAE + PW –

√ √
3.33% 0.00% 96.67% 0.649 0.565 0.383 2

= 6
NG-MCTS

√ √ √
10.00% 0.00% 90.00% 0.306 0.266 0.009 0

GVAE –
√

× 0.00% 0.00% 100.00% 0.260 0.206 0.037 5
GVAE + PW –

√ √
0.00% 0.00% 100.00% 0.595 0.436 0.087 3

J EXAMPLES OF SYMBOLIC REGRESSION RESULTS

In this section, we select expressions solved by NG-MCTS but unsolved by EA + PW in Table 1 as
examples of symbolic regression results. Figure J.1, Figure J.2 and Figure J.3 show eight expressions
with M [f ] ≤ 4, M [f ] = 5 and M [f ] = 6, respectively. The symbolic expressions, leading powers,
interpolation errors and extrapolation errors of these 24 desired expressions f(x), as well as their
corresponding best expressions found by NG-MCTS, denoted by gNG−MCTS(x), and by EA + PW,
denoted by gEA+PW(x), are listed in Table J.1.

We also select expressions solved by EA + PW but unsolved by NG-MCTS in Table 1 as examples
of symbolic regression results. Figure J.4, Figure J.5 and Figure J.6 show eight expressions with
M [f ] ≤ 4, M [f ] = 5 and M [f ] = 6, respectively. The symbolic expressions, leading powers,
interpolation errors and extrapolation errors of these 24 desired expressions f(x), as well as their
corresponding best expressions found by NG-MCTS and EA + PW are listed in Table J.2.

Figure J.1: Examples of expressions solved by NG-MCTS but unsolved by EA + PW with
M [f ] ≤ 4. Each subplot of (a)-(h) demonstrates an expression solved by NG-MCTS but unsolved
by EA + PW. Grey area is the region to compute interpolation error ∆gint. and light blue area is
the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.

K SYMBOLIC REGRESSION WITH NOISE

In the main text, the training points Dtrain from the desired expression is noise-free. However, in
realistic applications of symbolic regression, measurement noise usually exists. We add a random
Gaussian noise with standard deviation 0.5 to expression evaluations on Dtrain and compute ∆gint.
and ∆gext. using evaluations without noise. The results are summarized in Table K.1. The perfor-
mance of all the methods is worse than that in the noise-free experiments, but the relative relationship
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Figure J.2: Examples of expressions solved by NG-MCTS but unsolved by EA + PW with
M [f ] = 5. Each subplot of (a)-(h) demonstrates an expression solved by NG-MCTS but unsolved
by EA + PW. Grey area is the region to compute interpolation error ∆gint. and light blue area is
the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.

Figure J.3: Examples of expressions solved by NG-MCTS but unsolved by EA + PW with
M [f ] = 6. Each subplot of (a)-(h) demonstrates an expression solved by NG-MCTS but unsolved
by EA + PW. Grey area is the region to compute interpolation error ∆gint. and light blue area is
the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.

still remains. NG-MCTS solves the most expressions than all the other methods. It has the lowest
medians of ∆gext. and ∆P [g], suggesting good generalization in extrapolation even with noise on
training points.

L SYNTACTIC NOVELTY EXAMPLES

For ease of presentation, we show syntactic novelties generated by NN that only have one semantically
identical expression (i.e., the expression that shares the same simplified expression) in the training
set. By comparing each syntactic novelty and its semantically identical expression in the training set
(shown in Table L.1), we can observe that the model generates some nontrivial syntactic novelties. For
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Table J.1: Examples of expressions solved by NG-MCTS but unsolved by EA + PW. This table
shows the desired expressions f(x) and their corresponding best expressions found by NG-MCTS
gNG−MCTS(x) and by EA + PW gEA+PW(x). The leading powers Px→0[·], Px→∞[·], interpolation
error ∆gint. and extrapolation error ∆gext. are reported for each expression.
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humans to propose such syntactic novelties, they would need to know and apply the corresponding
nontrivial mathematical rules (shown in the first column of Table L.1) to derive the expressions from
those already known in the training set. On the contrary, NN generates the syntactic novelties such as
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Figure J.4: Examples of expressions solved by EA + PW but unsolved by NG-MCTS with
M [f ] ≤ 4. Each subplot of (a)-(h) demonstrates an expression solved by EA + PW but unsolved
by NG-MCTS. Grey area is the region to compute interpolation error ∆gint. and light blue area
is the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.

Figure J.5: Examples of expressions solved by EA + PW but unsolved by NG-MCTS with
M [f ] = 5. Each subplot of (a)-(h) demonstrates an expression solved by EA + PW but unsolved
by NG-MCTS. Grey area is the region to compute interpolation error ∆gint. and light blue area
is the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.

1/(A/B) = B/A, A/(B ∗ C) = A/B/C, etc, without being explicitly taught these mathematical
rules.
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Figure J.6: Examples of expressions solved by EA + PW but unsolved by NG-MCTS with
M [f ] = 6. Each subplot of (a)-(h) demonstrates an expression solved by EA + PW but unsolved
by NG-MCTS. Grey area is the region to compute interpolation error ∆gint. and light blue area
is the region to compute extrapolation error ∆gext.. The display range of y-axis is [−5, 5] for the
four subplots in the first row and [−200, 200] for the four subplots in the second row to show the
discrepancy of expressions on two different scales.
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Table J.2: Examples of expressions solved by EA + PW but unsolved by NG-MCTS. This table
shows the desired expressions f(x) and their corresponding best expressions found by NG-MCTS
gNG−MCTS(x) and by EA + PW gEA+PW(x). The leading powers Px→0[·], Px→∞[·], interpolation
error ∆gint. and extrapolation error ∆gext. are reported for each expression.
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Table K.1: Results of symbolic regression methods with noise. Search expressions in holdout sets
M [f ] ≤ 4, M [f ] = 5 and M [f ] = 6 with data points on Dtrain and / or leading powers Px→0[f ]
and Px→∞[f ]. The options are marked by on (

√
), off (×) and not available (–). If the RMSEs of

the best found expression g(x) in interpolation and extrapolation are both smaller than 10−9 and
∆P [g] = 0, it is solved. If g(x) is non-terminal or∞, it is invalid. Hard includes expressions in the
holdout set which are not solved by any of the six methods. The medians of ∆gtrain, ∆gint., ∆gext.
and the median absolute errors of leading powers ∆P [g] for hard expressions are reported.

M [f ] Method Neural Objective Function Solved Invalid Hard

Guided Dtrain Px→0,∞[f ] Percent Percent Percent ∆gtrain ∆gint. ∆gext. ∆P [g]

≤ 4

MCTS ×
√

× 0.39% 0.54%

71.41%

0.689 0.351 0.371 3
MCTS (PW-only) × ×

√
0.34% 0.00% – 1.003 0.865 1

MCTS + PW ×
√ √

0.34% 0.49% 0.887 0.643 0.825 2
NG-MCTS

√ √ √
24.29% 0.05% 0.432 0.449 0.256 0

EA –
√

× 4.44% 3.95% 0.399 0.223 0.591 3
EA + PW –

√ √
4.34% 0.39% 0.385 0.489 0.260 0

= 5

MCTS ×
√

× 0.00% 4.00%

83.40%

0.931 0.599 0.972 5
MCTS (PW-only) × ×

√
0.00% 0.00% – 1.394 1.000 3

MCTS + PW ×
√ √

0.00% 3.00% 0.944 0.817 0.727 5
NG-MCTS

√ √ √
10.80% 0.10% 0.558 0.430 0.103 0

EA –
√

× 1.00% 3.10% 0.480 0.256 0.266 4
EA + PW –

√ √
1.80% 1.80% 0.448 0.382 0.122 0

= 6

MCTS ×
√

× 0.00% 9.75%

78.75%

0.960 0.762 0.888 6
MCTS (PW-only) × ×

√
0.00% 0.00% – 1.024 0.861 4

MCTS + PW ×
√ √

0.00% 8.83% 1.122 0.807 0.163 4
NG-MCTS

√ √ √
10.33% 0.08% 0.426 0.205 0.009 0

EA –
√

× 0.67% 4.58% 0.463 0.427 0.852 5
EA + PW –

√ √
1.42% 6.50% 0.388 0.369 0.065 0

Table L.1: Examples of syntactic novelties to demonstrate what the NN model learned. Sem-
identical expression refers to the expression in the training set that shares the same simplified
expression as the corresponding syntactic novelty. The first column shows the mathematical rules
a human needs to know and apply to derive each syntactic novelty from its semantically identical
expression in the training set.

MATHEMATICAL RULE
SYNTACTIC NOVELTY
SEM-IDENTICAL EXPRESSION

1/(A/B) = B/A
1 + 1/(1 + (x/(1 + x)))
1 + (1 + x)/((1 + x) + x)

A/(B + B) = A/B/2
1− x/((1 + x) + (1 + x))
1− (x/(1 + x))/(1 + 1)

A + B = B + A
x/((x/(1 + x)) + x + x)
x/(x + (x/(1 + x)) + x)

A/(B ∗ C) = A/B/C
(1− (x/(1− x)))/(x + x ∗ x)
(1− (x/(1− x)))/(x + 1)/x

A/C + B/C = (A + B)/C
(1 + (1/x))/(x− (x ∗ x)− 1)
((1 + x)/x)/(x− 1− (x ∗ x))
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