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ABSTRACT

Continual learning is a critical ability of continually acquiring and transferring
knowledge without catastrophically forgetting previously learned knowledge.
However, enabling continual learning for Al remains a long-standing challenge. In
this work, we propose a novel method, Prototype Recalls, that efficiently embeds
and recalls previously learnt knowledge to tackle catastrophic forgetting issue.
In particular, we consider continual learning in classification tasks. For each
classification task, our method learns a metric space containing a set of prototypes
where embedding of the samples from the same class cluster around prototypes
and class-representative prototypes are separated apart. To alleviate catastrophic
forgetting, our method preserves the embedding function from the samples to the
previous metric space, through our proposed prototype recalls from previous tasks.
Specifically, the recalling process is implemented by replaying a small number
of samples from previous tasks and correspondingly matching their embedding
to their nearest class-representative prototypes. Compared with recent continual
learning methods, our contributions are fourfold: first, our method achieves the
best memory retention capability while adapting quickly to new tasks. Second, our
method uses metric learning for classification, and does not require adding in new
neurons given new object classes. Third, our method is more memory efficient
since only class-representative prototypes need to be recalled. Fourth, our method
suggests a promising solution for few-shot continual learning. Without tampering
with the performance on initial tasks, our method learns novel concepts given a
few training examples of each class in new tasks.

1 INTRODUCTION

Continual learning, also known as lifelong learning, is the crucial ability for humans to continually
acquire and transfer new knowledge across their lifespans while retaining previously learnt
experiences Hassabis et al.|(2017). This ability is also critical for artificial intelligence (AI) systems
to interact with the real world and process continuous streams of information Thrun & Mitchell
(1995)). However, the continual acquisition of incrementally available data from non-stationary data
distributions generally leads to catastrophic forgetting in the system McCloskey & Cohen| (1989);
Ratcliff] (1990); [French| (1999). Continual learning remains a long-standing challenge for deep
neural network models since these models typically learn representations from stationary batches
of training data and tend to fail to retain good performances in previous tasks when data become
incrementally available over tasks Kemker et al.| (2018)); [Maltoni & Lomonaco|(2019).

Numerous methods for alleviating catastrophic forgetting have been currently proposed. The most
pragmatical way is to jointly train deep neural network models on both old and new tasks, which
however demands a large amount of resources to store previous training data and hinders the learning
of novel data in real time. Another option is to complement the training data for each new task with
“pseudo-data” of the previous tasks |Shin et al.| (2017); |Robins| (1995). Besides the main model
for task performance, a separate generative model is trained to generate fake historical data used
for pseudo-rehearsal. Deep Generative Replay (DGR) |Shin et al.| (2017) replaces the storage of
the previous training data with a Generative Adversarial Network to synthesize training data on
all previously learnt tasks. These generative approaches have succeeded over very simple and
artificial inputs but they cannot tackle more complicated inputs |Atkinson et al.[(2018). Moreover, to
synthesize the historical data reasonably well, the size of the generative model is usually huge that
costs much memory [Wen et al,|(2018). An alternative method is to store the weights of the model
trained on previous tasks, and impose constraints of weight updates on new tasks He & Jaeger
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(2018); |Kirkpatrick et al.| (2017); [Zenke et al.| (2017); [Lee et al.| (2017); [Lopez-Paz et al.| (2017).
For example, Elastic Weight Consolidation (EWC) [Kirkpatrick et al.| (2017)) and Learning Without
Forgetting (LwWF) |[L1 & Hoiem| (2018)) store all the model parameters on previously learnt tasks,
estimate their importance on previous tasks and penalize future changes to the weights on new tasks.
However, selecting the “important” parameters for previous tasks complicates the implementation
by exhaustive hyper-parameter tuning. In addition, state-of-the-art neural network models often
involve millions of parameters and storing all network parameters from previous tasks does not
necessarily reduce the memory cost \Wen et al.| (2018). In contrast with these methods, storing a
small subset of examples from previous tasks and replaying the “exact subset” substantially boost
performance [Kemker & Kanan| (2017); Rebuffi et al.| (2017); Nguyen et al.| (2017). To achieve
the desired network behavior on previous tasks, incremental Classifier and Representation Learner
(AICARL) Rebuffi et al.|(2017) and Few-shot Self-Reminder (FSR) |Wen et al.| (2018) follow the idea
of logit matching or knowledge distillation in model compression |[Ba & Caruana) (2014); Bucilua
et al.| (2000); |[Hinton et al.| (2015). However, such approaches ignore the topological relations
among clusters in the embedding space and rely too much on a small amount of individual data,
which may result in overfitting as shown in our experiments (Section d.2)). In contrast with them,
without tampering the performance in memory retention, our method learns embedding functions
and compares the feature similarities represented by class prototypes in the embedding space which
improves generalization, especially in the few-shot settings, as also been verified in works Hoffer &
Ailon! (2015)); |Snell et al.| (2017).

In this paper, we propose the method, Prototype Recalls, for continual learning in classification
tasks. Similar as|Snell et al.|(2017), we use a neural network to learn class-representative prototypes
in an embedding space and classify embedded test data by finding their nearest class prototype. To
tackle the problem of catastrophic forgetting, we impose additional constraints on the network by
classifying the embedded test data based on prototypes from previous tasks, which promotes the
preservation of initial embedding function. For example (Figure[T), in the first task (Subfigure [Ta),
the network learns color prototypes to classify blue and yellow circles and in the second task
(Subfigure [Tb), the network learns shape prototypes to classify green circles and triangles. With
catastrophically forgetting color features, the network extracts circle features on the first task and
fails to classify blue and yellow circles. To alleviate catastrophic forgetting, our method replays the
embeded previous samples (blue and yellow circles) and match them with previous color prototypes
(blue and yellow) which reminds the network of extracting both color and shape features in both
classification tasks.

We evaluate our method under two typical experimental protocols, incremental domain and
incremental class, for continual learning across three benchmark datasets, MNIST Deng| (2012),
CIFAR10 Krizhevsky & Hinton| (2009) and minilmageNet Deng et al.| (2009). Compared with the
state-of-the-arts, our method significantly boosts the performance of continual learning in terms of
memory retention capability while being able to adapt to new tasks. Unlike parameter regularization
methods or iCARL or FSR, our approach further reduces the memory storage by replacing logits
of each data or network parameters with one prototype of each class in the episodic memory.
Moreover, in contrast to these methods where the last layer in traditional classification networks
often structurally depends on the number of classes, our method leverages on metric learning,
maintains the same network architecture and does not require adding new neurons or layers for
new object classes. Additionally, without sacrificing classification accuracy on initial tasks, our
method can generalize to learn new concepts given a few training examples in new tasks due to
the advantage of metric learning, commonly used in few-shot settings [Snell et al.| (2017); [Hoffer &
Ailon|(2015).

2  PROPOSED METHOD

We propose the method, Prototype Recalls, for continual learning. For a sequence of datasets
Dy, Dy, ..., Dy, ..., given D; in any task ¢ where t € {1,2,...,T}, the goal for the model fr
is to retain the good classification performance on all 7" datasets after being sequentially trained
over T tasks. The value of T is not pre-determined. The model fr with learnable parameters
¢ is only allowed to carry over a limited amount of information from the previous 7" — 1 tasks.
This constraint eliminates the naive solution of combining all previous datasets to form one big
training set for fine-tuning the model fr at task 7. Each dataset D, consists of NV, labeled examples
Dy = {X4,Y;} = {(x16,Y1¢)s -, (Tnt, yne) } where each x;; € RP is the D-dimensional feature
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Figure 1: [lustration of classification and catastrophic forgetting alleviation in our proposed method.
In (a), dataset D;_; contains two classes. Prototypes ci ;1 and cp,_ are obtained by averaging
example embeddings of the same class. White square with question mark (embedded test data)
can be classified by finding its nearest prototype. In (b), dataset D; containing two new classes is
introduced in task ¢. The prototypes ¢; ¢,% = 1,. .., 4 on task ¢ are computed from D, | D;_; where
D;_1 is a randomly sampled subset from D;_;. To eliminate catastrophic forgetting, our method
constantly recalls metric space at task ¢ — 1 by making example embeddings on D,_1, as denoted
by dashed color shapes, close to prototypes c;—_1.

vector of an example and y;; € {1, ..., K;} is the corresponding class label. Si; denotes the set of
examples labeled with class k;.

At task T', if we simply train a model by only minimizing the classification loss L;4ss:, D~ On dataset
Dy, the model will forget how to perform classification on previous datasets D;,¢ < T which is
described as catastrophic forgetting problem McCloskey & Cohen| (1989); [Ratcliff| (1990); |French
(1999). Here we show how the model trained in our method retains the good performance on all
previous tasks while adaptively learning new tasks. The loss for all the previous datasets is denoted

by Lr(f) = Zthl Ep, [L(f(X}),Y:)]. Our objective is to learn fr defined as follows:

T-1 T-1
fT = arg;nin LT(f) = arg;nin{z Lclassi,Dt (ft) + Lclassi,DT (f) + Z 5D{, (fa ft)} (1)
t=1 t=1

where Lciqssi,p, (f) defines the classification loss of f on dataset Dy and dp, (f, f;) measures the
differences in the network behaviors in the embedding space learnt by f and f; on Dy, as introduced
later in Equ (7} Given fi, ..., fr_1 that are learnt from the previous tasks, at task 7', learning fp
requires minimizing both terms Ljqss:, . (f) and ZtT:_ll 0p,(f, ft). In the subsections below and
Figure[I] we describe how to optimize these two terms.

2.1 CLASSIFICATION

To perform classification on dataset D;, our method learns an embedding space in which points
cluster around a single prototype representation for each class and classification is performed
by finding the nearest class prototype [Snell et al| (2017) (Figure [Ta). Compared to traditional
classification networks with a specific classification layer attached in the end, such as iCARL and
FSR, our method keeps the network architecture unchanged while finding the nearest neighbour in
the embedding space, which would lead to more efficient memory usage. For example, in one of the
continual learning protocols |Snell et al.[(2017) where the models are asked to classify incremental
classes (also see Section[3.), traditional classification networks have to expand their architectures by
accommodating more output units in the last classification layer based on the number of incremental
classes and consequently, additional network parameters have to be added into the memory.

Without loss of generality, here we show how our method performs classification on Dp. First, the
model learns an embedding function f : R” — RM and computes an M -dimensional prototype
e € RM which is the mean of the embeddings from examples Syr:

dr=—— S flur): @)

(ziT,yiT)ESkT
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The pairwise distance of one embedding and one prototype within the same class should be smaller
than the intra-class ones. Our method introduces a distance function d : RM x RM — [0,00).
For each example x, it estimates a distance distribution based on a softmax over distances to the
prototypes of K classes in the embedding space:

exp(—d(f(ar) cxr))
w7 exp(—d(f(ar), crr))

The objective function Lqssi, py(f) is to minimize the negative log-probability — log py(yr =
kr|xr) of the ground truth class label kr via Stochastic Gradient Descent Bottou| (2010):

Letassi,pg (f) = —logpe(yr = krl|xr) €]
In practice, when Nr is large, computing cir is costly and memory inefficient during training.
Thus, at each training iteration, we randomly sample two complement subsets from Sy over all
K classes: one for computing prototypes and the other for estimating distance distribution. Our
primary choice of the distance function d(-) is squared Euclidean distance which has been verified
to be effective in|Snell et al.[(2017). In addition, we include temperature hyperparameter 7 in d(-) as
introduced in network distillation literature [Hinton et al.| (2015) and set its value empirically based
on the validation sets. A higher value for 7 produces a softer probability distribution over classes.

po(yr = krl|zr) = (3)

2.2 PROTOTYPE RECALL

Regardless of the changes of the network parameters from ¢, to ¢ at task ¢ and T respectively, the
primary goal of fr is to learn the embedding function which results in the similar metric space as
f¢ on dataset D, in task ¢ (Figure[Ib). Given a limited amount of memory, a direct approach is to
randomly sample a small subset D; = {(a:(t), yft) )|i = 1,...,m} from D; and replay these examples
on task 7'. There have been some attempts|Chen et al. (2012) Koh & Liang|(2017); Brahma & Othon
(2018)) selecting representative examples for D; based on different scoring functions. However, the
recent work Wen et al.| (2018]) has shown that random sampling uniformly across classes has already
yielded outstanding performance in continual learning tasks. Hence, we adopt the same random
sampling strategy to form D;.

Intuitively, if the number of data samples in Dy is very large, the network could re-produce the metric
space at task ¢ by replaying Dy, which is our desired goal. However, this does not hold in practice
given limited memory capacity. With the simple inductive bias that the metric space at task ¢ can be
underlined by class-representative prototypes, we introduce another loss that embedded data sample
in D, should still be closest to their corresponding class prototype among all prototypes at task .
This ensures the metric space represented by a set of prototypes learnt from D, by fr provides good
approximation to the one in task ¢.

Formally, for any f after task ¢, we formulate the regularization of network behaviors dp, (f, fi)
in the metric space of task ¢ by satisfying two criteria: first, f learns a metric space to classify
ﬁt by minimizing the classification loss LClassi’ b, (f), as introduced in Sec. above; second,
to preserve the similar topological structure L, gu. Dy, Dt( f, f+) among clusters on dataset D;, the

embeddings f(<;) predicted by f based on D, should produce the similar distance distribution
based on a softmax over the distance to prototypes c; computed using f; on dataset D;:
. ~ exp(—d(f(zy),c 1
po (U = kil21) = =, (A f)~ i) Okt =g Z fe(wi). (&)
L' exp(=d(f (@), cie) ISit] (o s

Concretely, L (f, f¢) is to minimize the negative log-probability p, (g = k¢|#;) of the

regu, Dt ,Dy
ground truth class label k; conditioned on prototypes ¢y, which is pre-computed using f; in EqI S|at
task ¢ and stored in the episodic memory until task 7"

Lregu,lit,Dt (f7 ft> = 10gp¢( = I% | ) (6)

Overall, we define dp, (f, f;) in Eq[1]as below:

5Dt (f’ ft) = Lclassi,ﬁt (f> + Lregu,ﬁt,Dt (f7 ft) (7)
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Algorithm 1: Prototype recall algorithm in continual learning for a training episode

Input : A sequence of datasets D1, Da, ..., Dy, ..., one per task t. A feed-forward neural network learning
embedding function f. Episodic memory with capacity C. Sampled m examples per dataset.

Qutput: Update the network parameters ¢

for each task t do

if £ = 1 then
Classify D1; Compute prototypes {ci1, ..., Cx1} ; // Equ. , , E]
Store prototypes {ci1, ..., cx1} and m sampled examples Dy in episodic memory;

else
Classify D¢; Compute prototypes {ci¢, ..., Ckt} ; // Equ. , , E]
for all previous tasks i from 1 tot — 1 do

minimize dp, (f, f;) using the following ; // Equ.
Classify D;; // Equ. , ,
Prototype recalls using D; and prototypes {cii, ..., Cki } in episodic memory ; // Equ. , E
Update m based on C'; Store prototypes {cit, ..., ck+ } and D; in episodic memory ;  // Equ. E

Training Training
Task 1 (permutation 1) Task 1 (2 classes)
9l/2[3l«5/¢9glg =T
Task 2 (permutation 2) Task 2 (3 classes, 2 classes from previous tasks)

Task 20 (permutation 20) Task 9 (10 classes, 9 classes from previous tasks)

‘ ; S =
EEERRNEEEEE T W=
Evaluation and Testing Evaluation and Testing
With permutation unknown, which digit ['.' With task unknown, which class is the
/ is the given image (from 0O to 9)? given image (incremental across tasks)?

(a) Permuted MNIST in Incremental Domain (b) Split CIFAR10 in Incremental Class

Figure 2: Schematics of two task protocols in our continual learning experiments: (a) learning
with incremental domain on permuted MNIST; and (b) learning with incremental classes on split
CIFAR10.

2.3 DyYNAMIC EPISODIC MEMORY ALLOCATION

Given a limited amount of memory with capacity C, our proposed method has to store a small subset
D, with m examples randomly sampled from D; and prototypes cxt, k € {1,..., K;} computed
using embedding function f; : R? — RM on D; where t < T'. The following constraint has to be
satisfied:

T—1

C=Y Ki{(M+mD) ®)
t=1

When the number of tasks 7" is small, m can be large and the episodic memory stores more examples
in D;. Dynamic memory allocation of enabling more example replays in earlier tasks puts more
emphasis on reviewing earlier tasks which are easier to forget, and introduces more varieties in data
distributions when matching with prototypes. Pseudocode to our proposed algorithm in continual
learning for a training episode is provided in Algorithm I]

3 EXPERIMENTAL DETAILS

We introduce two task protocols for evaluating continual learning algorithms with different memory
usage over three benchmark datasets. Source codes will be public available upon acceptance.
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3.1 TASK PROTOCOLS

Permuted MNIST in incremental domain task is a benchmark task protocol in continual
learning [Lee et al.|(2017); Lopez-Paz et al.| (2017); [Zenke et al.| (2017) (Figure @ In each task, a
fixed permutation sequence is randomly generated and is applied to input images in MNIST |Deng
(2012). Though the input distribution always changes across tasks, models are trained to classify 10
digits in each task and the model structure is always the same. There are 20 tasks in total. During
testing, the task identity is not available to models. The models have to classify input images into 1
out of 10 digits.

Split CIFAR10 and split MinilmageNet in incremental class task is a more challenging task
protocol where models need to infer the task identity and meanwhile solve each task. The input data
is also more complex which includes classification on natural images in CIFAR10 Krizhevsky &
Hinton| (2009)) and minilmageNet Deng et al.| (2009). The former contains 10 classes and the latter
consists of 100 classes. In CIFAR10, the model is first trained with 2 classes and later with 1 more
class in each subsequent task. There are 9 tasks in total and 5,000 images per class in the training
set. In minilmageNet, models are trained with 10 classes in each task. There are 10 tasks in total
and 480 images per class in the training set.

Few-shot Continual Learning Humans can learn novel concepts given a few examples without
sacrificing classification accuracy on initial tasks |Gidaris & Komodakis| (2018). However, typical
continual learning schemes assume that a large amount of training data over all tasks is always
available for fine-tuning networks to adapt to new data distributions, which does not always
hold in practice. We revise task protocols to more challenging ones: networks are trained
with a few examples per class in sequential tasks except for the first task. For example, on
CIFAR10/minilmageNet, we train the models with 5,000/480 example images per class in the first
task and 50/100 images per class in subsequent tasks.

3.2 BASELINES

We include the following categories of continual learning methods for comparing with our method.
To eliminate the effect of network structures in performance, we introduce control conditions with
the same architecture complexity for all the methods in the same task across all the experiments.

Parameter Regularization Methods: Elastic Weight Consolidation (EWC) Kirkpatrick et al.
(2017), Synaptic Intelligence (SI) Zenke et al.[(2017) and Memory Aware Synapses (MAS) |Aljundi
et al.| (2018) where regularization terms are added in the loss function; online EWC |Schwarz et al.
(2018) which is an extension of EWC in scalability to a large number of tasks; L2 distance indicating
parameter changes between tasks is added in the loss|Kirkpatrick et al.|(2017)); SGD, which is a naive
baseline without any regularization terms, is optimized with Stochastic Gradient Descent Bottou
(2010) sequentially over all tasks.

Memory Distillation and Replay Methods: incremental Classifier and Representation Learner
(ACARL) [Rebuffi et al.| (2017) and Few-shot Self-Reminder (FSR) Wen et al.| (2018) propose
to regularize network behaviors by exact pseudo replay. Specifically, in FSR, there are two
variants: FSR-KLD for logits matching via KullbackLeibler Divergence loss and FSR-MSE for
logits distillation via L2 distance loss.

Performance is reported in terms of both mean and standard deviation after 10 runs per protocol.
Since generative model-based approaches [van de Ven & Tolias| (2018); |Shin et al.| (2017) greatly
alter architecture of the classification networks, we do not compare with them.

3.3 MEMORY COMPARISON

For fair comparison, we use the same feed-forward architecture for all the methods and allocate a
comparable amount of memory as EWC Kirkpatrick et al.|(2017) and other parameter regularization
methods, for storing example images per class and their prototypes. In EWC, the model
often allocates a memory size twice as the number of network parameters for computing Fisher
information matrix which can be used for regularizing changes of network parameters Kirkpatrick
et al.|(2017). In more challenging classification tasks, the network size tends to be larger and hence,
these methods require much more memory. In Table|l} we show an example of memory allocation
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Figure 3: First and average task classification accuracies from 10 random runs on permuted MNIST,
split CIFAR10 and split minilmagetNet in incremental domain (ID) and incremental class (IC) tasks.

on split CIFAR10 in incremental class tasks with full memory and little memory respectively. The
feed-forward classification network contains around 16.3 x 10° parameters. Weight regularization
methods require memory allocation twice as that, which takes about 32.63 x 10° parameters.
The input RGB images are of size 3 x 32 x 32. Via Equ. [§] our method can allocate episodic
memory with full capacity C = 16.3 x 10° and calculate m which is equivalent to storing
16.3 x 105/(3 x 32 x 32) = 530 example images per class. In experiments with little training
data as described in Section[3.1} we reduce m to 10 example images per class.

4 EXPERIMENTAL RESULTS

4.1 ALLEVIATING FORGETTING

Figure [3] reports the results of continual learning methods with full memory under the two
task protocols. All compared continual learning methods outperform SGD (cyan) which is a
baseline without preventing catastrophic forgetting. Our method (red) achieves the highest average
classification accuracy among all the compared methods, including both parameter regularization
methods and memory-based methods, with minimum forgetting.

A good continual learning method should not only show good memory retention but also be able to
adapt to new tasks. In Figure 33 although our method (red) performs on par with EWC (brown)
and FSR (date) in retaining the classification accuracy on dataset D in the first task along with 20
sequential tasks, the average classification accuracy of our method is far higher than EWC (brown)
and FSR (date) as shown in Figure [3b] indicating both of these methods are able to retain good
memory but fail to learn new tasks. After the 13th task, the average classification performance of
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Figure 4: Few-shot average task classification accuracies on split CIFAR10 and minilmagetNet in
incremental class task with few training data in the second tasks and onwards.

EWC is even worse than SGD. Across total 20 tasks, our method leads FSR (date) by 3% more
accurate on average. Similar reasoning can be applied to comparison with SI (green): although our
method performs comparably well as SI in terms of average classification accuracy, SI fails to retain
the classification accuracy on D1, which is 6% lower than ours in the 20th task.

Figure [3c| and [3d] show the average task classification accuracy over sequential tasks in incremental
class protocol. Incremental class protocol is more challenging than incremental domain protocol,
since the models have to infer both the task identity and class labels in the task. Our method (red)
performs slightly better than iCARL (date) and has the hightest average classification accuracy in
continual learning. Compared with third best method, FSR (green), our method yields constantly
around 5% higher on average across all tasks on CIFAR10 and minilmageNet respectively. Note that
most weight regularization methods, such as EWC (brown), perform as badly as SGD. It is possible
that EWC computes Fisher matrix to maintain local information and does not consider the scenarios
when data distributions across tasks are too far apart. On the contrary, our method maintains
remarkably better performance than EWC, because ours focuses primarily on the behaviors of
network outputs, which indirectly relaxes the constraint about the change of network parameters.

4.2 FEW-SHOT CONTINUAL LEARNING

We evaluate continual learning methods with little memory under two task protocols with few
training data in the second tasks and onwards except for the first tasks. Figure [] reports their
performance. Our method (red) has the highest average classification accuracy over all sequential
tasks among state-of-the-art methods with 27% and 11% vs. 19% and 4% of FSR-KLD (yellow),
which is the second best, at the 9th and 10th tasks on CIFAR10 and minilmageNet respectively.
Weight regularization methods, such as EWConline (blue) and MAS (brown), perform as badly
as SGD (cyan), worse than logits matching methods, such as FSR (green and yellow) or iCARL
(purple). Similar observations have been made as Figure 3] with full training data.

Compared with logits matching methods, our method has the highest average task classification
accuracy. It reveals that our method performs classification via metric learning in an effective
few-shot manner. It is also because our network architecture is not dependent on the number of
output classes and the knowledge in previous tasks can be well preserved and transferred to new
tasks. It is superior to traditional networks with new parameters added in the last classification layer,
which easily leads to overfitting. As a side benefit, given the same number of example inputs in the
episodic memory, our method is more efficient in memory usage since it stores one prototype per
class instead of the logits for each example input as verified in Table|[T]

4.3 NETWORK ANALYSIS

We also study the effects of the following three factors upon performance improvement. Figure [3]
reports the average classification accuracy of these ablated methods. (1) Intuitively, limited memory
capacity restricts number of example inputs to re-play and leads to performance drop. On permuted
MNIST in incremental domain, with full memory capacity reduced by 2.5 times (from 5,000
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Figure 6: 2D visualization of embedding clusters learnt by our method using t-sne |Van Der Maaten
(2014) on split CIFARI10 in incremental class task. The first task (Task = 1) is a binary classification
problem. In subsequent tasks, one new class is added.

example inputs to 2,000), our method shows a moderate decrease of average classification accuracy
by 1% in the 20th task. (2) We also compare our method with memory replay optimized by
cross-entropy loss at full memory conditions. A performance drop around 1.5% is observed which
validates classifying example inputs based on initial prototypes results in better performance in
memory retention. (3) Given fixed C, our method adopts the strategy of decreasing m numbers of
example inputs in memory, with the increasing number of tasks. The performance drop of 1.5%
using uniform memory allocation demonstrates the usefulness of dynamic memory allocation which
enforces more examples to be replayed in earlier tasks, and therefore promotes memory retention.

In Figure[6] we provide visualizations of class embeddings by projecting these latent representations
of classes into 2D space. It can be seen that our method is capable of clustering latent representations
belonging to the same class and meanwhile accommodating new class embeddings across sequential
tasks. Interestingly, the clusters are topologically organized based on feature similarities among
classes and the topological structure from the same classes is preserved across tasks. For example,
the cluster of “bird” (black) is close to that of “plane” (orange) in Task 3 and the same two clusters
are still close in Task 9. This again validates that classifying example inputs from previous tasks
based on initial prototypes promotes preservation of topological structure in the initial metric space.

5 CONCLUSION

We address the problem of catastrophic forgetting by proposing prototype recalls in classification
tasks. In addition to significantly alleviating catastrophic forgetting on benchmark datasets, our
method is superior to others in terms of making the memory usage efficient, and being generalizable
to learning novel concepts given only a few training examples in new tasks.

However, given a finite memory capacity and a high number of tasks, we recognize that our
method, just like other memory-based continual learning algorithms, have limitations in number
of prototypes stored. The memory requirement of our method increases linearly with the number
of continuous tasks. In practice, there is always a trade-off between memory usage and retention.
We believe that our method is one of the most efficient continual learning methods in eliminating
catastrophic forgetting with a decent amount of memory usage. Moreover, we restrict ourselves
in classification tasks with discrete prototypes. In the future work, to apply our algorithm in
more complex and challenging problems, such as regression and reinforcement learning (RL), one
possible solution is to quantize the continuous space in regression or formulate RL in discrete
state-action pairs.
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