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ABSTRACT

Language creates a compact representation of the world and allows the description
of unlimited situations and objectives through compositionality. These properties
make it a natural fit to guide the training of interactive agents as it could ease
recurrent challenges in Reinforcement Learning such as sample complexity, gen-
eralization, or multi-tasking. Yet, it remains an open-problem to relate language
and RL in even simple instruction following scenarios. Current methods rely on
expert demonstrations, auxiliary losses, or inductive biases in neural architectures.
In this paper, we propose an orthogonal approach called Textual Hindsight Expe-
rience Replay (THER) that extends the Hindsight Experience Replay approach to
the language setting. Whenever the agent does not fulfill its instruction, THER
learns to output a new directive that matches the agent trajectory, and it relabels
the episode with a positive reward. To do so, THER learns to map a state into an
instruction by using past successful trajectories, which removes the need to have
external expert interventions to relabel episodes as in vanilla HER. We observe
that this simple idea also initiates a learning synergy between language acquisi-
tion and policy learning on instruction following tasks in the BabyAI environment.

1 INTRODUCTION

Language has slowly evolved to communicate intents, to state objectives, or to describe complex sit-
uations (Kirby et al., 2015). It conveys information compactly by relying on composition and high-
lighting salient facts. Such properties are essential when developing interactive agents in complex
environments. As language may express a vast diversity of goals and situations, it could alleviate the
training of interactive agents over heterogeneous and composite tasks thanks to its intrinsic struc-
ture (Luketina et al., 2019). This property is all the more critical as classic Reinforcement Learning
(RL) methods are facing generalization issues (Cobbe et al., 2018), and learning hierarchical and
structured policies remains an open-problem (Barto & Mahadevan, 2003; Kulkarni et al., 2016). As
recently advocated by Luketina et al. (2019), language should thus be considered a first-class citizen
to ease RL to improve on generalization and sample efficiency.

Unfortunately, conditioning a policy on language also entails a supplementary difficulty as the agent
needs to understand linguistic cues to alter its behavior. The agent thus needs to ground its language
understanding by relating the words to its observations, actions, and rewards before being able to
leverage the language structure (Kiela et al., 2016; Hermann et al., 2017). Once the linguistic sym-
bols are grounded, the agent may then take advantage of language compositionality to condition its
policy on new goals. It thus leads to the following questions: are we eventually making the rein-
forcement learning problem harder, or can we generate learning synergies between policy learning
and language acquisition?

In this work, we use instruction following as a natural testbed to examine this question (Tellex et al.,
2011; Chen & Mooney, 2011; Artzi & Zettlemoyer, 2013; Luketina et al., 2019; Zang et al., 2018;
Hermann et al., 2019; Chen et al., 2019). In this setting, the agent is given a text description of its
goal (e.g. ”pick the red ball”) and is rewarded when achieving it. The agent has thus to visually
grounded the language, i.e., linking and disentangling visual attributes (shape, color) from language
description (”ball”, ”red”) by using rewards to condition its policy toward task completion. On one
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Figure 1: Upon positive trajectory, the agent trajectory is used to both update the RL replay buffer
and the goal mapper training dataset. Upon failed trajectory, the goal mapper is used to relabel
the episode, and both trajectories are appended to the replay buffer. In the original HER pa-
per (Andrychowicz et al., 2017), the mapping function is bypassed since they are dealing with spatial
goals, and therefore, vanilla HER cannot be applied without external feedback (Chan et al., 2018).

side, the language compositionality allows for a high number of goals, and offers generalization
opportunities; but on the other side, it dramatically complexifies the policy search space. Besides,
instruction following is a notoriously hard RL problem since it has a sparse reward signal. In prac-
tice, the navigation and language grounding problems are often circumvented by warm-starting the
policy with labeled trajectories (Zang et al., 2018; Anderson et al., 2018). Although scalable, these
approaches require numerous human demonstrations, whereas we here want to jointly learn the nav-
igation policy and language understanding from scratch. In a seminal work, Hermann et al. (2017)
successfully ground language instructions, but the authors used unsupervised losses and heavy cur-
riculum to handle the sparse reward challenge.

In this paper, we take advantage of language compositionality to tackle the lack of reward signals.
To do so, we extend Hindsight Experience Replay (HER) to language goals (Andrychowicz et al.,
2017). HER originally deals with the sparse reward problems in spatial scenario; it relabels unsuc-
cessful trajectories into successful ones by redefining the policy goal a posteriori. As a result, HER
creates additional episodes with positive rewards and a more diverse set of goals. Unfortunately,
this approach cannot be directly applied when dealing with linguistic goals. As HER requires a
mapping between the agent trajectory and the goal to substitute, it requires expert supervision to de-
scribe failed episodes with words. Hence, this mapping should either be handcrafted with synthetic
bots (Chan et al., 2018), or be learned from human demonstrations, which would both limit HER
generality.

In this work, we introduce Textual Hindsight Experience Replay (THER), a training procedure
where the agent jointly learns the language-goal mapping and the navigation policy by solely in-
teracting with the environment illustrated in Figure 1. THER leverages positive trajectories to
learn a mapping function, and THER then tackles the sparse reward problem by relabeling lan-
guage goals upon negative trajectories in a HER fashion. We evaluate our method on the BabyAI
world (Chevalier-Boisvert et al., 2019), showing a clear improvement over RL baselines while high-
lighting the robustness of THER to noise. Besides, we observe that this simple idea triggers a
learning synergy between language acquisition and policy learning.

2 BACKGROUND AND NOTATION

In reinforcement learning, an agent interacts with the environment to maximize its cumulative re-
ward (Sutton & Barto, 2018). At each time step t, the agent is in a state st ∈ S, where it se-
lects an action at ∈ A according its policy π : S → A. It then receives a reward rt from
the environment’s reward function r : S × A → R and moves to the next state st+1 with
probability p(st+1|st, at). The quality of the policy is assessed by the Q-function defined by
Qπ(s, a) = Eπ [

∑
t γ

tr(st, at)|s0 = s, a0 = a] for all (s, a) where γ ∈ [0, 1] is the discount factor.
We define the optimal Q-value as Q∗(s, a) = maxπ Q

π(s, a), from which the optimal policy π∗
is derived. We here use Deep Q-learning (DQN) to approximate the optimal Q-function with neu-
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ral networks and perform off-policy updates by sampling transitions (st, at, rt, st+1) from a replay
buffer (Mnih et al., 2015).

In this article, we augment our environment with a goal space G which defines a new reward function
r : S × A × G → R and policy π : S × G → A by conditioning them on a goal descriptor
g ∈ G. Similarly, the Q-function is also conditioned on the goal, and it is referred to as Universal
Value Function Approximator (UVFA) (Schaul et al., 2015). This approach allows learning holistic
policies that generalize over goals in addition to states at the expense of complexifying the training
process. In this paper, we explore how language can be used for structuring the goal space, and how
language composition eases generalization over unseen scenarios in a UVFA setting.

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is designed to increase the
sample efficiency of off-policy RL algorithms such as DQN in the goal-conditioning setting. It
reduces the sparse reward problem by taking advantage of failed trajectories, relabelling them with
new goals. An expert then assigns the goal that was achieved by the agent when performing its
trajectory, before updating the agent memory replay buffer with an additional positive trajectory.

Formally, HER assumes the existence of a predicate f : S × G → {0, 1} which encodes whether
the agent in a state s satisfies the goal f(s, g) = 1, and defines the reward function r(st, a, g) =
f(st+1, g). At the beginning of an episode, a goal g is drawn from the space G of goals. At each
time step t, the transition (st, at, rt, st+1, g) is stored in the DQN replay buffer, and at the end
of an unsuccessful episode, an expert provides an additional goal g′ that matches the trajectory.
New transitions (st, at, r′t, st+1, g

′) are thus added to the replay buffer for each time step t, where
r′ = r(st, at, st+1, g

′). DQN update rule remains identical to (Mnih et al., 2015), transitions are
sampled from the replay buffer, and the network is updated using one step td-error minimization.

HER assumes that a mapping m between states s and goals g is given. In the original pa-
per (Andrychowicz et al., 2017), this requirement is not restrictive as the goal space is a subset
of the state space. Thus, the mapping m is straightforward since any state along the trajectory can
be used as a substitution goal. In the general case, the goal space differs from the state space, and
the mapping function is generally unknown. In the instruction following setting, there is no obvious
mapping from visual states to linguistic cues. It thus requires expert intervention to provide a new
language goal given the trajectory, which drastically reduces the interest of HER. Therefore, we here
explore how to learn this mapping without any form of expert knowledge nor supervision.

3 TEXTUAL HINDSIGHT EXPERIENCE REPLAY

Textual Hindsight Experience Replay (THER) aims to learn a mapping from past experiences that
relates a trajectory to a goal in order to apply HER, even when no expert are available. The mapping
function relabels unsuccessful trajectories by predicting a substitute goal ĝ as an expert would do.
The transitions are then appended to the replay buffer. This mapping learning is performed alongside
agent policy training.

Besides, we wish to discard any form of expert supervision to learn this mapping as it would reduce
the practicability of the approach. Therefore, the core idea is to use environment signals to retrieve
training mapping pairs. Instinctively, in the sparse reward setting, trajectories with positive rewards
encode ground-truth mapping pairs, while trajectories with negative rewards are mismatched pairs.
These cues are thus collected to train the mapping function for THER in a supervised fashion. We
emphasize that such signals are inherent to the environment, and an external expert does not provide
them. In the following, we only keep positive pairs in order to train a discriminative mapping model.

Formally, THER is composed of a dataset D of 〈s, g〉 pairs, a replay buffer R and a parametrized
mapping model mw. For each episode, a goal g is picked, and the agent generates transitions
(st, at, rt, st+1, g) that are appended to the replay buffer R. The Q-function parameters are updated
with an off-policy algorithm by sampling minibatches from D. Upon episode termination, if the
goal is achieved, i.e. f(sT , g) = 1, the 〈sT , g〉 pair is appended to the dataset D. If the goal is not
achieved, a substitute goal is sampled from the mapping model1 mw(sT ) = ĝ′ and the additional
transitions {(st, at, rt, st+1, ĝ

′)}Tt=0 are added to the replay buffer. At regular intervals, the mapping
modelmw is optimized to predict the goal g given the trajectory τ by sampling mini-batches fromD.

1The mapping model can be utilized with an accuracy criterion to avoid random goal sampling.
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Figure 2: Left: Models are fed with the pre-extracted observations from the trajectories. Middle:
Agent model whose inputs are the last four observations and the goal. Right: Instruction Generator.

Algorithm 1 summarizes our approach. Noticeably, THER can be extended to partially observable
environments by replacing the predicate function f(s, g) by f(τ, g), i.e., the completion of a goal
depends on the full trajectory rather than one state.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Environment We experiment our approach on a grid world environment called MiniGrid (Chevalier-
Boisvert et al., 2019). This environment offers a variety of instruction-following tasks using a syn-
thetic language for grounded language learning. We use a 10x10 grid with 10 objects randomly
located in the room. Each object has 4 attributes (shade, size, color, and type) inducing a total of
300 different objects. The agent has four actions {forward, left, right, pick}, and it can only see the
7x7 grid in front of it. For each episode, one object’s attribute is randomly picked as a goal, and the
text generator translates it in synthetic language as detailed in Appendix C, e.g., ”Fetch a tiny light
blue ball.” The agent is rewarded when picking one object matching the goal description, which ends
the episode; otherwise, the episode stops after 40 steps or after taking an incorrect object.

Models In this experiment, THER is composed of two separate models as shown in Figure 2. The
instruction generator is a neural network outputting a sequence of words given the final state of a
trajectory. It is trained by gradient descent using a cross-entropy loss on the dataset D collected
as described in section 3. We train a DQN network following (Mnih et al., 2015) with a dueling
head (Wang et al., 2016), double Q-learning (Hasselt et al., 2016), and a uniform replay buffer. The
network receives a tuple < s, g > as input and output an action corresponding to the argmax over
states-actions values Q(s, a, g). We use ε-greedy exploration with decaying ε. The detailed models
and hyperparameters are provided in Appendix A, and the source code is available at HIDDEN_
FOR_BLIND_REVIEW.

4.2 BUILDING INTUITION

This section examines the feasibility of THER by analysing two potential issues. We first show
that HER is robust to a noisy mapping function (or partially incorrect goals), we then estimate the
accuracy and generalisation performance of the instruction generator.

Noisy instruction generator and HER We investigate how a noisy mapping m affects perfor-
mance compared to a perfect mapping. As the learned instruction generator is likely to be imperfect,
it is crucial to assess how a noisy mapping may alter the training of the agent. To do so, we train
an agent with HER and a synthetic bot to relabel unsuccessful trajectories. We then inject noise
in our mapping where each attribute has a fixed probability p to be swapped, e.g. color blue may
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Figure 3: Left: Agent performance with noisy mapping function. Right: Instruction generator ac-
curacy over 5k pairs. Figures are averaged over 5 seeds and error bars shows one standard deviation.

be changed to green. For example, when p = 0.2, the probability of having the whole instruction
correct is 0.84 ≈ 0.4. The resulting agent performance is depicted in Figure 3 (left).

The agent performs 80% as well as an agent with perfect expert feedback even when the mapping
function has a 50% noise-ratio per attribute. Surprisingly, even highly noisy mappers, with a 80%
noise-ratio, still provides an improvement over vanilla DQN-agents. Hence, HER can be applied
even when relabelling trajectories with partially correct goals.

We also examine whether this robustness may be induced by the environment properties (e.g. at-
tribute redundancy) rather than HER. We thus compute the number of discriminative features re-
quired to pick the correct object, as shown in Figure 8. On average, an object can be discriminated
with 1.7 features in our setting - which eases the training, but any object shares at least one property
with any other object 70% of the time - which tangles the training. Besides, the agent does not know
which features are noisy or important. Thus, the agent still has to disentangle the instructions across
trajectories in the replay buffer, and this process is still relatively robust to noise.

Learning an instruction generator We briefly analyze the sample complexity and generalization
properties of the instruction generator. If training the mapping function is more straightforward than
learning the agent policy, then we can thus use it to speed up the navigation training.

We first split the set of missions G into two disjoint sets Gtrain and Gtest. Although all object
features are present in both sets, they contain dissimilar combinations of target objects. For in-
stance, blue, dark, key, and large are individually present in instructions of Gtrain and Gtest but
the instruction to get a large dark blue key is only in Gtest. We therefore assess whether a basic
compositionality is learned. In the following, we use train/split ratio of 80/20, i.e., 240 vs 60 goals.

Finally, we generate an artificial dataset D of 〈g, sT 〉 pairs, and we report the training/testing accu-
racy of the instruction generator in Figure 3 (right). The accuracy evaluates whether the four correct
attributes are present in the linguistic instructions through a simple parser. For instance, ”a large blue
light key” is a failure case since one attribute is missing. Note that language accuracy is discussed
further in subsection 4.4. In practice, we observe than 1000 positive episodes are necessary to reach
around 20% accuracy with our model, and 5000 pairs are enough to reach 70% accuracy. The in-
struction generator also correctly predicts unseen instructions even with fewer than 1000 samples
and the accuracy gap between seen and unseen instructions slowly decrease during training, showing
basic compositionality acquisition. As further discussed in section 5, we here use a vanilla mapping
architecture to assess the generality of our THER, and more advanced architectures may drastically
improve sample complexity (Bahdanau et al., 2019b).

4.3 THER FOR INSTRUCTION FOLLOWING

In the previous section, we observe that: (1) HER is robust to noisy relabeled goals, (2) an instructor
generator requires few positive samples to learn basic language compositionality. We thus here
combine those two properties to execute THER, i.e. jointly learning the agent policy and language
prediction in a online fashion for instruction following.
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Figure 4: Left: learning curves for DQN, DQN+HER, DQN+THER in a 10x10 gridworld with 10
objects with 4 attributes. The instruction generator is used after the vertical bar. Right: the mapping
accuracy for the prediction of instructions. mw starts being trained after collecting 1000 positive
trajectories. Results are averaged over 5 seeds with one standard deviation.

Baselines We want to assess if the agent benefits from learning an instruction generator and us-
ing it to substitute goals as done in HER. We denote this approach DQN+THER. We compare our
approach to DQN without goal substitution (called DQN) and DQN with goal substitution from a
perfect mapping provided by an external expert (called DQN+HER) available in the BabyAI envi-
ronment. We emphasize again that it is impossible to have an external expert to apply HER in the
general case. Therefore, DQN is a lower bound that we expect to outperform, whereas DQN+HER
is the upper bound as the learned mapping can not outperform the expert. Note that we only start
using the parametrized mapping function after collecting 1000 positive trajectories.

Results In Figure 4 (left), we show the success rate of the benchmarked algorithms per environ-
ment steps. We first observe that DQN does not manage to learn a good policy, and its performance
remains close to that of a random policy. On the other side, DQN+HER quickly manages to pick the
correct object 39% of the time. Finally, DQN+THER sees its success rates increasing as soon as we
use the mapping function, to rapidly perform nearly as well as DQN+HER. Figure 4 (right) shows
the performance accuracy of the mapping generator by environment steps. We observe a steady im-
provement of the accuracy during training before reaching 78% accuracy after 5M steps. In the end,
DQN+THER outperforms DQN by using the exact same amount of information, and even matches
the conceptual upper bond computed by DQN+HER.

Discussion As observed in the previous noisy-HER experiment, the policy success rate starts
increasing even when the mapping accuracy is 20%, and DQN+THER becomes nearly as good
as DQN+HER despite having a maximum mapping accuracy of 78%. It demonstrates that
DQN+THER manages to trigger the policy learning by better leveraging environment signals com-
pared to DQN. As the instruction generator focuses solely on grounding language, it quickly pro-
vides additional training signal to the agent, initiating the navigation learning process.

We observe that the number of positive trajectories needed to learn a non-random mapping mw

is lower than the number of positive trajectories needed to obtain a valid policy with DQN (even
after 5M environment steps the policy has 10% success rate). Noticeably, we artificially generate a
dataset in section 4.2 to train the instruction generator, whereas we follow the agent policy to collect
the dataset, which is a more realistic setting. For instance, as the instructor generator is trained on
a moving dataset, it could overfit to the first positive samples, but in practice it escapes from local
minima and obtains a final high accuracy.

Different factors may also explain the learning speed discrepancy: supervised learning has less vari-
ance than reinforcement learning as it has no long-term dependency. The agent instructor generator
can also rely on simpler neural architectures than the agent. Although THER thus takes advantage
of those training facilities to reward the agent ultimately.

Finally, we observe a virtuous circle that arises. As soon as the mapping is correct, the agent suc-
cess rate increases, initiating the synergy. The agent then provides additional ground-truth mapping
pairs, which increases the mapping accuracy, which improves the quality of substitute goals, which
increases the agent success rate further more. As a result, there is a natural synergy that occurs be-
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Figure 5: Left: Transition distributions in the replay buffer between successful, unsuccessful and
relabeled trajectories. We remove time-out trajectories for clarity, which accounts for 54% of the
transition in average (±3% over training). Right: Evaluating the language learned by the instruction
generator on unseen instructions. Over time, the number of correct attributes (purple) is increasing,
as the number of irrelevant words (orange) is decreasing. The number of repeated attributes (green)
stays low. The beginning clause is ignored as it doesn’t provide information regarding the objective.

tween language grounding and navigation policy as each module iteratively provides better training
samples to the other model. This virtuous circle is observed inside the replay buffer distribution,
as shown in Figure 5. If we ignore time-out trajectories, around 90% of the trajectories are nega-
tive at the beginning of the training. As soon as we start using the instruction generator, 40% the
transitions are relabelled by the instructor generator, and 10% of the transitions belong to positive
trajectories. As training goes, this ratio is slowly inverted, and after 5M steps, there is only 15%
relabelled trajectories left while 60% are actual positive trajectories.

Limitations Albeit generic, THER also faces some inherent limitations. From a linguistic per-
spective, THER cannot transcribe negative instructions (Do not pick the red ball), or alternatives
(Pick the red ball or the blue key) in its current form. However, this problem could be alleviated
by batching several trajectories with the same goal. On the policy side, THER still requires a few
trajectories to work, and it thus relies on the navigation policy. A natural improvement would be to
coupling this approach with other exploration methods, e.g, intrinsic motivation (Bellemare et al.,
2016) or DQN with human demonstration (Hester et al., 2018).

4.4 LANGUAGE LEARNED BY THE INSTRUCTION GENERATOR

We here analyze further the language quality of the instruction generator. To do so, we rely on three
metrics to assess the generated language quality. The first metric, called attribute fidelity, assesses
whether every target attribute is present in the generated sentence. For example, for the objective a
large dark blue key, the generated sentence ”Fetch me a large key” only containing two attributes
and receives a score of two. Yet, the model may still enumerate all available attributes in a single
sentence; the score would always be four. Language precision counter this effect by counting how
many words are not relevant to describe the target object. This second metric is related to precision
(or positive predictive value), as generated instructions only contain relevant attributes. Finally, we
count repeated attributes as language models are known to stutter during early training.

In Figure 5, we compute the three metrics over unseen goal states, examining the compositionality
properties of the instruction generator. We observe that generated instructions get more accurate,
contain less irrelevant attributes, thus providing the agent with valid goals, even in unseen scenarios.
As the instruction generator is trained until convergence as new <state, instruction> pairs are col-
lected, it naturally preserve the overall language structure, and correctly ground symbols: repeated
attributes score remains low and generated sentences start with the verb and end with the noun while
randomly shuffling the attributes as shown in Table 1.

5 RELATED WORK

Instruction following have recently drawn a lot of attention following the emergence of several
2D and 3D environments (Chevalier-Boisvert et al., 2019; Brodeur et al., 2017; Anderson et al.,
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#Samples
Instruction get a small very light green key get a tiny dark yellow key go fetch a dark grey giant ball

200 get a neutral very light tiny ball get a small blue dark ball ball go get a grey giant neutral giant neutral grey
1000 get a very light green small ball go fetch a tiny dark tiny ball you must fetch a grey dark giant ball
10000 get a very light green small key go get a dark yellow tiny key go fetch a grey dark giant ball

Table 1: Examples of language errors during the training

2018). This section first provides an overview of the different approaches, i.e, fully-supervised
agent, reward shaping, auxiliary losses, before exploring approaches related to THER.

Vision and Language Navigation Instruction following is sometimes coined as Vision and Lan-
guage Navigation tasks in computer vision (Anderson et al., 2018; Wang et al., 2019). Most strate-
gies are based on imitation learning, relying on expert demonstrations and knowledge from the envi-
ronment. For example, Zang et al. (2018) relate instructions to an environment graph, requiring both
demonstrations and high-level navigation information. Closer to our work, Fried et al. (2018) also
learns a navigation model and an instruction generator, but the latter is used to generate additional
training data for the agent. The setup is hence fully supervised, and requires human demonstrations.
These policies are sometimes finetuned to improve navigation abilities in unknown environments.
Noticeably, Wang et al. (2019) optimizes their agent to find the shortest path by leveraging language
information. The agent learns an instruction generator, and they derive an intrinsic reward by align-
ing the generator predictions over the ground truth instructions. Those approaches complete long
sequences of instructions in visually rich environments but they require a substantial amount of an-
notated data. In this paper, we intend to discard human supervision to explore learning synergies.
Besides, we needed a synthetic environments with experts to evaluate THER. Yet, THER could be
studied on natural and visually rich settings by warm-starting the instruction generator.

Improving language compositionality THER heavily relies on leveraging the language struc-
ture in the instruction mapper toward initiating the learning synergy. For instance, Bahdanau et al.
(2019b) explore the generalization abilities of various neural architectures. They show that the sam-
ple efficiency of feature concatenation can be considerably improved by using feature-wise modu-
lation (Perez et al., 2018), neural module networks (Andreas et al., 2016) or compositional attention
networks (Hudson & Manning, 2018). In this spirit, Bahdanau et al. (2019a) take advantage of these
architectures to quickly learn a dense reward model from a few human demonstrations in the instruc-
tion following setup. Differently, the instructor generator can also be fused with the agent model to
act as an auxiliary loss, reducing further the sparse reward issue.

HER variants HER has been extended to multiple settings since the original paper. These exten-
sions deal with automatic curriculum learning (Liu et al., 2019), dynamic goals (Fang et al., 2019),
or they adapt goal relabelling to policy gradient methods (Rauber et al., 2019). Closer to our work,
Sahni et al. (2019) train a generative adversarial network to hallucinate visual near-goals state over
failed trajectories. However, their method requires heavy engineering as visual goals are extremely
complex to generate, and they lack the compact generalization opportunities inherent to language.
Chan et al. (2018) also studies HER in the language setting, but the authors only consider the context
where a language expert is available.

6 CONCLUSION

We introduce Textual Hindsight Experience Replay (THER) as an extension to HER for language.
We define a protocol to learn a mapping function to relabel unsuccessful trajectories with predicted
consistent language instructions. We show that THER nearly matches HER performances despite
only relying on signals from the environment. We provide empirical evidence that THER manages
to alleviate the instruction following task by jointly learning language grounding and navigation
policy with training synergies. THER has mild underlying assumptions, and it does not require
human data, making it valuable to complement to other instruction following methods.
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A APPENDIX A: TRAINING DETAILS

A.1 INSTRUCTION GENERATOR ARCHITECTURE

The encoder is a convolution neural network (LeCun et al., 1995) with ReLU activation functions
after each layer for processing an observation of dimension 7x7x3. It is composed of: 16 of 2x2
kernel, followed a max pooling 2D of size 2x2 then 32 of 2x2 kernel, and finally 256 of 2x2 kernel.
For the convolutional layers and the pooling layer, the stride is always equal to 1.

The decoder is a recurrent neural network composed of gated recurrent units (GRU) (Chung et al.,
2014) that outputs the instruction word by word. The convolutional layers extract relevant informa-
tion from the image and compress it in a latent representation. This latent representation is then used
as the initial hidden state of a GRU layer. The initial input of the GRU layer is the token BEGIN.
At each time step, the GRU layer outputs a distribution over words as in Seq2Seq (Sutskever et al.,
2014), we can use as the input of the next step the word the is the most likely. When the token
END is chosen the prediction stops. We use a word embedding of dimension 128 and an instruction
embedding of dimension 256. The number of words in the dictionary is equal to 27.

The training is done with cross-entropy between the distribution of probabilities over words pre-
dicted by the model and the true word. Teacher forcing is employed to accelerate and to stabilize
the learning. Teacher forcing refers to using the ground truth for the next input of the GRU instead
of using the last predicted word (Bengio et al., 2015).

The learning rate is fixed to 10−4 and the network is trained using the Adam optimizer with default
parameters (Kingma & Ba, 2015) and a regularization of 10−6 over all parameters. The batchsize is
equal to 128.

A.2 DQN ARCHITECTURE

To deal with the partial observability of the environment (described in subsection 4.1) the state
corresponds to the last 4 frames stacked as in (Mnih et al., 2015).

Visual Encoder: Each frame is encoded by a convolutional neural network and then passed through
a LSTM. Each layer is followed by a ReLU activation function. The convolutional neural network
is composed of: 16 of 2x2 kernel, followed a max pooling 2D of size 2x2 then 32 of 2x2 kernel, and
finally 64 of 2x2 kernel. For the convolutional layers and the pooling layer, the stride is always equal
to 1. The LSTM has an input and hidden size of 64. The last LSTM hidden state ht corresponds to
visual embedding.

Instruction Encoding: First each word is embedded with an embedding of size 32. Instructions are
encoded word by word using a GRU. The GRU has an input size of 32 which corresponds to the
word embedding size and a hidden size of 128 which corresponds to the instruction embedding size.
The last GRU hidden state ht is kept as the instruction embedding.

We concatenate the visual embedding and the instruction embedding and add fully connected layers
in the same fashion as in the dueling architecture (Wang et al., 2016) on top to compute the Q-values
for each action.

Training parameters The exploration policy is ε-greedy with ε decaying linearly from 1 to 0.05
either in 500 000 steps for DQN and DQN+THER or in 100 000 steps for DQN+HER. The RMSprop
optimizer is used to train the neural network with a learning rate fixed to 10−5 and default parameters
(the forgetting factor is 0.99). Huber loss (with δ = 1) and gradient clipping (between -1 and 1)
are used for stable gradients. The target network is synchronized with the current model every 1000
gradient steps. The replay buffer size is 50 000.
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B THER ALGORITHM DETAILED

Algorithm 1: Textual Hindsight Experience Replay (THER)
Given:

• an off-policy RL algorithm (e.g. DQN) A
• a reward function r : S ×A× G → R.

1 Initialize A , replay buffer R, dataset D of 〈instruction, state〉, Instruction Generator mw;
2 for episode=1,M do
3 Sample a goal g and an initial state s0;
4 t = 0;
5 repeat
6 Execute an action at chosen from the behavioral policy A: at ← π(st||g);
7 Observe a reward rt = r(st, at, g) and a new state st+1;
8 Store the transition (st, at, rt, st+1, g) in R;
9 Update Q-network parameters using the policy A and sampled minibatches from R;

10 t = t+ 1;
11 until episode ends;
12 if f(st, g) = 1 then
13 Store the pair 〈st, g〉 in D;
14 Update m-network parameters by sampling minibatches from D;
15 end
16 else
17 if m accuracy is high enough then
18 Sample ĝ′ = mw(st);
19 Replace g by ĝ′ in the transitions of the last episode and set r̂ = r(st, at, ĝ

′).
20 end
21 end
22 end
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C APPENDIX B: ENVIRONMENT DETAILS

A screenshot of the environment is provided in Figure 6.

The state of the environment does not correspond to a RBG image but to channels encoding different
info about each cell (color, type etc...). More details are available at gym-minigrid.

The synthetic language used for instructions is composed in three parts. First, a clause like get a
(all the clauses are displayed below). Then, a series of attributes randomly ordered describing the
object and lastly, the type of the object. An example of instruction is Go fetch a tiny dark red ball.
One object can be described by a maximum of 4 attributes: shade, size, color, and type. They have
modalities going from 2 to 6.

Figure 6: A screenshot of the environment. The agent only sees the light gray area. It should be
noted that in is this example, object only have 2 attributes (color and type) but in our experiments, 4
attributes are being used.

The environment used is a grid-world of variable size containing objects. Objects can be described
using up to 4 attributes. The list of all attributes is the following:

• Shapes key, ball
• Colors red, green, blue, purple, yellow, grey
• Shades very dark, dark, neutral, light, very light
• Sizes tiny, small, medium, large, giant

The five possible clauses are:

• get a
• go fetch a
• go get a
• fetch a
• you must fetch a

Multiple possible clauses bring diversity to the language as their meaning is equivalent.

D COMPLEMENTARY EXPERIMENT

N-gram measure An n-gram is a sequence of words, e.g. 2-gram corresponds to a two-word
sequence. For example the sentence Get a red ball. is composed of three 2-gram: Get a, a red, red
ball and two 3-gram: get a red and a red ball. The n-gram measure assesses the language model
accuracy by counting how many n-grams in the original sentence is present in the generated one.
This measure is close to BLEU score used in machine translation (Papineni et al., 2002).
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In our experiments, the language used is synthetic, and attributes order is random. Therefore, the
attributes’ presence is more important than the position of each word. To assess the learned language
accuracy, we compare generated sequences to what we call randomized ground truth. Comparing
generated instruction to instructions generated by the environment is not relevant as the beginning
clause (i.e., Get a or Fetch a, etc.) and attributes order are random. Therefore, for a given ground
truth instruction, object attributes are shuffled in the sentence, and the beginning clause is sampled
from all possible clauses. Since the beginning clause is random, even randomized ground truth
cannot reach an accuracy of 1. The lower bound called Random Attributes corresponds to sampling
a clause and each attribute randomly.

Figure 7: Quality of the language learned by the instruction generator with 10 000 samples. For
randomized ground truth the sentences are the same as the ones from the ground truth but the order
of the attributes is shuffled and the clause is changed. For random attributes beginning clause and
object attributes are picked randomly.

Figure 7 shows that the language learned by the instruction generator is close to the upper bound
randomized ground truth. These results correlate with Figure 5 (right), indicating that the instruction
generator can produce instruction containing correct object attributes. The fast decrease in accuracy
when n grows can be explained by the attributes order randomness.

Figure 8: Left: Number of shared attributes between two objects. Right: The number of attributes
needed to discriminate an object from all the others.
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