
Under review as a conference paper at ICLR 2020

EGOMAP: PROJECTIVE MAPPING AND STRUCTURED
EGOCENTRIC MEMORY FOR DEEP RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Tasks involving localization, memorization and planning in partially observable
3D environments are an ongoing challenge in Deep Reinforcement Learning. We
present EgoMap, a spatially structured neural memory architecture. EgoMap aug-
ments a deep reinforcement learning agent’s performance in 3D environments on
challenging tasks with multi-step objectives. The EgoMap architecture incorpo-
rates several inductive biases including a differentiable inverse projection of CNN
feature vectors onto a top-down spatially structured map. The map is updated
with ego-motion measurements through a differentiable affine transform. We show
this architecture outperforms both standard recurrent agents and state of the art
agents with structured memory. We demonstrate that incorporating these inductive
biases into an agent’s architecture allows for stable training with reward alone,
circumventing the expense of acquiring and labelling expert trajectories. A de-
tailed ablation study demonstrates the impact of key aspects of the architecture
and through extensive qualitative analysis, we show how the agent exploits its
structured internal memory to achieve higher performance.

1 INTRODUCTION

A critical part of intelligence is navigation, memory and planning. An animal that is able to store and
recall pertinent information about their environment is likely to exceed the performance of an animal
whose behavior is purely reactive. Many control problems in partially observed 3D environments
involve long term dependencies and planning. Solving these problems requires agents to learn
several key capacities: spatial reasoning — to explore the environment in an efficient manner and
to learn spatio-temporal regularities and affordances. The agent needs to autonomously navigate,
discover relevant objects, store their positions for later use, their possible interactions and the eventual
relationships between the objects and the task at hand. Semantic mapping is a key feature in these
tasks. A second feature is discovering semantics from interactions — while solutions exist for
semantic mapping and semantic SLAM Civera et al. (2011); Tateno et al. (2017), a more interesting
problem arises when the semantics of objects and their affordances are not supervised, but defined
through the task and thus learned from reward.

A typical approach for these types of problems are agents based on deep neural networks including
recurrent hidden states, which encode the relevant information of the history of observations Mirowski
et al. (2017); Jaderberg et al. (2017). If the task requires navigation, the hidden state will naturally be
required to store spatially structured information. It has been recently reported that spatial structure
as inductive bias can improve the performance on these tasks. In Parisotto & Salakhutdinov (2018),
for instance, different cells in a neural map correspond to different positions of the agent.

In our work, we go beyond structuring the agent’s memory with respect to the agent’s position. We
use projective geometry as an inductive bias to neural networks, allowing the agent to structure its
memory with respect to the locations of objects it perceives, as illustrated in Figure 1b. The model
performs an inverse projection of CNN feature vectors in order to map and store observations in
an egocentric (bird’s eye view) spatially structured memory. The EgoMap is complementary to
the hidden state vector of the agent and is read with a combination of a global convolutional read
operation and an attention model allowing the agent to query the presence of specific content. We
show that incorporating projective spatial memory enables the agent to learn policies that exceed the
performance of a standard recurrent agent. Two different objects visible in the same input image

1

Under review as a conference paper at ICLR 2020

(a) Visual features are mapped to the top-down
egocentric map. Observations from a first-person
viewpoint are passed through a perception mod-
ule, extracted features are projected with the in-
verse camera matrix and depth buffer to their 3D
coordinates. The operations are implemented in
a differentiable manner, so error derivatives can
be back-propagated to update the weights of the
perception module. Different objects in the same
image are mapped to different locations in the map.

 𝝅 𝒗 𝝅 𝒗

Differentiable

affine
transform

Perception
module

Controller Controller

Inverse projective
mapping

Time-step t Time-step t+1

Perception
module

ht-1 ht ht+1

(b) An agent exploring in a 3D environment per-
ceives from a projective egocentric viewpoint. Our
model learns to unproject learned task-oriented se-
mantic embeddings of observations and to map the
positions of relevant objects in a spatially structured
(bird’s eye view) neural memory, where different
objects in the same input image are stored in dif-
ferent map locations. Using the ego-motion of the
agent, the map is updated by differentiable affine
resampling at each step in the environment.

Figure 1: Overview of the perception and mapping module (a) and EgoMap agent architecture (b).

could be at very different places in the environment. In contrast to Parisotto & Salakhutdinov (2018),
our model will map these observations to their respective locations, and not to cells corresponding to
the agent’s position, as shown in Figure 1a.

The model bears a certain structural resemblance with Bayesian occupancy grids (BOG), which have
been used in mobile robotics for many years Moravec (1988); Rummelhard et al. (2015). As in
BOGs, we perform inverse projections of observations and dynamically resample the map to take
into account ego-motion. However, in contrast to BOGs, our model does not require a handcrafted
observation model and it learns semantics directly from interactions with the environment through
reward. It is fully differentiable and trained end-to-end with backpropagation of derivatives calculated
with policy gradient methods. Our contributions are as follows:

• To our knowledge, we present the first method using a differentiable SLAM-like mapping of visual
features into a top-down egocentric feature map using projective geometry while at the same time
training this representation using RL from reward.

• Our spatial map can be translated and rotated through a differentiable affine transform and read
globally and through self-attention.

• We show that the mapping, spatial memory and self-attention can be learned end-to-end with RL,
avoiding the cost of labelling trajectories from domain experts, auxiliary supervision or pre-training
specific parts of the architecture.

• We demonstrate the improvement in performance over recurrent and spatial structured baselines
without projective geometry.
• We illustrate the reasoning abilities of the agent by visualizing the content of the spatial memory

and the self-attention process, tying it to the different objects and affordances related to the task.
• Experiments with noisy actions demonstrate the agent is robust to actions tolerances of up to 10%.

The code will be made publicly available on acceptance.

2

Under review as a conference paper at ICLR 2020

2 RELATED WORK

Reinforcement learning — In recent years the field of Deep Reinforcement Learning (RL) has
gained attention with successes on board games Silver et al. (2018) and Atari games Mnih et al.
(2015). One key component was the application of deep neural networks Lecun et al. (1998) to frames
from the environment or game board states. Recent works that have applied Deep RL for the control
of an agent in 3D environments such as maze navigation are Mirowski et al. (2017) and Jaderberg
et al. (2017) which explored the use of auxiliary tasks such as depth prediction, loop detection and
reward prediction to accelerate learning. Meta RL approaches for 3D navigation have been applied
by Wang et al. (2016) and Lample & Chaplot (2017) also accelerated the learning process in 3D
environments by prediction of tailored game features. There has also been recent work in the use
of street-view scenes to train an agent to navigate in city environments Mirowski et al. (2018). In
order to infer long term dependencies and store pertinent information about the partially observable
environment; network architectures typically incorporate recurrent memory such as Gated Recurrent
Units Chung et al. (2015) or Long Short-Term Memory Hochreiter & Schmidhuber (1997).

Differentiable memory — Differentiable memory such as Neural Turing Machines Graves et al.
(2014) and Differential Neural Computers Graves et al. (2016) have shown promise where long term
dependencies and storage are required. Neural Networks augmented with these memory structures
have been shown to learn tasks such as copying, repeating and sorting. Some recent works for control
in 2D and 3D environments have included structured memory-based architectures and mapping of
observations. Neural SLAM Zhang et al. (2017) aims to incorporate a SLAM-like mapping module
as part of the network architecture, but uses simulated sensor data rather than RGB observations
from the environment, so the agent is unable to extract semantic meaning from its observations. The
experimental results focus on 2D environments and the 3D results are limited. Playing Doom with
SLAM augmented memory Bhatti et al. (2016) implements a non-differentiable inverse projective
mapping with a fixed feature extractor based on Faster-RCNN Ren et al. (2015), pre-trained in a
supervised manner. A downside of this approach is that the network does not learn to extract features
pertinent to the task at hand as it is not trained end-to-end with RL. Fang et al. (2019) replace recurrent
memory with a transformer (Vaswani et al. (2017)) attention distribution over previous observation
embeddings, to highlight that recurrent architectures can struggle to capture long term dependencies.
The downside is the storage of previous observations grows linearly with each step in the environment
and the agent cannot chose to discard redundant information.

Grid cells — there is evidence that biological agents learn to encode spatial structure. Rats develop
grid cells/neurons, which fire at different locations with different frequencies and phases, a discovery
that led to the 2014 Nobel prize in medicine O’Keefe & Dostrovsky (1971); Hafting et al. (2005).
A similar structure seems to emerge in artificial neural networks trained to localize themselves in
a maze, discovered independently in 2018 by two different research groups Cueva & Wei (2018);
Banino et al. (2018). Our work encodes spatial structure directly into the agent as additional inductive
bias. We argue that projective geometry is a strong law imposed on any vision system working from
egocentric observations, justifying a fully differentiable model of perception.

Spatial memory — up to our knowledge, we present the first method which uses projective geometry
as inductive bias while at the same time learning spatial semantic features with RL from reward. In
table 1 we compare the differences and similarities of related works.

Neural Map Parisotto & Salakhutdinov (2018) implements a structured 2D differentiable memory
which was tested in both egocentric and world reference frames, but does not map observations in
a SLAM-like manner and instead stores a single feature vector at the agent’s current location. The
agent’s position is also discretized to fixed cells and orientation quantized to four angles (North,
South, East, West). A further downside is that the movement of the memory is fixed to discrete
translations and the map is not rotated to the agent’s current viewpoint.

MapNet Henriques & Vedaldi (2018) includes an inverse mapping of CNN features, is trained in a
supervised manner to predict x,y position and rotation from human trajectories, but does not use the
map for control in an environment. Visual Question Answering in Interactive Environments Gordon
et al. (2018) creates semantic maps from 3D observations for planning and question answering and is
applied in a discrete state space.

3

Under review as a conference paper at ICLR 2020

Related work Pr
oj

ec
tiv

e G
eo

m
et

ry

Sp
at

ia
l m

ap
le

ar
ne

d
fro

m
re

w
ar

d

Re
in

fo
rc

em
en

t L
ea

rn
in

g

Im
iti

ta
tio

n
le

ar
ni

ng
Vi

su
al

in
pu

t
M

ul
tip

le
go

al
s

Sp
at

ia
lly

St
ru

ct
ur

ed

Ta
sk

-s
pe

ci
fic

se
m

an
tic

fe
at

ur
es

Co
nt

in
uo

us
St

at
e S

pa
ce

Co
nt

in
uo

us
A

ffi
ne

tra
ns

fo
rm

En
d-

to
-e

nd
di

ffe
re

nt
ia

bl
e

Co
nt

in
uo

us
tra

ns
la

tio
ns

Co
nt

in
ou

s r
ot

at
io

ns

En
d-

to
-e

nd
tra

in
in

g
In

tri
ns

ic
re

w
ar

ds

Semantic mapping Civera et al. (2011) X - - - X - X - X X - X X - -
Playing Doom with SLAM Bhatti et al. (2016) X - X - X - X - X X - X X - -
Neural SLAM Zhang et al. (2017) - - X - - - X X X - X - - X -
Cog. Map Gupta et al. (2017) - - - X X - X X - - X X - X -
Semantic SLAM Tateno et al. (2017) X - - - X - X - X X - X X - -
IQA Gordon et al. (2018) - - X X X - X - - - - - - - -
MapNet Henriques & Vedaldi (2018) X - - - X - X - X X X X X X -
Neural Map Parisotto & Salakhutdinov (2018) - X X - X X X X X - X - - X -
MERLIN Wayne et al. (2018) - - X - X X - - X - X X X X -
Learning exploration policies Chen et al. (2019) X - X X X - X - X X - X X X X
EgoMap X X X - X X X X X X X X X X -

Table 1: Comparison of key features of related works

Unsupervised Predictive Memory in a Goal-Directed Agent Wayne et al. (2018) incorporates a
Differential Neural Computer in an RL agent’s architecture and was applied to simulated memory-
based tasks. The architecture achieves improved performance over a typical LSTMHochreiter &
Schmidhuber (1997) based RL agent, but does not include spatial structure or projective mapping. In
addition, visual features and neural memory are learned through the reconstruction of observations
and actions, rather than for a specific task.

Cognitive Mapping and Planning for Visual Navigation Gupta et al. (2017) applies a differentiable
mapping process on 3D viewpoints in a discrete grid-world, trained with imitation learning which
provides supervision on expert trajectories. The downside of discretization is that affine sampling
is trivial for rotations of 90-degree increments, and this motion is not representative of the real
world. Their tasks are simple point-goal problems of up to 32 time-steps, whereas our work focused
on complex multi-step objectives in a continuous state space. Their reliance on imitation learning
highlights the challenge of training complex neural architectures with reward alone, particular on
tasks with sparse reward such as the ones presented in this paper.

Learning Exploration Policies for Navigation Chen et al. (2019), do not learn a perception module
but instead map the depth buffer to a 2D map to provide a map-based exploration reward. Our work
learns the features that can be mapped so the agent can query not only occupancy, but task-related
semantic content.

Our work greatly exceeds the performance of Neural Map Parisotto & Salakhutdinov (2018), by
embedding a differentiable inverse projective transform and a continuous egocentric map into the
agent’s network architecture. The mapping of the environment is in the agent’s reference frame,
including translation and rotation with a differentiable affine transform. We demonstrate stable
training with reinforcement learning alone, over several challenging tasks and random initializations,
and do not require the expense of acquiring expert trajectories. We detail the key similarities and
differences with related work in table 1.

3 EGOMAP

We consider partially observable Markov decision processes (POMDPs) Kaelbling et al. (1998) in
3D environments and extend recent Deep-RL models, which include a recurrent hidden layer to store
pertinent long term information Mirowski et al. (2017); Jaderberg et al. (2017). In particular, RGBD
observations It at time step t are passed through a perception module extracting features st, which
are used to update the recurrent state:

st = fp(It; θp) ht = fr(ht−1, st; θr) (1)

where fp is a convolutional neural network and fr is a recurrent neural network in the Gated Recurrent
Unit variant Chung et al. (2015). Gates and their equations have been omitted for simplicity. Above

4

Under review as a conference paper at ICLR 2020

and in the rest of this paper, θ∗ are trainable parameters, exact architectures are provided in the
appendix. The controller outputs an estimate of the policy (the action distribution) and the value
function given its hidden state:

πt = fπ(ht; θπ) vt = fv(ht; θv) (2)

The proposed model is motivated by the regularities which govern 3D physical environments. When
an agent perceives an observation of the 3D world, it observes a 2D planar perspective projection
of the world based on its current viewpoint. This projection is a well understood physical process,
we aim to imbue the agent’s architecture with an inductive bias based on inverting the 3D to 2D
planar projective process. This inverse mapping operation is second nature to many organisms and we
believe that providing this mechanism implicitly in the agent’s architecture will improve its reasoning
capabilities in new environments.

The overall concept is that as the agent explores the environment, the perception module fp produces
a 2D feature map st, in which each feature vector represents a learned semantic representation of
a small receptive field from the agent’s egocentric observation. While they are integrated into the
flat (not spatially structured) recurrent hidden state ht through function fr (Equation 1), we propose
its integration into a second tensor Mt, a top-down egocentric memory, which we call EgoMap.
The feature vectors are mapped to their egocentric positions using the inverse projection matrix and
depth estimates. This requires an agent with a calibrated camera (known intrinsic parameters), which
is a soft constraint easily satisfied. The map can then be read by the agent in two ways: a global
convolutional read operation and a self-attention operation.

Formally, let the agent’s position and angle at time t be (xt, yt) and φt respectively, Mt is the current
EgoMap. st are the feature vectors extracted by the perception module, Dt are the depth buffer values.
The change in agent position and orientation in the agent’s frame of reference between time-step t
and t−1 are (dxt, dyt, dφt).
There are three key steps to the operation of the EgoMap:

1. Transform the map to the agent’s egocentric frame of reference:

M̂t = Affine(Mt−1, dxt, dyt, dφt) (3)

2. Update the map to include new observations:

M̃t = InverseProject(st, Dt) M ′t = Combine(M̂t, M̃t) (4)

3. Perform a global read and attention based read, the outputs of which are fed into the policy and
value heads:

rt = Read(M ′t) ct = Context(M ′t , st, rt) (5)

These three operations will be further detailed below in individual subsections. Projective mapping
and spatially structured memory should augment the agent’s performance where spatial reasoning
and long term recollection are required. On simpler tasks the network can still perform as well as the
baseline, assuming the extra parameters do not cause further instability in the RL training process.

Affine transform — At each time-step we wish to translate and rotate the map into the agent’s frame
of reference, this is achieved with a differentiable affine transform, popularized by the well known
Spatial Transformer Networks Jaderberg et al. (2015). Relying on the simulator to be an oracle
and provide the change in position (dx, dy) and orientation dφ, we convert the deltas to the agent’s
egocentric frame of reference and transform the map with a differentiable affine transform. The effect
of noise on the change in position on the agent’s performance is analysed in the experimental section.

Inverse projective mapping — We take the agent’s current observation, extract relevant semantic
embeddings and map them from a 2D planar projection to their 3D positions in an egocentric frame
of reference. At each time-step, the agent’s egocentric observation is encoded by the perception
module (a convolutional neural network) to produce feature vectors, this step is a mapping from
R4×64×112 → R16×4×10. Given the inverse camera projection matrix and the depth buffer provided
by the simulator, we can compute the approximate location of the features in the agent’s egocentric
frame of reference. As the mapping is a many to one operation, several features can be mapped to the
same location. Features that share the same spatial location are averaged element-wise.

The newly mapped features must then be combined with the translated map from the previous
time-step. We found that the use of a momentum hyper-parameter, α, enabled a smooth blending of

5

Under review as a conference paper at ICLR 2020

new and previously observed features. We use an α value of 0.9 for the tests presented in the paper.
We ensured that the blending only occurs where the locations of new projected features and the map
from the previous time-step are co-located, this criterion is detailed in Equation 6.

M
′(x,y)
t = ηM̂t

(x,y)
+ (1− η)M̃ (x,y)

t

η =

1.0, if M̃ (x,y)

t = 0 & M̂t
(x,y)

6= 0

0.0, if M̃t
(x,y) 6= 0 & M̂

(x,y)
t = 0

α, otherwise

(6)

Sampling from a global map — A naive approach to the storage and transformation of the egocentric
feature map would be to apply an affine transformation to the map at each time-step. A fundamental
downside of applying repeated affine transforms is that at each step a bilinear interpolation operation
is applied, which causes smearing and degradation of the features in the map. We mitigated this issue
by storing the map in a global reference frame and mapping the agent’s observations to the global
reference frame. For the read operation an offline affine transform is applied.

Read operations — We wanted the agent to be able to summarize the whole spatial map and also
selectively query for pertinent information. This was achieved by incorporating two types of read
operation into the agent’s architecture, a Global Read operation and a Self-attention Read.

The global read operation is a CNN that takes as input the egocentric map and outputs a 32-
dimensional feature vector that summarizes the map’s contents. The output of the global read
is concatenated with the visual CNN output.

To query for relevant features in the map, the agent’s controller network can output a query vector qt,
the network then compares this vector to each location in the map with a cosine similarity function in
order to produce scores, which are the same width and height as the map. The scores are normalized
with a softmax operation to produce a soft-attention in the lines of Bahdanau et al. (2014) and used to
compute a weighted average of the map, allowing the agent to selectively query and focus on parts
of the map. This querying mechanism was used in both the Neural Map Parisotto & Salakhutdinov
(2018) and MERLIN Wayne et al. (2018) RL agents. We made the following improvements: Attention
Temperature and Query Position.

σ(x)i =
eβxi∑
eβxj

(7)

Query Position: A limitation of self-attention is that the agent can query what it has observed but not
where it had observed it. To improve the spatial reasoning performance of the agent we augmented the
neural memory with two fixed additional coordinate planes representing the x,y egocentric coordinate
system normalized to (−1.0, 1.0), as introduced for segmentation in Liang et al. (2018). The agent
still queries based on the features in the map, but the returned context vector includes two extra scalar
quantities which are the weighted averages of the x,y planes. The impacts of these additions are
discussed and quantified in the ablation study, in Section 4.

Attention Temperature: To provide the agent with the ability to learn to modify the attention dis-
tribution, the query includes an additional learnable temperature parameter, β, which can adjust
the softmax distribution detailed in Equation 7. This parameter can vary query by query and is
constrained to be one or greater by a Oneplus function. The use of temperature in neural memory
architectures was first introduced in Neural Turing Machines Graves et al. (2014).

4 EXPERIMENTS

The EgoMap and baseline architectures were evaluated on four challenging 3D scenarios, which
require navigation and different levels of spatial memory. The scenarios are taken from Beeching et al.
(2019) who extended the 3D ViZDoom environment Kempka et al. (2017) with various scenarios
that are partially observable, require memory, spatial understanding, have long horizons and sparse
rewards. Whilst more visually realistic simulators are available such as Gibson Xia et al. (2018),
Matterport Anderson et al. (2018), Home Brodeur et al. (2018) and Habitat Manolis Savva* et al.
(2019), the tasks available are simple point-goal tasks which do not require long term memory and
recollection. We target the following three tasks:

6

Under review as a conference paper at ICLR 2020

Scenario
4 item 6 item Find and Return Labyrinth

Agent Train Test Train Test Train Test Train Test
Random -0.179 -0.206 -0.21 -0.21 -0.21 -0.21 -0.115 -0.086
Baseline 2.341 ± 0.026 2.266 ± 0.035 2.855 ± 0.164 2.545 ± 0.226 0.661 ± 0.003 0.633 ± 0.027 0.73 ± 0.02 0.694 ± 0.009
Neural Map 2.339 ± 0.038 2.223 ± 0.040 2.750 ± 0.062 2.465 ± 0.034 0.825 ± 0.070 0.723 ± 0.026 0.769 ± 0.042 0.706 ± 0.018
EgoMap 2.398 ± 0.014 2.291 ± 0.021 3.214 ± 0.007 2.801 ± 0.048 0.893 ± 0.007 0.848 ± 0.017 0.753 ± 0.002 0.732 ± 0.016

Optimum
(Upper Bound) 2.5 2.5 3.5 3.5 1.0 1.0 1.0 1.0

Table 2: Results of the baseline and EgoMap architectures trained on four scenarios for 1.2 B
environment steps. We show the mean and std. of the final agent performance, evaluated for three
independent experiments on a held-out testing set of scenario configurations.

Labyrinth: The agent must find the exit in the fastest time possible, the reward is a sparse positive
reward for finding the exit. This tests an agent’s ability to explore in an efficient manner.

Ordered k-item: An agent must find k objects in a fixed order. It tests three aspects of an agent: its
ability to explore the environment efficiently, the ability to learn to collect items in a predefined order
and its ability to store as part of its hidden state where items were located so they can be retrieved in
the correct order. We tested two versions of this scenario with 4-items or 6-items.

Find and return: The agent starts next to a green totem, must explore the environment to find a
red totem and then return to the starting point. This is our implementation of “Minotaur" scenario
from Parisotto & Salakhutdinov (2018). The scenario tests an agent’s ability to navigate and retain
information over long time periods.

All the tasks require different levels of spatial memory and reasoning. For example, if an agent
observes an item out of order it can store the item’s location in its spatial memory and navigate back
to it later. We observe that scenarios that require more spatial reasoning, long term planning and
recollection are where the agent achieves the greatest improvement in performance. In all scenarios
there is a small negative reward for each time-step to encourage the agent to complete the task quickly.

Experimental strategy and generalization to unseen environments — Many configurations of
each scenario were created through procedural generation and partitioned into separated training and
testing sets of size 256 and 64 respectively for each scenario type. Although the task in a scenario is
fixed, we vary the locations of the walls, item locations, and start and end points; thus we ensure a
diverse range of possible scenario configurations. A limited hyper-parameter sweep was undertaken
with the baseline architecture to select the hyper-parameters, which were fixed for both the baseline,
Neural Map and EgoMap agents. Three independent experiments were conducted per task to evaluate
the algorithmic stability of the training process. To avoid information asymmetry, we provide the
baseline agent with dx, dy, sin(dθ), cos(dθ) concatenated with its visual features.

Training Details — The model parameters were optimized with an on-policy, policy gradient
algorithm; batched Advantage Actor Critic (A2C) Mnih et al. (2016), we used the popular PyTorch
Paszke et al. (2017) implementation of A2C Kostrikov (2018). We sampled trajectories from 16
parallel agents and updated every 128 steps in the environment with discounted returns bootstrapped
from value estimates for non-terminal states. The gamma factor was 0.99, the entropy weight was
0.001, the RMSProp Tieleman & Hinton (2012) optimizer was used with a learning rate of 7e-4. The
EgoMap agent map size was 16×24×24 with a grid sampling chosen to cover the environment size
with a 20% padding. The agent’s policy was updated over 1.2B environment steps, with a frame
skip of 4. Training took 36 hours for the baseline and 8 days for the EgoMap, on 4 Xeon E5-2640v3
CPUs, with 32GB of memory and one NVIDIA GK210 GPU.

Results — Results from the baseline and EgoMap policies evaluated on the 4 scenarios are shown
in table 2, all tasks benefit from the inclusion of inverse projective mapping and spatial memory
in the agent’s network architecture, with the largest improvement on the Find and Return scenario.
We postulate that the greater improvement in performance is due to two factors; firstly this scenario
always requires spatial memory as the agent must return to its starting point and secondly the objects
in this scenario are larger and occupy more space in the map. We also compared to the state of the
art in spatially structured neural memory, Neural Map Parisotto & Salakhutdinov (2018). Figure 2
shows agent training curves for the recurrent baseline, Neural Map and EgoMap, on the Find and
Return test set configurations.

7

Under review as a conference paper at ICLR 2020

0M 200M 400M 600M 800M 1000M 1200M
Environment Frames

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Upper bound on optimal PolicyUpper bound on optimal PolicyUpper bound on optimal Policy

Baseline
Neural Map
EgoMap

Ablation Train Test
Baseline 0.668 ± 0.028 0.662 ± 0.036
No global read 0.787 ± 0.007 0.771 ± 0.029
No query 0.838 ± 0.003 0.811 ± 0.013
No query temperature 0.845 ± 0.014 0.815 ± 0.019
No query position 0.839 ± 0.007 0.814 ± 0.008
EgoMap 0.847 ± 0.011 0.814 ± 0.017
EgoMap (L1 query) 0.851 ± 0.014 0.828 ± 0.011

Figure 2: Left: Agent performance on unseen test configurations of the Find and Return scenario.
Right: Ablation study on the Find and Return scenario conducted after 800M environment steps.
Ablation study — An ablation study was carried out on the improvements made by the EgoMap
architecture. We were interested to see the influence of key options such as the global and attention-
based reads, the similarity function used when querying the map, the learnable temperature parameter
and the incorporation of location-based querying. The Cartesian product of these options is large
and it was not feasible to test them all, we therefore decided to selectively switch off key options to
understand which aspects contribute to the improvement in performance. The results of the ablation
study are shown in Table 2. Both the global and self-attention reads provide large improvements in
performance over the baseline recurrent agent. The position-based query provides a small improve-
ment. A comparison of the similarity metric of the attention mechanism highlights the L1-similarity
achieved higher performance than cosine. A qualitative analysis of the self-attention mechanism is
shown in the next section.

5 ANALYSIS

Noisy Actions — One common criticism of agents trained in simulation is that the agent can query
its environment for information that would not be readily available in the real world. In the case of
EgoMap, the agent is trained with ground truth ego-motion measurements. Real-world robots have
noisy estimates of ego-motion due to the tolerances of available hardware. We performed an analysis
of the EgoMap agent trained in the presence of a noisy oracle, which adds noise to the ego-motion
measurement. Noise is drawn from a normal distribution centred at one and is multiplied by the
agent’s ground-truth motion, the effect of the noise is cumulative but unbiased. Tests were conducted
with standard deviations of up to 0.2 which is a tolerance of more than 20% on the agent’s ego-motion
measurements, results are shown in Figure 3. We observed retain the performance increase over
the baseline for up to 10% of noisy actions, the performance degrades to that of the baseline agent.

0M 40M 80M 120M 160M 200M 240M 280M 320M
Environment Frames

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Noise std. of 0.0
Noise std. of 0.04
Noise std. of 0.06
Noise std. of 0.08
Noise std. of 0.16

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Std. of noise distribution

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Baseline agent (no noisy actions)
EgoMap Agents with noisy actions

Noise std. Average return
0.00 0.702 ± 0.026
0.02 0.686 ± 0.027
0.04 0.669 ± 0.031
0.06 0.623 ± 0.018
0.08 0.585 ± 0.017
0.10 0.568 ± 0.023
0.12 0.575 ± 0.020
0.14 0.578 ± 0.023
0.16 0.546 ± 0.017
0.20 0.537 ± 0.031
Baseline 0.527 ± 0.047

Figure 3: Test set performance of the EgoMap agent during training with noisy ego-motion measure-
ments, conducted for 320 M environment frames. Shown are test set performance during training
(left), final performance for a range of noise values (centre) which are tabulated (right). We retain an
improvement in performance over the baseline agent for noisy actions of up to 10%.

8

Under review as a conference paper at ICLR 2020

Object features
retained in map

Projective mapping
of blue object

Collection of object n-1
triggers attention to object n

Step: 5

Step: 105

Step: 108

Step: 134

Step: 140

Position querying locates
object in spatial memory

When the object is not occluded,
the agent does not attend to it

(a) Analysis: Ordered 6-item scenario

Object features
retained in map

Projective mapping of green
totem at starting point

Agent attends
to object

Step: 15

Step: 90

Step: 95

Step: 130

Step: 140

Position querying locates
object in spatial memory

(b) Analysis: Find and Return scenario

Figure 4: Analysis of the EgoMap for key steps (different rows) during an episode from the Ordered
6-item and Find and Return scenarios. Within each sub-figure: Left column - RGB observations,
central column - the three largest PCA components of features mapped in the spatially structured
memory, right - attention heat map (result of the query) and x,y query position vector. We observe
that the agent maps and stores features from key objects and attends to them when they are pertinent
to the current stage of the task. For example, for the left figure on the first row at time-step 5 the
blue spherical object, which is ordered 4 of 6, is mapped into the agent’s spatial memory. The agent
explores the environment collecting the items in order, it collects item 3 of 6 between time-step 105
and 108, shown on rows 2 and 3. As soon as the agent has collected item 3 it queries its internal
memory for the presence of item 4, which is shown by the attention distribution on rows 3 and 4. On
the last row, time-step 140, the agent observes the item and no longer attempts to query for it, as the
item is in the agent’s field of view.

Visualization — The EgoMap architecture is highly interpretable and provides insights about how the
agent reasons in 3D environments. In Figures 4a and 4b we show analysis of the spatially structured
memory and how the agent has learned to query and self-attend to recall pertinent information. The
Figures show key steps during an episode in the Ordered 6-item and Find and Return scenarios,
including the first three principal components of a dimensionality reduction of the 16-dimensional
EgoMap, the attention distribution and the vector returned from position queries. Refer to the caption
for further details. The agent is seen to attend to key objects at certain phases of the task, in the
Ordered 6-item scenario the agent attends the next item in the sequence and in the Find and Return
scenario the agent attends to the green totem located at the start/return point once it has found the
intermediate goal.

6 CONCLUSION

We have presented EgoMap, an egocentric spatially structured neural memory that augments an
RL agent’s performance in 3D navigation, spatial reasoning and control tasks. EgoMap includes
a differentiable inverse projective transform that maps learned task-specific semantic embeddings
of agent observations to their world positions. We have shown that through the use of global and
self-attentive read mechanisms an agent can learn to focus on important features from the environment.
We demonstrate that an RL agent can benefit from spatial memory, particularly in 3D scenarios with
sparse rewards that require localization and memorization of objects. EgoMap out-performs existing
state of the art baselines, including Neural Map, a spatial memory architecture.

We have shown, with detailed analysis, how the agent has learned to interact with its structured
internal memory with self-attention. The ablation study has shown that the agent benefits from both
the global and self-attention operations and that these can be augmented with temperature, position
querying and other similarity metrics. We have demonstrated that the EgoMap architecture is robust
to actions with tolerances of up to 10%. Future work in this area of research would be to apply the
mapping and memory architecture in more realistic-looking domains and aim to incorporate both
dynamic and static objects into the agent’s network architecture and update mechanisms.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In CVPR, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski, A. Pritzel, M.J. Chadwick,
T. Degris, J. Modayil, G. Wayne, H. Soyer, F. Viola, B. Zhang, R. Goroshin, N. Rabinowitz,
R. Pascanu, C. Beattie, S. Petersen, A. Sadik, S. Gaffney, H. King, K. Kavukcuoglu, D. Hassabis,
R. Hadsell, and D. Kumaran. Vector-based navigation using grid-like representations in artificial
agents. Nature, 557, 2018.

Edward Beeching, Christian Wolf, Jilles Dibangoye, and Olivier Simonin. Deep reinforcement
learning on a budget: 3d control and reasoning without a supercomputer. CoRR, abs/1904.01806,
2019. URL http://arxiv.org/abs/1904.01806.

Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nantas Nardelli, N. Siddharth, and Philip H. S.
Torr. Playing doom with slam-augmented deep reinforcement learning. arxiv preprint 1612.00380,
2016.

Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean
Rouat, Hugo Larochelle, and Aaron Courville. HoME: a Household Multimodal Environment. In
ICLR, 2018.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In
ICLR, 03 2019.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated Feedback Recurrent
Neural Networks. In ICML, 2015.

J. Civera, D. Galvez-Lopez, L. Riazuelo, J. D. Tardós, and J. M. M. Montiel. Towards semantic
SLAM using a monocular camera. In IROS, 2011.

C.J. Cueva and X.-X. Wei. Emergence of grid-like representations by training recurrent neural
networks to perform spatial localization. In ICLR, 2018.

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In CVPR. IEEE, 2018.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471,
2016.

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning for
visual navigation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7272–7281, July 2017. doi: 10.1109/CVPR.2017.769.

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard Moser. Microstructure
of a spatial map in the entorhinal cortex. Nature, 436:801–6, 09 2005. doi: 10.1038/nature03721.

J. Henriques and A. Vedaldi. Mapnet: An allocentric spatial memory for mapping environments. In
CVPR, 2018.

10

http://arxiv.org/abs/1904.01806

Under review as a conference paper at ICLR 2020

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 1997.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu. Spatial transformer
networks. In NIPS. 2015.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
ICLR, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. ViZ-
Doom: A Doom-based AI research platform for visual reinforcement learning. IEEE Conference
on Computatonal Intelligence and Games, CIG, 2017. ISSN 23254289.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement
learning. In AAAI, 2017.

Yann Lecun, L Eon Bottou, Yoshua Bengio, and Patrick Haaner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278 – 2324, 1998.

X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan. Proposal-Free Network for Instance-Level
Object Segmentation . IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12),
2018.

Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, and Dhruv Batra. Habitat: A platform
for embodied ai research. arXiv, 2019.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia
Hadsell. Learning to Navigate in Complex Environments. In ICLR, 2017.

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith An-
derson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, and Raia
Hadsell. Learning to Navigate in Cities Without a Map. In NeurIPS2018, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540), 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

H. Moravec. Sensor fusion in certainty grids for mobile robots. AI magazine, 9(2), 1988.

J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. preliminary evidence from unit
activity in the freely-moving rat. Brain Research, 34(1):171 – 175, 1971.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In ICLR, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

11

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr

Under review as a conference paper at ICLR 2020

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett (eds.), NIPS. 2015.

L. Rummelhard, A. Nègre, and C. Laugier. Conditional Monte Carlo Dense Occupancy Tracker. In
International Conference on Intelligent Transportation Systems, 2015.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam: Real-time dense
monocular slam with learned depth prediction. In CVPR, 2017.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to reinforcement learn.
arxiv pre-print 1611.05763, 2016.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack W. Rae, Piotr W. Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici,
Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Jimenez Rezende,
David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matthew Botvinick,
Demis Hassabis, and Timothy P. Lillicrap. Unsupervised predictive memory in a goal-directed
agent. arxiv preprint 1803.10760, 2018.

Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: real-world perception for embodied agents. In CVPR, 2018.

Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. Neural SLAM. arxiv
preprint 1706.09520, 2017.

12

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Under review as a conference paper at ICLR 2020

A APPENDIX

B ARCHITECTURES

To encourage reproducibility, we detail the exact architectures of the agents. Figure 5 shows an
overview.

Baseline Model — is comprised of the following: Perception Module fp: A 3 layer CNN with
kernel sizes of 8,4,3, strides of 4,2,1, no padding and filter sizes of 16,32,16, respectively and ReLU
activation. fp is a mapping from an RGBD input observation of R4×64×112 → R16×4×10. Recurrent
Module fr: A FC layer reduces the output of fp from 640 values to a vector of size 128 and includes
a ReLU activation; we then use a GRU layer with 128 hidden units. Policy and Value Heads fπ &
fv: These layers receive as input the output of fr. The policy layer is a FC layer with 5 output units
corresponding to the 5 discrete actions available to the agent (through a softmax activation). The
value layer is a FC layer with one output unit.

EgoMap Model — is comprised of the following: Perception Module fp: The same as the baseline
architecture, apart from that the mapping operation is applied before the final ReLU activation
function. EgoMap Global Read Module: A 3 layer CNN with kernel sizes of 3,4,4, strides of 1,2,2
and filter sizes of 16,16,16 respectively, and no padding. Followed by two linear layers of 256 and
32 hidden units, and ReLU activations, apart from the last which was tanh. Recurrent Module fr:
The output of fp and the global read module were concatenated to form a vector of size 672 and
fed into a FC layer later with 128 output units. The recurrent module was a GRU with 128 units.
Self-Attention Read Head: The query head is a linear layer with 17 output units, 16 for the calculation
of the EgoMap similarity scores and one for the β temperature parameter. The query head returns a
vector of size 18 which includes two more scalar values for the average position of the query. Policy
and Value Heads fπ & fv: Are the same as the baseline but their input is the concatenation of the
output of the fr and the attention head.

Figure 5: The baseline agent architecture (light blue) augmented with the EgoMap architecture
(green), the agent’s hidden state is ht and the spatially structured neural memory Mt. We rely on an
oracle (the simulator) to provide the depth buffer Dt and the agent deltas (dx, dy, dθ).

C READ MECHANISMS

In figure 6 we provide further details of the operation of the global read, context read and xy-querying.

D ADDITIONAL RESULTS

In figure 7 we provide the curves of agent performance on held out test configurations for three
scenarios: 4-item, 6-item and labyrinth.

13

Under review as a conference paper at ICLR 2020

Figure 6: Schematics detailing the operation of the read mechanisms, with global read (left), context
read(middle) and xy-querying (right).

0M 200M 400M 600M 800M 1000M 1200M
Environment Frames

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
tu

rn

Upper bound on optimal PolicyUpper bound on optimal PolicyUpper bound on optimal Policy

Baseline
Neural Map
EgoMap

0M 200M 400M 600M 800M 1000M 1200M
Environment Frames

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Re
tu

rn

Upper bound on optimal PolicyUpper bound on optimal PolicyUpper bound on optimal Policy

Baseline
Neural Map
EgoMap

0M 200M 400M 600M 800M 1000M 1200M
Environment Frames

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Upper bound on optimal PolicyUpper bound on optimal PolicyUpper bound on optimal Policy

Baseline
Neural Map
EgoMap

Figure 7: Training curves of held out test set performance on 4-item (top left), 6-item(top-right) and
labyrinth scenarios (bottom).

14

	Introduction
	Related Work
	EgoMap
	Experiments
	Analysis
	Conclusion
	Appendix
	Architectures
	Read mechanisms
	Additional Results

