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ABSTRACT

Learning multilingual representations of text has proven a successful method for
many cross-lingual transfer learning tasks. There are two main paradigms for
learning such representations: (1) alignment, which maps different independently
trained monolingual representations into a shared space, and (2) joint training,
which directly learns unified multilingual representations using monolingual and
cross-lingual objectives jointly. In this paper, we first conduct direct compar-
isons of representations learned using both of these methods across diverse cross-
lingual tasks. Our empirical results reveal a set of pros and cons for both meth-
ods, and show that the relative performance of alignment versus joint training is
task-dependent. Stemming from this analysis, we propose a simple and novel
framework that combines these two previously mutually-exclusive approaches.
Extensive experiments on various tasks demonstrate that our proposed framework
alleviates limitations of both approaches, and outperforms existing methods on
the MUSE bilingual lexicon induction (BLI) benchmark. We further show that our
proposed framework can generalize to contextualized representations and achieves
state-of-the-art results on the CoNLL cross-lingual NER benchmark.1

1 INTRODUCTION

Continuous word representations (Mikolov et al., 2013a; Pennington et al., 2014; Bojanowski et al.,
2017) have become ubiquitous across a wide range of NLP tasks. In particular, methods for cross-
lingual word embeddings (CLWE) have proven a powerful tool for cross-lingual transfer for down-
stream tasks, such as text classification (Klementiev et al., 2012a), dependency parsing (Ahmad
et al., 2019), named entity recognition (NER) (Xie et al., 2018; Chen et al., 2019), natural language
inference (Conneau et al., 2018b), language modeling (Adams et al., 2017), and machine translation
(MT) (Zou et al., 2013; Lample et al., 2018a; Artetxe et al., 2018b; Lample et al., 2018b). The goal
of these CLWE methods is to learn embeddings in a shared vector space for two or more languages.
There are two main paradigms for learning CLWE: cross-lingual alignment and joint training.

The most successful approach has been the cross-lingual embedding alignment method (Mikolov
et al., 2013b), which relies on the assumption that monolingually-trained continuous word embed-
ding spaces share similar structure across different languages. The underlying idea is to first inde-
pendently train embeddings in different languages using monolingual corpora alone, and then learn
a mapping to align them to a shared vector space. Such a mapping can be trained in a supervised
fashion using parallel resources such as bilingual lexicons (Xing et al., 2015; Smith et al., 2017;
Joulin et al., 2018b; Jawanpuria et al., 2019), or even in an unsupervised2 manner based on distribu-
tion matching (Zhang et al., 2017a; Conneau et al., 2018a; Artetxe et al., 2018a; Zhou et al., 2019).
Recently, it has been shown that alignment methods can also be effectively applied to contextualized
word representations (Schuster et al., 2019; Aldarmaki & Diab, 2019).

Another successful line of research for CLWE considers joint training methods, which optimize a
monolingual objective predicting the context of a word in a monolingual corpus along with either a

1Code will be released on publication.
2In this paper, “supervision” refers to that provided by a parallel corpus or bilingual dictionaries.
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hard or soft cross-lingual constraint. Similar to alignment methods, some early works rely on bilin-
gual dictionaries (Ammar et al., 2016; Duong et al., 2016) or parallel corpora (Luong et al., 2015;
Gouws et al., 2015) for direct supervision. More recently, a seemingly naive unsupervised joint train-
ing approach has received growing attention due to its simplicity and effectiveness. In particular,
Lample et al. (2018b) reports that simply training embeddings on concatenated monolingual corpora
of two related languages using a shared vocabulary without any cross-lingual resources is able to
produce higher accuracy than the more sophisticated alignment methods on unsupervised MT tasks.
Besides, for contextualized representations, unsupervised multilingual language model pretraining
using a shared vocabulary has produced state-of-the-art results on multiple benchmarks 3(Devlin
et al., 2019; Artetxe & Schwenk, 2019; Lample & Conneau, 2019).

Despite a large amount of research on both alignment and joint training, previous work has neither
performed a systematic comparison between the two, analyzed their pros and cons, nor elucidated
when we may prefer one method over the other. Particularly, it’s natural to ask: (1) Does the
phenomenon reported in Lample et al. (2018b) extend to other cross-lingual tasks? (2) Can we
employ alignment methods to further improve their proposed unsupervised joint training? (3) If so,
how would such a framework compare to supervised joint training methods that exploit equivalent
resources? (4) And lastly, can this framework generalize to contextualized representations?

In this work, we attempt to address these questions. Specifically, we first evaluate and compare
alignment versus joint training methods across three diverse tasks: BLI, cross-lingual NER, and un-
supervised MT. We seek to characterize the conditions under which one approach outperforms the
other, and glean insight on the reasons behind these differences. Based on our analysis, we further
propose a simple, novel, and highly generic framework that uses unsupervised joint training as ini-
tialization and alignment as refinement to combine both paradigms. Our experiments demonstrate
that our framework improves over both alignment and joint training baselines, and outperforms ex-
isting methods on the MUSE BLI benchmark. Moreover, we show that our framework can general-
ize to contextualized representations, producing state-of-the-art results on the CoNLL cross-lingual
NER benchmark. To the best of our knowledge, this is the first framework that combines previously
mutually-exclusive alignment and joint training methods.

2 BACKGROUND: CROSS-LINGUAL REPRESENTATIONS

Notation. We assume we have two different languages {L1, L2} and access to their corresponding
training corpora. We use VLi

= {wj
Li
}nLi
j=1 to denote the vocabulary set of the ith language where

each wj
Li

represents a unique token, such as a word or subword. The goal is to learn a set of em-
beddings E = {xj}mj=1, with xj ∈ Rd, in a shared vector space, where each token wj

Li
is mapped

to a vector in E. Ideally, these vectorial representations should have similar values for tokens with
similar meanings or syntactic properties, so they can better facilitate cross-lingual transfer.

2.1 ALIGNMENT METHODS

Given the notation, alignment methods consist of the following steps:
Step 1: Train an embedding set E0 = EL1 ∪ EL2 , where each subset ELi = {xjLi

}nLi
j=1 is trained

independently using the ith language corpus and contains an embedding xjLi
for each token wj

Li
.

Step 2: Obtain a seed dictionary D = {(wi
L1
, wj

L2
)}Kk=1, either provided or learnt unsupervised.

Step 3: Learn a projection matrix W ∈ Rd×d based on D, resulting in a final embedding set
EA = (W · EL1

) ∪ EL2
in a shared vector space.

To find the optimal projection matrix W , Mikolov et al. (2013b) proposed to solve the following
optimization problem:

min
W∈Rd×d

‖WXL1 −XL2‖F (1)

where XL1 and XL2 are matrices of size d × K containing embeddings of the words in D. Xing
et al. (2015) later showed further improvement could be achieved by restricting W to an orthogonal

3https://github.com/google-research/bert/blob/master/multilingual.md
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matrix, which turns the Eq.(1) into the Procrustes problem with the following closed form solution:

W ∗ = UV T , (2)

with UΣV T = SVD(XL2X
T
L1

) (3)

where W ∗ denotes the optimal solution and SVD(·) stands for the singular value decomposition.

As surveyed in Section 5, different methods (Smith et al., 2017; Conneau et al., 2018a; Joulin et al.,
2018b; Artetxe et al., 2018a) differ in the way how they obtain the dictionary D and how they solve
for W in step 3. However, most of them still involve solving the Eq.(2) as a crucial step.

2.2 JOINT TRAINING METHODS

Joint training methods in general have the following objective:

LJ = L1 + L2 +R(L1, L2) (4)

where L1 and L2 are monolingual objectives and R(L1, L2) is a cross-lingual regularization term.
For example, Klementiev et al. (2012b) uses language modeling objectives for L1 and L2. The
termR(L1, L2) encourages alignment of representations of words that are translations. Training an
embedding set EJ = EL1 ∪ EL2 is usually done by directly optimizing LJ .

While supervised joint training requires access to parallel resources, recent studies (Lample et al.,
2018b; Devlin et al., 2019; Artetxe & Schwenk, 2019; Lample & Conneau, 2019) have suggested
that unsupervised joint training without such resources are also effective. Specifically, they show that
the cross-lingual regularization term R(L1, L2) does not require direct cross-lingual supervision to
achieve highly competitive results. This is because the shared words between L1 and L2 can serve
implicitly as translations by sharing their embeddings to ensure that representations of different
languages lie in a shared space. Using our notation, the unsupervised joint training approach takes
the following steps:
Step 1: Construct a joint vocabulary VJ = VL1

∪ VL2
that is shared across two languages.

Step 2: Concatenate the two training corpora and learn an embedding set EJ corresponding to VJ .

The joint vocabulary is composed of three disjoint sets: V 1
J , V

2
J , V

s
J , where V s

J = VL1
∩ VL2

is the
shared vocabulary set and V i

J is the set of tokens that appear in the ith language only. Note that a
key difference of existing supervised joint training methods is that embeddings corresponding to V s

J
are not shared between EL1

and EL2
, meaning that they are disjoint as in alignment methods.

2.3 DISCUSSION

While alignment methods have had great success, there are still some critical downsides, among
which we stress the following points:

1. While recent studies in unsupervised joint training have suggested the potential benefits
of word sharing, alignment methods rely on two disjoint sets of embeddings. Along with
some possible loss of information due to no sharing, one consequence is that finetuning
the aligned embeddings on downstream tasks may be sub-optimal due to the lack of cross-
lingual constraints at the finetuning stage, whereas shared words can fulfill this role in
jointly trained models.

2. A key assumption of alignment methods is the isomorphism of monolingual embedding
spaces. However, some recent papers have challenged this assumption, showing that it
does not hold for many language pairs (Søgaard et al., 2018; Patra et al., 2019). Also
notably, Ormazabal et al. (2019) suggests that this limitation results from the fact that the
two sets of monolingual embeddings are independently trained.

On the other hand, the unsupervised joint training method is much simpler and doesn’t share these
disadvantages with the alignment methods, but there are also some key limitations:

1. It assumes that all shared words across two languages serve implicitly as translations and
thus need not be aligned to other words. Nonetheless, this assumption is not always true,
leading to misalignment. For example, the English word “the” will most likely also appear
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Figure 1: PCA visualization of English and Spanish embeddings learnt by unsupervised joint train-
ing as in Lample et al. (2018b). As shown by plots (a) and (b), most words are shared in the initial
embedding space but not well-aligned, hence the oversharing problem. Plots (b) and (c) shows that
the vocabulary reallocation step effectively mitigates oversharing while the alignment refinement
step further improves the poorly aligned embeddings by projecting them into a close neighborhood.

in the training corpus of Spanish, but preferably it should be paired with Spanish words
such as “el” and “la” instead of itself. We refer to this problem as oversharing.

2. It does not utilize any explicit form of seed dictionary as in alignment methods, resulting
in potentially less accurate alignments, especially for words that are not shared.

Lastly, while the supervised joint training approach does not have the same issues of unsupervised
joint training, it shares limitation 1 of the alignment methods.

We empirically compare both joint training and alignment approaches in Section 4 and shed light on
some of these pros and cons for both paradigms (See Section 4.3.1).

3 PROPOSED FRAMEWORK

Motivated by the pros and cons of both paradigms, we propose a unified framework that first uses
unsupervised joint training as a coarse initialization and then applies alignment methods for refine-
ment, as demonstrated in Figure 1. Specifically, we first build a single set of embeddings with a
shared vocabulary through unsupervised joint training, so as to alleviate the limitations of alignment
methods. Next, we use a vocabulary reallocation technique to mitigate oversharing, before finally
resorting back to alignment methods to further improve the embeddings’ quality.

3.1 UNIFYING ALIGNMENT WITH JOINT TRAINING

Our proposed framework mainly involves three components and we discuss each of them as follows.

Joint Initialization. We use unsupervised joint training (Lample et al., 2018b) to train the initial
CLWE. As described in Section 2.2, we first obtain a joint vocabulary VJ and train its corresponding
set of embeddings EJ on the concatenated corpora of two languages. This allows us to obtain a
single set of embeddings that maximizes sharing across two languages. To train embeddings, we
used fastText (Bojanowski et al., 2017) in all our experiments for both word and subword tokens.

Vocabulary Reallocation. As discussed in Secition 2.3, a key issue of unsupervised joint training
is oversharing, which prohibits further refinement as shown in Figure 1. To alleviate this drawback,
we attempt to “unshare” some of the overshared words, so their embeddings can be better aligned
in the next step. Particularly, we perform a vocabulary reallocation step such that words appearing
mostly exclusively in the ith language are reallocated from the shared vocabulary V s

J to V i
J , whereas

words that appear similarly frequent in both languages stay still in V s
J . Formally, for each token w

in the shared vocabulary V s
J , we use the ratio of counts within each language to determine whether

it belongs to the shared vocabulary:
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r =
TL2

TL1

· CL1(w)

CL2
(w)

, (5)

where CLi(w) is the count of w in the training corpus of the ith language and TLi =
∑

w CLi(w)
is the total number of tokens. The token w is allocated to the shared vocabulary if

1

γ
≤ r ≤ γ, (6)

where γ is a hyper-parameter. Otherwise, we put w into either V 1
J or V 2

J , where it appears mostly
frequent. The above process generates three new disjoint vocabulary sets V 1′

J , V 2′

J , V s′

J and their
corresponding embeddingsE1′

J , E
2′

J , E
s′

J that are used thereafter. Note that, V
′

J = VJ andE
′

J = EJ .

Alignment Refinement. The unsupervised joint training method does not explicitly utilize any
dictionary or form of alignment. Thus, the resulting embedding set is coarse and ill-aligned in
the shared vector space, as demonstrated in Figure 1. As a final refinement step, we utilize any
off-the-shelf alignment method to refine alignments across the non-sharing embedding sets, i.e.
mapping E1′

J to E2′

J and leaving Es′

J untouched. This step could be conducted by either supervised
or unsupervised alignment method and we compare both in our experiments.

3.2 EXTENSION TO CONTEXTUALIZED REPRESENTATIONS

As our framework is highly generic and applicable to any alignment and unsupervised joint train-
ing methods, it can naturally generalize to contextualized word representations by aligning the fixed
outputs of a multilingual encoder such as multilingual BERT (M-BERT) (Devlin et al., 2019). While
our vocab reallocation technique is no longer necessary as contextualized representations are depen-
dent on context and thus dynamic, we can still apply alignment refinement on extracted contextual-
ized features for further improvement. For instance, as proposed by Aldarmaki & Diab (2019), one
method to perform alignment on contextualized representations is to first use word alignment pairs
extracted from parallel corpora as a dictionary, learn an alignment matrix W based on it, and apply
W back to the extracted representations. To obtain W , we can solve Eq.( 1) as described in Sec-
tion 2.1, where the embedding matricesXL1

andXL2
now contain contextualized representations of

aligned word pairs. Note that this method is applicable to fixed representations but not finetuning.

4 EXPERIMENTS

We evaluate the proposed approach and compare with alignment and joint training methods on three
NLP benchmarks. This evaluation aims to: (1) systematically compare alignment vs. joint training
paradigms and reveal their pros and cons discussed in Section 2.3, (2) show that the proposed frame-
work can effectively alleviate limitations of both alignment and joint training, and (3) demonstrate
the effectiveness of the proposed framework in both non-contextualized and contextualized settings.

4.1 EVALUATION TASKS

Bilingual Lexicon Induction (BLI) This task has been the de facto evaluation task for CLWE
methods. It considers the problem of retrieving the target language translations of source langauge
words. We use bilingual dictionaries complied by Conneau et al. (2018a) and test on six diverse
language pairs, including Chinese and Russian, which use a different writing script than English.
Each test set consists of 1500 queries and we report precision at 1 scores (P@1), following standard
evaluation practices (Conneau et al., 2018a; Glavas et al., 2019).

Name Entity Recognition (NER) We also evaluate our proposed framework on cross-lingual NER,
a sequence labeling task, where we assign a label to each token in a sequence. We evaluate both
non-contextualized and contextualized word representations on the CoNLL 2002 and 2003 bench-
marks (Tjong Kim Sang, 2002; Tjong Kim Sang & De Meulder, 2003) , which contain 4 European
languages. To measure the quality of CLWE, we perform zero-shot cross-lingual classification,
where we train a model on English and directly apply it to each of the other 3 languages.
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en-es es-en en-fr fr-en en-de de-en en-it it-en en-ru ru-en en-zh zh-en avg

Alignment Methods
MUSE (Conneau et al., 2018a) 81.7 83.3 82.3 82.1 74.0 72.0 77.7 78.2 44.0 59.1 32.5 31.4 66.5
VECMAP (Artetxe et al., 2018a) 82.3 84.7 82.3 83.6 75.1 74.3 - - 49.2 65.6 0.0 0.0 -
DeMa-BWE (Zhou et al., 2019) 82.8 84.9 83.1 83.5 77.2 74.4 - - 49.2 65.7 42.5 37.9 -
Procrustes (Smith et al., 2017) 81.4 82.9 81.1 82.4 73.5 72.4 77.5 77.9 51.7 63.7 42.7 36.7 68.7
GeoMM (Jawanpuria et al., 2019) 81.4 85.5 82.1 84.1 74.7 76.7 77.9 80.9 51.3 67.6 49.1 45.3 71.4
RCSLS (Joulin et al., 2018b) 84.1 86.3 83.3 84.1 79.1 76.3 78.5 79.8 57.9 67.2 45.9 46.4 72.4

Joint Traing Methods
Unsupervised Joint 33.4 36.6 42.2 47.4 39.5 41.4 36.8 38.8 4.0 3.5 17.9 10.2 29.3
Supervised Joint (Duong et al., 2016) 79.7 79.8 78.1 76.7 67.5 68.9 74.4 74.1 41.8 51.8 46.7 43.3 65.2

Joint Align Framework
Joint Align (w/o AR) 56.8 63.2 62.2 67.2 49.2 55.1 50.6 51.9 8.7 8.2 19.5 18.4 42.6
Joint Align + MUSE 81.5 84.8 83.3 84.1 73.9 72.9 77.4 82.2 45.1 59.3 38.2 35.1 68.2
Joint Align + RCSLS (w/o VR) 34.2 37.0 41.2 46.8 34.0 35.6 35.3 35.1 7.7 5.2 20.2 15.7 29.0
Joint Align + GeoMM 83.4 85.8 82.7 84.7 75.1 77.1 78.6 82.0 53.0 67.8 52.2 45.5 72.3
Joint Align + RCSLS 86.0 88.5 83.9 85.8 79.3 78.7 79.9 83.1 60.4 69.2 57.2 50.4 75.2

Table 1: Precision@1 for the BLI task on the MUSE dataset. Within each category, unsuper-
vised methods are listed at the top while supervised methods are at the bottom. The best result for
unsupervised methods is underlined while bold signfies the overall best. “AR” refers to alignment
refinement and “VR” refers to vocabulary reallocation.

Unsupervised Machine Translation (UMT) Lastly, we test our approach using the unsupervised
MT task, on which the initialization of CLWE plays a crucial role (Lample et al., 2018b). Note
that our purpose here is to directly compare with similar studies in Lample et al. (2018b), and thus
we follow their settings and consider two language pairs, English-French and English-German, and
evaluate on the widely used WMT’14 en-fr and WMT’16 en-de benchmarks.

4.2 EXPERIMENTAL SETUP

For the BLI task, we compare our framework to recent state-of-the-art methods. We obtain numbers
from the corresponding papers or Zhou et al. (2019), and use the official tools for MUSE (Conneau
et al., 2018a), GeoMM (Jawanpuria et al., 2019) and RCSLS (Joulin et al., 2018b) to obtain miss-
ing results. We consider the method of Duong et al. (2016) for supervised joint training based on
bilingual dictionaries, which is comparable to supervised alignment methods in terms of resources
used. For unsupervised joint training, we train uncased joint fastText4 word vectors of dimension
300 on concatenated Wikipedia corpora of each language pair with default parameters. The hyper-
parameter γ is selected from {0.7, 0.8, 0.9, 0.95} on validation sets. For the alignment refinement
step in our proposed framework, we use RCSLS and GeoMM to compare with supervised methods,
and MUSE for unsupervised methods. Following standard practices, we consider the top 200k most
frequent words and use the cross-domain similarity local scaling (CSLS) (Conneau et al., 2018a)
as the retrieval criteria. Note that a concurrent work (Artetxe et al., 2019) proposed a new retrieval
method based on MT systems and produced state-of-the-art results. Although their method is appli-
cable to our framework, it has high computational costs and is out of the scope of this work.

For the NER task: (1) For non-contextualized representations, we train embeddings the same way as
in the BLI task and use a vanilla Bi-LSTM-CRF model (Lample et al., 2016; Ma & Hovy, 2016). For
all alignment steps, we apply the supervised Procrustes method using dictionaries from the MUSE
library for simplicity. (2) For contextualized representations, we consider two models, M-BERT
and XLM (Lample & Conneau, 2019), one unsupervised and one supervised joint training model,
respectively. We try our framework on M-BERT, applying alignment refinement as described in
Section 3.2. We compare our proposed framework to both fine-tuning and feature extraction. To
use the extracted features, we employ a task-specific model consisting of 2 Bi-LSTM layers with a
total dimension of 768 and a CRF layer. For finetuning, we add a softmax layer on top. To align the
contextualized embeddings, we use 30k parallel sentences from the Europarl corpus and follow the
procedure of Section 3.2. Note that, instead of BPE, we use word alignments on parallel data and
use average BPE embeddings corresponding to each word to learn the alignment matrix. We use the
sum of the last 4 layer outputs as the extracted features, and learn one matrix for each layer. For both
models, we only predict the label for the first subword token corresponding to its original word.

4https://github.com/facebookresearch/fastText
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en-es es-en en-fr fr-en en-de de-en en-it it-en en-ru ru-en en-zh zh-en avg

Unsupervised
MUSE (Conneau et al., 2018a) 77.1 82.5 76.4 78.0 67.4 67.8 72.5 77.5 42.7 50.2 28.7 29.1 62.5
Unsupervised Joint 3.7 10.2 5.1 10.7 8.5 10.5 7.8 8.1 0.4 2.7 2.5 6.4 6.4
Joint Align + MUSE 77.5 83.0 77.0 79.5 66.7 68.0 70.9 78.0 43.5 55.1 32.3 32.7 63.7

Supervised
RCSLS (Joulin et al., 2018b) 78.0 83.9 76.0 78.6 68.2 68.4 71.8 78.2 50.7 56.9 51.0 41.7 67.0
Supervised Joint (Duong et al., 2016) 76.8 80.8 73.4 76.1 60.1 61.7 69.7 76.2 41.0 51.8 52.3 43.3 63.6
Joint Align + RCSLS 82.1 84.6 78.1 80.4 68.4 70.4 73.7 79.0 59.0 66.8 51.4 45.7 70.0

Table 2: Precision@1 for the BLI task on the MUSE dataset with test pairs of same surface
form removed. The best result for unsupervised methods is underlined while bold signifies the
overall best.

For the UMT task, we use the exact same architecture and parameters released by Lample et al.
(2018b)5. We simply use different embeddings as inputs to the model.

4.3 RESULTS AND ANALYSIS

4.3.1 ALIGNMENT VS. JOINT TRAINING

We compare alignment methods with joint training on all three downstream tasks. As shown in Table
1 and Table 3, we find alignment methods significantly outperform the joint training approach by a
large margin in all language pairs for both BLI and NER. However, the unsupervised joint training
method is superior than its alignment counterpart on the unsupervised MT task as demonstrated in
2(c). While these results demonstrate that their relative performance is task-dependent, we conduct
further analysis to reveal three limitations as discussed in Sec 2.3.

First, our experiments show that unsupervised joint training fails to generate high-quality alignments
due to the lack of fine-grained seed dictionary as discussed in its limitation 2. On both BLI and NER
tasks, alignment methods significantly outperform unsupervised joint training by a large margin. We
further remove test pairs of the same surface form (e.g. (hate, hate) as a test pair for en-de) of the
BLI task and report their results in Table 2. We find unsupervised joint training to achieve extremely
low scores. This is consistent with the PCA visualization shown in Figure 1, where embeddings of
non-sharing parts are poorly aligned. Moreover, we delve into the relative performance of the two
paradigms on the MT task by plotting their test BLEU scores of the first 20 epochs in Figure 2(a)
and 2(b). We observe that the alignment method actually obtains higher BLEU scores in the first
few epochs. These results verify unsupervised joint training alone cannot align embeddings well.

In addition, we can observe from our experiments in MT task that while alignment method performs
better in the first few epochs, it gets surpassed by joint training in later epochs. This shows the
importance of parameter sharing as discussed in limitation 1 of alignment methods. In particular,
shared words can be used as a cross-lingual constraint for unsupervised joint training to achieve
better finetuned performance. The lack of sharing is also a limitation for supervised joint training
method, which performs poorly on the MT task even with supervision as shown in Figure 2(c).

Lastly, we demonstrate that oversharing can be sub-optimal for unsupervised joint training as dis-
cussed in its limitation 2. Specifically, we conduct ablation studies for our framework in Table 1.
Applying alignment refinement on unsupervised joint training without any vocabulary reallocation
does not improve its performance. On the other hand, a simple vocabulary reallocation alone boosts
the performance by quite a margin. This shows some words are shared erroneously across languages
in unsupervised joint training thereby hindering its performance.

4.3.2 EVALUATION OF PROPOSED FRAMEWORK

Our proposed framework substantially improves over its alignment and joint training baselines on
all three tasks. In particular, it outperforms existing methods on all language pairs for the BLI task
(using the CSLS as retrieval metric) and achieves state-of-the-art results on 2 out of 3 language pairs
for the NER task. Besides, we show that it alleviates limitations of alignment and joint training
methods shown in the previous section.

5https://github.com/facebookresearch/UnsupervisedMT
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es nl de avg
Non-contextualized

Unsupervised Joint 50.28 42.77 21.49 38.18
Supervised Joint (Duong et al., 2016) 63.16 63.60 36.24 54.33
Align 69.00 71.33 52.17 64.17
Joint Align 70.46 72.10 56.47 66.34
Xie et al. (2018)‡ 71.67 70.90 57.43 66.67
Chen et al. (2019)‡ 73.50 72.40 56.00 67.30

Contextualized
XLM Finetune (Lample & Conneau, 2019)∗ 63.18 - 67.55 -
M-BERT Finetune (Pires et al., 2019) 73.59 77.36 69.74 73.56
M-BERT Finetune (Wu & Dredze, 2019) 74.96 77.57 69.56 74.03
M-BERT Finetune (Keung et al., 2019) 75.00 77.50 68.60 73.70
M-BERT Finetune + Adv (Keung et al., 2019) 74.30 77.60 71.90 74.60
M-BERT Feature 74.23 78.65 67.63 73.50
M-BERT Feature + Align 75.77 79.03 70.54 75.11

Table 3: F1 score for the cross-
lingual NER task. “Adv” refers
to adversarial training. ‡ de-
notes results that are not directly
comparable due to different re-
sources and architectures used. ∗
denotes supervised XLM model
trained with MLM and TLM ob-
jectives. Its Dutch (nl) result is
blank because the model is not
pretrained on it. Bold signifies
state-of-the-art results. We re-
port the average of 5 runs.

First, the proposed framework largely improves the coarse alignment of unsupervised joint train-
ing. As shown in Table 1, the proposed Joint Align framework achieves comparable results to prior
methods in the unsupervised case and it outperforms previous state-of-the-art methods in the super-
vised setting. Specifically, our proposed framework can generate well-aligned embeddings after an
alignment refinement is applied to the initially ill-aligned embeddings, as demonstrated in Figure
1. This is further verified by results in Table 2, where our proposed framework largely improves
accuracy on words not shared between two languages over the unsupervised joint training baseline.

Besides, our ablation study in Table 1 further shows the effectiveness of the proposed vocabulary
reallocation technique, which alleviates the issue of oversharing. Particularly, we observe no im-
provement compared to unsupervised joint training baseline when an alignment refinement step is
used without vocabulary reallocation, while a vocabulary reallocation step alone significantly boosts
the performance. This is consistent with Figure 1 and shows that the oversharing is a bottleneck for
applying alignment methods to joint training. It also suggests detecting what to share is crucial to
achieve better cross-lingual transfer.

Lastly, while supervised joint training share the limitation 1 of alignment methods and perform
poorly when finetuned, our proposed framework take advantage from unsupervised joint training
component and exploits the idea of word sharing. In the MT tasks, our framework obtains a maxi-
mum gain of 2.97 BLEU over baselines we ran and consistently performs better than results reported
in Lample et al. (2018b). In addition, Figure 2 shows that Joint Align not only converges faster in
earlier training epochs but also consistently outperforms the two baselines thereafter. These empiri-
cal findings demonstrate the effectiveness of our proposed methods in non-contextualized case.

4.3.3 CONTEXTUALIZED WORD REPRESENTATIONS

As can be seen in Table 3, when using our framework, we achieve state-of-the-art results on cross-
lingual NER on 2 out of 3 languages and the overall average. It shows that our framework can
effectively generalize to contextualized representations. Specifically, our framework improves over
the M-BERT feature extraction baseline on all three language pairs and outperforms the M-BERT
finetuning counterparts. The reason why a contextualized supervised joint training model, XLM,
performs worse than its unsupervised counterpart, M-BERT, is likely that XLM uses an uncased
vocabulary, where casing information is important for NER tasks.

5 RELATED WORK

Word embeddings (Mikolov et al., 2013a) are a key ingredient to achieve success in monolingual
NLP tasks. However, directly using word embeddings independently trained for each language may
cause negative transfer (Wang et al., 2019) in cross-lingual transfer tasks. In order to capture the
cross-lingual mapping, a rich body of existing works relying on cross-lingual supervisions, including
bilingual dictionaries (Mikolov et al., 2013a; Faruqui & Dyer, 2014; Artetxe et al., 2016; Xing
et al., 2015; Duong et al., 2016; Gouws & Søgaard, 2015; Joulin et al., 2018a), sentence-aligned
corpora (Kočiskỳ et al., 2014; Hermann & Blunsom, 2014; Gouws et al., 2015) and document-
aligned corpora (Vulić & Moens, 2016; Søgaard et al., 2015).
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(a) fr-en (b) en-de (c)

Figure 2: (a)(b): Results on MT task of Align, Joint and our framework of the first 20 training
epochs. Results after 20 epochs have similar patterns. (c): BLEU scores for the MT task. Results
evaluated on the WMT’14 English-French and WMT’16 German-English. All training settings are
the same for each language pair except the embedding initialization. Note that we are not trying
to outperform state-of-the-art methods (Song et al., 2019) but rather to observe improvements of
embedding initialization. † Results reported by Lample et al. (2018b). Our results are obtained
using the official code released by the author. ‡ Duong et al. (2016) is a supervised method that we
include for analysis purpose only and is not directly comparable to other results in this table.

Besides, unsupervised alignment methods aim to eliminate the requirement for cross-lingual su-
pervision. Early work of Cao et al. (2016) matches the mean and the standard deviation of two
embedding spaces after alignment. Barone (2016); Zhang et al. (2017a;b); Conneau et al. (2018a)
adapted a generative adversarial network (GAN) (Goodfellow et al., 2014) to make the distributions
of two word embedding spaces indistinguishable. Follow-up works improve upon the GAN-based
training for better stability and robustness by introducing Sinkhorn distance (Xu et al., 2018), by
stochastic self-training (Artetxe et al., 2018a), or by introducing latent variables (Dou et al., 2018).

While alignment methods utilize embeddings trained independently on different languages, joint
training methods train word embeddings at the same time. Klementiev et al. (2012b) train a bilin-
gual dictionary-based regularization term jointly with monolingual language model objectives while
Kočiskỳ et al. (2014) defines the cross-lingual regularization with the parallel corpus. Another
branch of methods (Xiao & Guo, 2014; Gouws & Søgaard, 2015; Ammar et al., 2016; Duong et al.,
2016) build a pseudo-bilingual corpus by randomly replacing words in monolingual corpus with
their translations and use monolingual word embedding algorithms to induce bilingual representa-
tions. The unsupervised joint method by Lample & Conneau (2019) simply exploit words that share
the same surface form as bilingual “supervision” and directly train a shared set of embedding with
joint vocabulary. Recently, unsupervised joint training of contextualized word embeddings through
the form of multilingual language model pretraining using shared subword vocabularies has pro-
duced state-of-the-art results on various benchmarks(Devlin et al., 2019; Artetxe & Schwenk, 2019;
Lample & Conneau, 2019; Pires et al., 2019; Wu & Dredze, 2019).

A concurrent work by Ormazabal et al. (2019) also compares alignment and joint method in the
bilingual lexicon induction task. Different from their setup which only tests on supervised settings,
we conduct analysis across various tasks and experiment with both supervised and unsupervised con-
ditions. While Ormazabal et al. (2019) suggests the combination of the alignment and joint model
could potentially advance the state-of-art of both worlds, we propose a novel training framework
and empirically verified its effectiveness on various tasks and settings.

6 CONCLUSION

In this paper, we systematically compare the alignment and joint training methods for CLWE. We
point out that the nature of each category of methods leads to certain strengths and limitations.
The empirical experiments on extensive benchmark datasets and various NLP tasks verified our
analysis. To further improve the state-of-art of CLWE, we propose a simple hybrid framework
which combines the strength from both worlds and achieves significantly better performance in the
BLI, MT and NER tasks. Our work opens a promising new direction that combines two previously
exclusive lines of research. For future work, an interesting direction is to find a more optimal word
sharing strategy.
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lation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2979–2984, 2018b.

Phillip Keung, Yichao Lu, and Vikas Bhardwaj. Adversarial learning with contextual embeddings
for zero-resource cross-lingual classification and ner. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP), November 2019. URL https:
//arxiv.org/abs/1909.00153.

11

https://www.aclweb.org/anthology/D18-1330
https://arxiv.org/abs/1909.00153
https://arxiv.org/abs/1909.00153


Under review as a conference paper at ICLR 2020

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed repre-
sentations of words. In Proceedings of COLING 2012, pp. 1459–1474, Mumbai, India, Decem-
ber 2012a. The COLING 2012 Organizing Committee. URL https://www.aclweb.org/
anthology/C12-1089.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed represen-
tations of words. Proceedings of COLING 2012, pp. 1459–1474, 2012b.
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