
Under review as a conference paper at ICLR 2020

GRAPH WARP MODULE: AN AUXILIARY MODULE
FOR BOOSTING THE POWER OF GRAPH NEURAL NET-
WORKS IN MOLECULAR GRAPH ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Network (GNN) is a popular architecture for the analysis of chemical
molecules, and it has numerous applications in material and medicinal science.
Current lines of GNNs developed for molecular analysis, however, do not fit well
on the training set, and their performance does not scale well with the complexity
of the network. In this paper, we propose an auxiliary module to be attached to a
GNN that can boost the representation power of the model without hindering the
original GNN architecture. Our auxiliary module can improve the representation
power and the generalization ability of a wide variety of GNNs, including those
that are used commonly in biochemical applications.

1 INTRODUCTION

Recently, Graph Neural Network (GNN) is a popular choice of model in the analysis of molecular
datasets in medicinal and material science. Many molecular datasets consist of molecular graphs
with feature vectors associated to each atom, and numerous methods based on GNN has been
proposed to date just for learning the features of chemical molecules (Wu et al., 2018; Duvenaud
et al., 2015; Kearnes et al., 2016; Li et al., 2017; Gilmer et al., 2017; Shang et al., 2018), such as
those pertaining to electrical conductivity and toxicity. One problem in the application of GNN to
molecular datasets is the difficulty in reducing the training loss. Unlike in the applications of Deep
Neural Networks (DNNs) to image datasets, the training loss of GNN on molecular dataset does
not decrease consistently with the number of layers nor number of nodes per layers (cf. Fig. 4 in
the appendix, thin dashed lines), and this seems to happen to numerous GNN architectures that are
used in applications today (Duvenaud et al., 2015; Li et al., 2016; Kipf & Welling, 2017; Xu et al.,
2019; Busbridge et al., 2018). Unfortunately, many strong techniques developed for deep CNNs
such as ResNet (He et al., 2016) cannot be applied naively to GNN, because the tasks for GNNs are
oftentimes fundamentally different in nature from that of standard DNN. For example, each graph
data to be passed to the network can differ in size, and it is also often desired that GNN is equivariant
(invariant under the reordering of vertices) in general. To the best of the authors’ knowledge, there
have not been many studies done to date that directly addressed the problem of training loss.

In this study, we propose graph warp module (GWM), a supernode (Li et al., 2017; Gilmer et al.,
2017; Battaglia et al., 2018) based auxiliary module that can be attached to generic GNNs of various
types to improve its representation power. The I/O of the auxiliary module is defined independently
from the GNN to which it is attached, and the users can install the GWM just by adding a small
segment of code.

Our GWM consists of three major components. The first component is virtual supernode (Li et al.,
2017; Gilmer et al., 2017), which communicates with all nodes in the graph and promotes the
remote message passing. The second and third components are attention unit (Vaswani et al., 2017;
Veličković et al., 2018) and gating units (Cho et al., 2014). These adaptive weighting functions in the
module help to adjust the flow of messages and deliver a message of appropriate strength to each
node in the graph.

Our GWM can consistently improve the performance of various types of GNN on various types of
dataset. In Fig. 1 we show the effect of GWM on the performance of four types of GNNs with the
same embedding dimension and the same number of layers on four molecular graph datasets. As we

1

Under review as a conference paper at ICLR 2020

Reduction Ratio of Train Loss

Re
d

uc
tio

n
Ra

tio
 o

f T
es

t L
os

s

0.2 0.4 0.80.6-0.2 0.0 1.0

0.2

0.4

0.6

0.0

0.8

1.0

NFP
GGNN
RSGCN
GIN

Tox21
HIV

QM9
Lipo

DatasetGNN

Figure 1: Train loss reduction and test loss re-
duction achieved by GWM on various model-
dataset pair. The shape of each point presents
the dataset used, and the color of each point
presents the GNN model used. The horizon-
tal axis denotes the ratio of reduced training
loss, and the vertical axis denotes that of the
test loss. That the x-coordinate of a point is
positive implies that the attachment of GWM
improved the train performance for the cor-
responding model-dataset pair. That the y-
coordinate of a point is positive implies that
GWM improves the test-performance.

can see in the figure, the attachment of GWM reduces both train loss and test loss for all but three
model-dataset pairs. The GWM provides not only more representation powers (less train loss), but
also better generalization performances (less test loss) for various GNNs.

As we will show in section 4.4, we can further improve the positive effect of GWM using Hyperpa-
rameter optimziation softwares such as optuna (Akiba et al., 2019).

Our contributions are as follows:

1. We introduce GWM, an auxiliary module that can help improve the representation power of
the GNNs that are designed for the analysis of small graphs.

2. We show that the attachment of GWM can improve both the representation power and the
generalization ability of various GNN models on many popular molecular graph datasets.

2 RELATED WORK

2.1 VIRTUAL SUPERNODE

A common challenge in the application of GNNs to a graphical dataset is the difficulty in prop-
agating the information across remote parts of graphs. Previously proposed solutions include
sub-sampling (Hamilton et al., 2017) and pooling of neighbor nodes (Ying et al., 2018). However,
these clustering approaches are not too effective on the analysis of small graphs, in which every node
can have a strong influence on the graph label.

In this study, we use supernode (Gilmer et al., 2017; Li et al., 2017; Pham et al., 2017) to promote
the global propagation of the information in molecular graphs. By adding a supernode to a graph,
we can allow any pair of nodes in the graph to communicate through the supernode in one hop.
Battaglia et al (Battaglia et al., 2018) discusses a framework of GNNs that generalizes the supernode-
augmented GNNs. One advantage of the supernode-based approach is that we can modify the network
architecture while keeping the original GNN model intact. However, naive addition of a supernode
to a graph can potentially lead to inadvertent over-smoothing of information propagation (c.f. (Li
et al., 2018)). In our study, we therefore make the supernode a module by combining it with a gated
message passing mechanism. This auxiliary module enables us to regulate the amount and type of
information that is propagated through the feature space of the supernode.

2.2 MESSAGE PASSING AND ATTENTION/GATE MECHANISM IN GNN

The supernode in our GWM transmits information using the mechanism of message passing neural
network (MPNN) (Gilmer et al., 2017), which is defined recursively as follows by composing multiple
layers of the form:

h`,i = F` ({h`−1,j ; j ∈ N(i) ∪ {i}}) (1)

where i, j are indices of nodes in a graph. h`,i is the feature vector of the node i at the `th layer,
N(i) is the neighborhood of the node i, and F` is an appropriate choice of function that updates the

2

Under review as a conference paper at ICLR 2020

Orignal Graph data

INPUT

O
O

N O

in original graph structure

Graph Warp Module

Node feature vectors
@Layer l

Supernode feature vector
@Layer l

Supernode feature vector
@Layer l-1

Node feature vectors
@Layer l-1

(molecular graph)

Feature vectors

+ virtual “supernode”

Node feature vectors
@Layer l

Node feature vectors
@Layer l-1

Before Attaching the Graph Warp Module

F

After Adttaching the Graph Warp Module

Transmitter

Warp Gat

F

connecting all nodes

Unit

Unit

Figure 2: The overview of the proposed Graph Warp Module (GWM). A GWM consists of a
supernode, a transmitter unit, and a warp gate unit. A GWM can be added to the original GNN as
an auxiliary module. At each layer, the supernode and the main network communicate through the
transmitter and the warp gate.

feature vectors of the previous layer. That is, MPNNs work by passing the information of each node
to its neighbors in a recursive manner. Various methods are proposed for the choice of F and for the
method of pooling the information of the neighbors of each node (Schlichtkrull et al., 2017; Kipf &
Welling, 2017; Li et al., 2016; Bruna & Szlam, 2014; Duvenaud et al., 2015).

Attention mechanism is a mechanism that helps the network regulate the importance of each node/edge
in message passing (cf. (Wang et al., 2018)). A Relational GCN (Schlichtkrull et al., 2017) assumes
that the aggregation weights of h`−1,j is fixed a priori in all F`. With such architectures, however,
one cannot regulate the higher order correlation amongst the outputs from each node. Graph Attention
Networks (GATs) (Veličković et al., 2018) introduce a self-attention mechanism (Vaswani et al.,
2017), which is equipped with a trainable set of weights that controls the importance of edges for
each node. The relational graph attention network (RGAT) (Busbridge et al., 2018) also builds upon
GAT and constructed multiple types of attentions derived from relation-type-wise intermediate node
representations. Finally, a GRU (Cho et al., 2014) is a gating mechanism originally introduced for
recurrent neural networks. Gated Graph sequence Neural Networks (GGNN) (Li et al., 2016) are the
first to apply GRUs to the GNNs, and their method aims to introduce a recurrence relation between
successive layers. Our GWM is equipped with both multi-relational attention mechanisms and GRUs
to grant the module greater flexibility in the transmission of messages to the graph nodes.

3 GRAPH WARP MODULE

Our Graph Warp Module (GWM) is made of three building blocks: (1) a supernode, (2) a transmitter
unit, and (3) a warp gate unit (Fig. 2). In a GWM-attached GNN, information is propagated across
the graph through communication between the supernode and the original (main) GNN at each
layer. Messages from the supernode and the main GNN are transmitted to the warp gate through the
transmitter unit, and the results of the communication are passed back to the module/main network
through the warp gate units. In this section, we describe the Graph Warp Module in detail, and present
the motivation of our design.

3.1 PREMISE: VANILLA GNN AND ITS I/O

Before describing our GWM, we need to present the I/O notation for the family of GNNs we consider,
and explain how they will be used when a GWM is attached to a GNN. We denote an arbitrary
graph with the edge set E and the node set V as G = (V,E). We will label the nodes in V as
i = 1, 2, ...|V |, and represent each edge as a pair of nodes in V . The adjacency matrix A ∈ R|V |×|V |
is a matrix whose (i, j)th entry is the weight assigned to the edge between the node i and the node

3

Under review as a conference paper at ICLR 2020

j. Each instance of data passed to the GNN is a set of input feature vectors. We denote an input
feature vector associated with node i as xi. The type of GNN that we consider computes the output
recursively by applying a composition of smooth functions F` to xis. With the understanding that
xj = h0,j , let h`,i = F`−1,i(h`−1,j ; j ∈ V) ∈ Rd be the vector of features to be assigned to the ith
node by the `th layer of the GNN. When the GNN is operating on its own without the attachment of
a GWM, the GNN updates a feature vector using h`,i = F`−1,i(h`−1,j ; j ∈ V) ∈ Rd. Finally, the
GNN reports some form of the aggregation of {hL,i; i ∈ V } as the final Readout output.

When a GWM is attached to the GNN, the main(bulk) GNN is requested to report F`−1,i(h`−1,j ; j ∈
V) ∈ Rd as the message from the `− 1th main layer to the module, where it is treated as an element
in the intermodule hyperspace and is mixed with the transmission from the supernode. The GWM
will return the mixed message h` back to the `th layer of the main GNN. At the same time, the GWM
requests a transmission message from the main GNN to the `th supernode. The module will mix the
transmission and the message from the `− 1th supernode and return the mixed message g` to the `th
supernode. The final output is produced by aggregating {hL,i; i ∈ V } and gL.

3.2 SUPERNODE

A supernode is a special node that is connected to nodes in the original graph to promote global
information propagation across the network (Fig. 2). A supernode is to be prepared for each `th layer
of the main GNN, and we associate a feature vector g` to the supernode at the `th layer. At each layer,
the transmitter requests the following from the supernode: (1) a message G` (g`) for the `+ 1th layer
and (2) a transmission to the main network, where G` is an appropriate choice of a smooth function.

Because a supernode is a superficial variable, we must initialize g0 manually. For instance, we can
use some form of aggregation of the global graph features (e.g. a number of nodes or edges, graph
diameter, girth, cycle number, min, max, histogram, or an average of input node features, . . .). A
detailed example of the aggregated feature is presented in the appendix.

3.3 TRANSMITTER UNIT

The transmitter unit handles the communications between the main GNN module and the GWM
(Fig. 3). The transmitter module is responsible for translating the messages from the recipient into a
form that can be mixed in the intermodule hyperspace. We will use multiple types of messages and
thus use a separate attention mechanism for each type of message. Before transmitting messages from
the main GNN to the supernode, the transmitter uses the K-head attention mechanism to aggregate
messages of each type. We enumerate the components included therein:

• mmain→super
`,k : aggregated message of head k from the main GNN to the supernode at layer `.

• hmain→super
` : transmission from the main GNN to the supernode, derived from mmain→super

`,k .

• gsuper→main
` : transmission from the supernode to the main at layer `.

The transmissions are to be constructed from the following set of equations. For a vector v, we use
vm:n ∈ R(m−n)d to denote the concatenation of the vectors vm, vm+1, ... ∈ Rd. Throughout, we use
capital letters to denote the trainable coefficients.

hmain→super
` = tanh

(
W` m

main→super
`,1:k

)
∈ RD′

, (2)

mmain→super
`,k =

∑
i

α`,i,kU`,kh`−1,i ∈ RD′
, (3)

α`,i,k = softmax
(
hT`−1,iA`,kg`−1

)
∈ (0, 1) , (4)

where α`,i,k denotes an attention weight of the ith node at the kth head (type) and the lth layer.

The transmission from the supernode to the main is simply given by:

gsuper→main
` = tanh (F`g`−1) ∈ RD. (5)

There is no analogue of m for the supernode because we are not considering a set of messages of
different types to be transmitted from the supernode.

4

Under review as a conference paper at ICLR 2020

Mixed messages
for node feature vectors

Transmitter Unit:
inter-module message

Warp Gate Unit:
gated-sum mixing

Mixed messages
for supernode feature vector

Node feature vectors
@Layer l

Supernode feature vector
@Layer l

GRU

@Layer l-1
Node feature vectors

F

G

(Main GNN)

Intra-module update of
node feature vectors

Intra module update of
supernode feature vector

Warp Gate Unit:
gated-sum mixing GRU

@Layer l-1
Supernode feature vector

Transmitter Unit:
inter-module message

main super

super main

Figure 3: Details of the GWM computations.

3.4 WARP GATE

The warp gate is responsible for merging the transmitted messages and for passing the results to the
supernode and the main network through self recurrent units. The gate uses warp gate coefficients to
control the mixing-rate of the messages. The components of the warp Gate are:

• h0` : inputs to the GRU unit at `th layer that transmits the message to the main GNN.
• g0` : inputs to the GRU unit at `th layer that transmits the message to the supernode.

• ĥ`,i: the message F`−1,i(h`−1,k; k ∈ V) ∈ RD from the `− 1th layer of the main network,
expressed in the intermodule hyperspace.

• ĝ`: the message G`−1 (g`−1) ∈ RD′
from the `− 1th supernode, where G is an appropriate

smooth function with outputs in the intermodule hyperspace.
• z`,i: tensor of warp gate coefficients for the transmission from the supernode to the main

GNN.
• z(S)

`,i : tensor of warp gate coefficients for the transmission from the main GNN to the
supernode.

The module then mixes the transmissions and the messages from the previous layer by applying the
following gated interpolations:

h0`,i = (1− z`,i)� ĥ`−1,i + zl,i � gsuper→main
` ∈ RD , (6)

g0` = z
(S)
` � hmain→super

` + (1− z(S)
`)� ĝ` ∈ RD′

, (7)

z`,i = σ
(
H`h̃`,i +G`g

super→main
`

)
, z

(S)
` = σ

(
H

(S)
` hmain→super

` +G
(S)
` ĝ`

)
, (8)

where σ is a nonlinear function whose range lies in [0, 1]. Finally, the warp gate returns the mixed
messages to the main GNN and the supernode through gated recurrent unit (GRU) s:

h`,i = GRU
(
h`−1,i, h

0
`,i

)
∈ RD , g` = GRU

(
g`−1, g

0
`

)
∈ RD′

. (9)

As for the structure of GRU, we used the original design introduced by (Cho et al., 2014).

As we will show with ablation studies (Sec. 4.4), every component of GWM is essential in making
the module work. The Attention coefficients (Eqs.(3,4)) are important because the amount and the
type of information that must be transmitted to remote nodes may differ for different nodes. The
Gating coefficients (Eqs.(6-8)) are important because we want to regulate the transmission from each
node in the graph to the supernode and vice versa. We use different recurring units (Eq.9) for the
transmission from the module to the supernode and the transmission from the module to the main
network for each layer because the amount of the information that must be reinforced may differ for
the main network and the supernode at each layer.

5

Under review as a conference paper at ICLR 2020

3.4.1 COMPUTATIONAL COMPLEXITY

Let V be the vertex set, K be the number of attention heads, and D be the dimension of the node
embedding. Then the additional computational cost incurred by the attachment of GWM is at most
O(|V |KD2). As for the actual computation time, GWM attached module consumes approximately
double the time of the original unattached version.

4 EXPERIMENTS

In this section, we present our experimental results on multiple molecular graph datasets, testing the
efficacy of the GWM for graph regression tasks and graph classification tasks.

4.1 DATASETS

We used four datasets collected in MoleculeNet (Wu et al., 2018). These datasets are described in
the SMILES string format, which admits the graph representations we described above. For details,
please see (Wu et al., 2018).

For the graph regression tasks, we used the QM9 dataset and the Lipophilicity (LIPO) dataset. QM9
is a dataset with numerical labels, containing about 133K drug-like molecules with 12 important
chemical-energetic, electronic, and thermodynamic properties, such as HOMO, LUMO, and electron
gaps. The LIPO dataset is another numeric-valued dataset, containing the solubility values of roughly
4K drug molecules. Each instance of data in these datasets is a pair of a molecular graph and a
numerical value(s): the 12 chemical properties in the QM9 dataset, and the solubility in the LIPO
dataset. For both datasets, the task is to predict the numerical value(s) from the molecular graph. We
evaluated the performance of the models using mean absolute errors (MAEs). We report the averaged
MAE over 12 sub-tasks (properties) for QM9.

For the graph classification tasks, we used the Tox21 and the HIV datasets. The Tox21 dataset
contains about 8K pairs of molecular graph and 12 dimensional binary vector that represent the
experimental outcomes of toxicity measurements on 12 different targets. The HIV dataset contains
roughly 42K pairs of molecular graph and binary label that represent the medicinal effect of the
molecule. For these datasets, the task is to predict the binary label(s) from the molecular graph.
For these tasks, we use ROC-AUC values as a measure of performance. We report the averaged
ROC-AUC over 12 sub-tasks (targets) for Tox21.

Throughout, we used the train/validation/test data splits of the “scaffold” type, which is considered
by (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) as the difficult type for test predictions. Please
find the appendix for details.

4.2 CHOICES OF THE MAIN GNN MODELS AND IMPLEMENTATIONS

We test GWMs on various GNN models. Neural Fingerprints (NFP) (Duvenaud et al., 2015) and
Weavenet (Kearnes et al., 2016) are relatively classical baselines. A Gated Graph Neural Network
(GGNN) (Li et al., 2016) is a strong GRU-based GNN. Renormalized Spectral Graph Convolutional
Network (RSGCN1) (Kipf & Welling, 2017), a popular GNN model approximating a CNN for
graphs (Defferrard et al., 2016). The relational graph attention network (RGAT) (Busbridge et al.,
2018) uses multiple attention mechanisms for a set of edge types. Graph Isomorphism Network
(GIN) (Xu et al., 2019) employs multi layer perceptrons within each layer for richer transformations.

We implement all models in Chainer (Tokui et al., 2015). In the readout layer, we first aggregate all
information from the main nodes in the same way as in the original paper, concatenated the result
with the features from the supernode, and passed the concatenated tensor to a fully connected layer.
For evaluation, we used a softmax cross entropy for classification tasks and a mean squared error for
regression tasks. We use a fixed set of hyperparameters throughout the study.

All models were trained with Adam (Kingma & Ba, 2015). We report the results of the model
snapshots of the epoch for which the best validation score was achieved. For implementation details
including readouts and hyperparameters, please read the appendix.

1Referred as RSGCN in Chainer-Chemistry package, but often simply referred as “GCN” in several papers.

6

Under review as a conference paper at ICLR 2020

Model Name (emulating) Attention Gatings GRUs
Simple supernode ((Li et al., 2017)) — — —
NoGate GWM ((Gilmer et al., 2017)) X — X (supernode only)
Proposed GWM X X X

Table 1: Supernode-based models validated in the Experiment 4.4

4.3 TRAINING AND TEST LOSS REDUCTION

We explain the details of the experiment that produced the result presented in Fig. 1. For this
experiment, we reported the average r̄ of the loss reduction ratio r = L−L (+)

‖L‖ for both training loss

and test loss over 10 runs. L denotes the loss of the vanilla model, and L (+) denote the loss of
the GWM-installed model. r̄train denotes a reduction ratio of the training loss, and r̄test denotes a
reduction ratio of the test loss.

Fig. 1 is the scatter plot of the (r̄train, r̄test), with the dotted slope representing r̄train = r̄test. For
all GNNs and datasets, we set L = 3 and D = 50. As we can see in the plot, r̄trains were negative
for the two GNNs in the HIV dataset (blue and brown circles). r̄train for GGNN on QM9 (blue
cross) was a very small negative value). For the other 13 (model-dataset) pairs, the attachment of
GWM consistently reduces the training loss(i.e. improves the fit to the training graph datasets.)
Remarkably, 15 out of 16 pairs had positive r̄tests: the GWM improved generalization performances
in most cases. It is worthy of note that r̄train and r̄test are positively correlated in this scatter plot.
We were able to obtain similar results for all other choices of hyperparameters we tested. For the
results with different hyperparameter values, see the appendix. This result implies that our GWM
has the general effect of improving the generalization performance by augmenting the representation
power of the main GNN.

4.4 EFFECT OF THE GWM ON THE REPRESENTATION POWER OF MODEL SPACE

In the second experiment, we studied the effect of GWM on the representation power of GNN models.
To compare the GWM-augmented GNNs with their vanilla GNN counterparts on fair grounds, we
used Bayesian optimization to optimize the number of layers and the dimension of feature vectors
for each model-dataset pair we tested. Hyperparameters are optimized via the Optuna (Akiba et al.,
2019) library.

We conducted a set of ablation studies to investigate the effect of (1) attention mechanism, (2) Gating
mechanism, and (3) the Recurrent unit. We used two ablation models. Simple supernode model is a
supernode without attention, gatings, and GRU functions. This model is akin to the supernode model
in (Li et al., 2017), except that our model allows bi-direction communication between supernode and
the main network. NoGate GWM is a GWM without gatings, and it lacks GRU for the main GNN.

Table 1 summarizes the resits of our ablation studies, For the detailed formulations of the two ablation
models, please see the appendix.

Table 2 and Table 3 respectively present the MAEs on the regression tasks and the ROC-AUCs
for the classification tasks, averaged over 10 random runs. In the tables, bold faces indicate the
improvements from the vanilla GNN and asterisks indicate the best model among supernode models
for each (dataset, GNN) pair. Full tables with standard deviations are presented in the appendix. As
we can see in the tables, the proposed GWM improves the generalization performances for 23 out of
24 (model-dataset) pairs. These results suggest that the proposed (full) GWM can improve GNNs’
performances irrespective of the choice of GNN models and the dataset.

A few words of caution are in order here. Two ablation models did not improve the generalization of
GNNs for the QM9 and the HIV datasets (see the column “# Improved”). This suggests an appropriate
combination of attentions, gatings, and GRUs is essential in making the supernode effective for the
analysis of molecular graph datasets.

7

Under review as a conference paper at ICLR 2020

Dataset GNN model NFP Weave RGAT GGNN RSGCN GIN # Improved

LIPO vanilla GNN .677 1.19 .753 .582 .801 .844 -
+Simple Supernode .693 1.01 .740 .604 .775 .819 4/6
+NoGate GWM .675 .721 .688 .576 .787 .847 5/6
+Proposed GWM .672* .688* .659* .569* .752* .784* 6/6

QM9 vanilla GNN 6.16 6.38 8.96 4.92 15.2 14.0 -
+Simple Supernode 7.68 5.51 9.00 5.41 14.6 11.5* 3/6
+NoGate GWM 6.84 5.40* 9.21 5.52 12.5 12.9 3/6
+Proposed GWM 6.64* 5.90 8.39* 4.88* 11.9* 11.8 5/6

Table 2: MAEs on the LIPO dataset and QM9 dataset. Smaller values are better. Scores on QM9 are
the average MAEs over 12 sub-tasks. The score of select models are presented in the appendix.

Dataset GNN model NFP Weave RGAT GGNN RSGCN GIN # Improved

HIV vanilla GNN .724 .670 .707 .746 .746 .729 -
+Simple supernode .707 .676 .704 .764* .728 .729 2/6
+NoGate GWM .714 .680 .726 .744 .742 .739 3/6
+Proposed GWM .731* .681* .748* .762 .758* .755* 6/6

Tox21 vanilla GNN .763 .710 .764 .757 .760 .740 -
+Simple supernode .770 .750 .787* .790 .770* .763 6/6
+NoGate GWM .775* .764 .786 .792* .759 .766 5/6
+Proposed GWM .769 .767* .787* .785 .766 .768* 6/6

Table 3: ROC-AUCs on the HIV dataset and Tox21 dataset. Larger values are better. Scores on Tox21
are the average MAEs over 12 sub-tasks. Scores of select models are presented in the appendix.

We shall emphasize that the goal of this study is not to find the specific network architecture
that achieves the states of the art performance for selected datasets2. Instead, the goal of our
work is propose an attachable module that improves the representation power and a generalization
performance irrespective of the choice of GNN architecture. As we can see in the presented result,
the attachment of GWM improves the result in most cases; one of the results of our GWM attached
model for Tox21 is actually SOTA (0.787, achieved by GWM attached RGAT).

5 CONCLUSION

For a generic DNN, numerous effective installable modules have been proposed for the improvement
of the model (e.g. (Srivastava et al., 2014; Ioffe & Szegedy, 2015; Miyato et al., 2018; He et al.,
2016)). The proposed GWM is the first of its kind to be installed to a generic GNN as an auxiliary
module. Experimental results show that the GWM can generally improve the representation power as
well as the generalization performance of a GNN, irrespective of the choice of GNN architecture and
the molecular graph datasets. We would like to emphasize that the choice of the internal structure
of GWM is not limited to the ones we described in this study, and that there are possibly numerous
ways to construct a GWM-like module. For example, there is no provable justification for the use of a
linear transformation in the transmissions or a bilinear form in the attention coefficients α. Effective
choices of supernode features are also open to further research. Our study can possibly open an
entirely new avenue for the architectural study of GNNs.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
Next-generation Hyperparameter Optimization Framework. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2019.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet

2For example, Yang et al. (2019) and Li et al. (2017) achieve the SotA AUCs (0.776) of GNNs on the HIV
dataset.

8

Under review as a conference paper at ICLR 2020

Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases ,
deep learning , and graph networks. arXiv, pp. 1806.01261v3 [cs.LG], 2018.

Joan Bruna and Arthur Szlam. Spectral Networks and Deep Locally Connected Networks on Graphs.
In Proceedings of the 2nd International Conference on Learning Representations (ICLR), 2014.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y. Hammerla. Relational Graph Attention
Networks. OpenReview, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Neural Language Processing (EMNLP), pp. 1724–1734, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
Systems 29 (Proceedings of NIPS), 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional Networks on Graphs
for Learning Molecular Fingerprints. In Advances in Neural Information Processing Systems
28 (Proceedings of NIPS), pp. 2224–2232, 2015. URL http://arxiv.org/abs/1509.
09292.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pp. 1263–1272, 2017. URL http://arxiv.org/abs/1704.
01212.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems 30 (Proceedings of NIPS), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, 2016. URL http://arxiv.org/abs/1512.03385.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), pp. 448–456, 2015.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30(8):
595–608, 2016.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised Classification with Graph Convolutional Net-
works. In Proceedings of the 5th International Conference on Learning Representations (ICLR),
2017.

Junying Li, Deng Cai, and Xiaofei He. Learning Graph-Level Representation for Drug Discovery.
arXiv, pp. 1709.03741v2 [cs,LG], 2017.

Qimai Li, Zhichao Han, and Xiao-ming Wu. Deeper Insights into Graph Convolutional Networks for
Semi-supervised Learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI-18), 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence Neural Net-
works. In Proceedings of the 4th International Conference on Learning Representations (ICLR),
2016.

9

http://arxiv.org/abs/1509.09292
http://arxiv.org/abs/1509.09292
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1512.03385

Under review as a conference paper at ICLR 2020

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2015.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for
Generative Adversarial Networks. In Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

Trang Pham, Truyen Tran, Hoa Dam, and Svetha Venkatesh. Graph Classification via Deep Learning
with Virtual Nodes. arXiv, pp. 1708.04357v1, 2017.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1:140022, 2014.

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Reymond Jean-Louis. Enumeration of
166 billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling Relational Data with Graph Convolutional Networks. arXiv, pp. 1703.06103v4
[stat.ML], 2017.

Chao Shang, Qinqing Liu, Ko-shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi, and Jinbo Bi. Edge
Attention-based Multi-Relational Graph Convolutional Networks. arXiv, pp. 1802.04944v1
[stat.ML], 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way of Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a Next-Generation Open Source
Framework for Deep Learning. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS), 2015. URL https://chainer.org/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Advances in Neural Information
Processing Systems 30 (Proceedings of NIPS), 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In Proceedings of the 6th International Conference on
Learning Representations (ICLR), 2018.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. MoleculeNet : A Benchmark for Molecular Machine Learning.
Chemical Science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi
Jaakkola, Klavs Jensen, and Regina Barzilay. Are Learned Molecular Representations Ready For
Prime Time? arXiv, pp. 1904.01561, 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical Graph Representation Learning with Differentiable Pooling. In Advances in Neural
Information Processing Systems 31 (Proceedings of NeurIPS), 2018.

10

https://chainer.org/

Under review as a conference paper at ICLR 2020

A OUR FORMULATION OF RGAT

Apart from the original RGAT (Busbridge et al., 2018), we have developed a similar GNN in a slightly
different formulation. Followings are our RGAT formulation:

h`+1,i = tanh
(
WlconcatKk=1h̃`,i,k

)
, (10)

h̃`,i,k = F`,kh`,i +
∑
j∈Ni

αi,j,kG`,kh`,j , (11)

αi,j,k = softmax
(
a
(
h`,i, h`,j ;A`,k,ei,j

))
. (12)

a
(
h`,i, h`,j ;A`,k,ei,j

)
= hT`,iA`,k,ei,jh`,j . (13)

W,F,G,A are the coefficient matrix to be tuned. ` is the index of the layer up to L, k is the index of
the attention head up to K, i, j are the index of the nodes up to N , ei,j = r is the index of the edge
type up to R.

The main point is the edge type information in Eq.13. The edge type ei,j = r switches the weight
matrix of the attention similarity function, a. This means that the associations between nodes should
be computed dependent on the edge type. This is a natural assumption for chemical molecular
graphs. Typically we have multiple bond types between nodes = atoms: single-bond, double-bound,
triple-bond, and the aromatic ring. It is natural to assume that interactions between atoms are affected
by the bond types among the atoms.

The main differences from the original RGAT lie in the Eq.11. The original RGAT assumes that
the weight matrix G is also dependent on the edge type (G`,k,ei,j) while we omit this dependency.
Also, the original RGAT does not provide a self-link weight matrix F while we do. We made these
changes based on our preliminary experiments. We found our formulation is better than the original
RGAT formulation in the MoleculeNet dataset, in terms of the training stability and the generalization
performances.

Another difference is the choice of the attention function. In our formulation, the attention sim-
ilarity measure a(·) is defined by the general attention in (Luong et al., 2015) while the original
GAT (Veličković et al., 2018) and the RGAT (Busbridge et al., 2018) employed a simpler concat
attention.

B OUR IMPLEMENTATION OF GIN

We implement the simplest GIN: 2-layer MLP with ReLU activation for each layer and a bias
parameter ε fixed at 0. We regularize GIN with dropout (Srivastava et al., 2014), instead of batch-
normalization (Ioffe & Szegedy, 2015). This is because the batch-normalization of the Chainer-
Chemistry library did not correctly treat the padded node elements in the minibas when we conducted
the experiments.

C EXPERIMENTS DETAILS: GENERAL ISSUES

C.1 GRAPH DATA REPRESENTATION

All datasets used in our experiments are taken from the MoleculeNet(Wu et al., 2018). Four used
datasets are provided in the SMILES format. A SMILES format is a line notation for describing the
structure of chemical compounds. We decode a SMILES molecular data into a graph representation
of the molecule. A node in the graph corresponds to an atom. Each atom node is associated with the
symbolic label of the atom name (“H”, “C”, ...). An edge in the graph corresponds to a bond between
atoms. Each bond edge is associated with the bond type information (single-, double-,).

Given the graph, we extract input feature vectors for node xi and that of supernode x′. xi, the input
feature vector for the node i is a D-dimensional continuous vector, which is an embedded vector of
the one-hot atom label vector with a trainable linear transformation. X ′, The input feature vector for
the supernode is a D′-dimensional continuous vector, which again is an embedded vector of some

11

Under review as a conference paper at ICLR 2020

graph-global features with a trainable linear transformation. Choices for the graph-global features are
detailed in the following section.

The edge information is converted in an adjacency matrix, A .

C.2 EXPLICIT FEATURES FOR SUPERNODE

Since the supernode does not exist in the original graph G, we have no observable cues for the
supernode. For simplicity, we propose to use an aggregation of node features, such as:

• Histograms of discrete labels attached to original nodes

• Averages, maximums, minimums, or medians of numerical attributes attached to original
nodes

• Histograms of edge types if the graph is multiple relational graph.

• Number of nodes, graph diameters, modularity, and other simple statistics for graph structure.

We can augment the super feature vector x′ if some additional information about the graph is provided.
Essentially, these simple aggregations of the feature vectors do not bring new information into the
network. However we found that the graph-wise super feature input boosts the performance of the
learned network model.

C.3 DATA SPLITS

In chemical datasets, a totally random shuffling of samples into train/val/test subsets is not always
a valid way of data splitting. Therefore MoleculeNet provides several ways of data splitting. The
“random” split is the random sample shuffling that are most familiar to the machine learning commu-
nity. The “scaffold” split separate samples based on the molecular two-dimensional structure. Since
the scaffold split separates structurally different molecules into different subsets, “it offers a greater
challenge for learning algorithms than the random split” (Wu et al., 2018). Throughout the paper, we
adopt the scaffold split to assess the full potential of the GWM-attaching GNNs.

The actual construction of the scaffold split train/validation/test subsets has a freedom of algorithm
choices. We basically adopted the algorithm provided by the deepchem3 library, which is the standard
split algorithm for many papers. However, for the experiment of train/test loss comparison, we
adopted the algorithm provided by the Chainer Chemistry library.

C.4 READOUT LAYER

In many applications of GNNs users may expect a single fixed-length vector representing the
characteristics of the graph G. So we add the ’readout’ layer to aggregate the original node hidden
states {H`} and the global node hidden states {g`}.
A main issue in the readout unit is how to aggregate the original nodes, whose number varies for
each graph. A simple way is to take an arithmetic average (sum) of the hs at the L-th layer, but we
can also use a DNN to compute (non-linear) “average” of hs (Li et al., 2016; Gilmer et al., 2017).
After the aggregation of the node hidden states, we simply concatenate it with gs and apply some
transformations to achieve the readout vector, r:

r = DNNr1 (concat [DNNr2 (HL) , gL]) . (14)

In the above equation, DNNr1 is a multi-layer perceptron or a fully connected layer to mix the
concatenated hidden vectors. We adopted a simple fully-connected layer for DNNr1 in this paper.
DNNr2 is a specific readout unit accompanied with a original GNN to aggregate variable-length HL.

C.5 OPTIMIZER

All models were trained with Adam (Kingma & Ba, 2015), α = 0.001, β1 = 0.9, and β2 = 0.999.

3https://deepchem.io/

12

Under review as a conference paper at ICLR 2020

C.6 ABLATION MODELS FORMULATION

Here we detail the formulation of the ablation models used in the main comparison experiments (Sec.
4.4).

As written in the main manuscript, we formulate the two ablation models (Table 1) as follows. A
simple supernode model, which slightly augments (Li et al., 2017), simplify all attentions, gates,
and the GRUs. First, there is no attention for the Transmitter. So the message from the main nodes to
the supernode is just a sum of hidden vectors, h`−1,::

hmain→super
` = tanh

(
W`

∑
i

h`−1,i

)
∈ RD′

. (15)

Originally there is no messages from the supernode to the main GNN in (Li et al., 2017), but we
allow such a simple message in this ablation model:

gsuper→main
` = tanh (F`g`−1) ∈ RD′

. (16)

Messages are merged by simple linear combinations, instead of gates and GRUs, following (Li et al.,
2017):

h`,i = Z`,1ĥ`,i + Z`,2g
super→main
` ∈ RD , (17)

g` = Z
(S)
`,1 h

main→super
` + Z

(S)
`,2 ĝ` ∈ RD′

. (18)

We find it difficult to fully recover the supernode of (Gilmer et al., 2017) since their description on
the supernode is quite limited. Thus, a NoGate GWM model, which surrogates (Gilmer et al., 2017),
only capture the essence of their supernode: no gatings for merger, and GRU is not installed for
the nodes of the main GNN. In this model, we use the same attention-based Transmitter unit as in
Eqs.(2-6). We reduce the adaptive gatings in the Warp unit by a simple averaging, and omit the GRU
for h`,i.

h0`,i = Z`,1ĥ`−1,i + Z`,2g
super→main
` ∈ RD , (19)

g0` = Z
(S)
`,1 h

main→super
` + Z

(S)
`,2 ĝ` ∈ RD′

, (20)

h`,i = h0`,i ∈ RD , (21)

g` = GRU
(
g`−1, g

0
`

)
∈ RD′

. (22)

C.7 HYPERPARAMETER

We fix a part of hyperparameters throughout the experiments, which does not influence performances
so much: the number of heads in all multi-head attention mechanisms toK = 8, and usedR = 4 edge
types for the multi-relational mechanism in all models. Also, at every layer, we set the dimension of
the supernode feature to be the same as that of the features of the nodes in the main GNN.

In the next section, we list the other hyperparameters (the number of layers L, the dimension of feature
vectors D(= D′)) used in several experiments/figures, as well other experimental/implementation
details.

C.8 COMPUTATIONAL ENVIRONMENT

We use a single GPU (mainlly nvidia Tesla V100) for an experimental run. A run roughly takes 1
hour to 1 day, depending on the hyperparameters and the GNN models.

D EXPERIMENTS DETAILS: FOR EACH EXPERIMENT

In this section, we report details for each experiment, including the chosen hyperparameters and
additional results.

13

Under review as a conference paper at ICLR 2020

Tr
ai

ni
ng

 L
os

s

Layers Dimensions

GGNN GGNN-GWM

RSGCN RSGCN-GWM

GIN GIN-GWM

NFP NFP-GWM

2 3 4 5 6 7 8 9 10

0.20

0.00

0.10

10 100 1000

Figure 4: Training losses of various GNN models on a molecule graph dataset (Tox21). The horizontal
axis denotes the number of GNN layers (the left panel) or the dimension of the node feature vectors
(the right panel). Color denotes the GNN model. Thinner dashed lines are the losses of the vanilla
GNNs, while thicker solid lines show the losses of the GNNs attached with the proposed Graph Warp
Module (“GWM”). Scores are partially unavailable due to memory shortages.

D.1 TRAINING LOSS BEHAVIORS OVER NUMBER OF LAYERS AND EMBEDDING DIMENSIONS

We used the Tox21 dataset to confirm behaviors of training losses, mentioned in the first paragraph of
the introduction (Fig. 4).

To study the effect of the number of layers L (the left panel), we fixed the dimension D = 32. To
study the effect of the feature vector dimensions D (the right panel), we fixed the number of layers
L = 4.

All models are trained for 30 epochs.

Thinner dashed lines in Fig. 4 plot the training losses of original networks (w/o GWM). Thick solid
lines in Fig. 4 plot the training losses of networks augmented with GWM. In general, GWM has
an effect of decreasing the training loss for most choices of numbers of layers and dimensions of
the node feature vectors, for all GNNs. In general, similar results are obtained from the other three
datasets so we omit these figures.

D.2 SECTION 4.3: TRAIN AND TEST LOSS REDUCTION

In the experiment in the Section 4.3 (Fig. 1), we align the hyperparameters including L,D among
a vanilla GNN and its GWM-installed counterpart, to compare the loss function values. We used
four datasets. For each dataset, we fixed L and D for all GNN models to compare the loss reduction
performances.

In Fig. 1, L = 3 and D = 50 for all GNNs and datasets. In preliminary experiments, we manually
changed Ls (∈ {2, 3, 4}) and Ds (∈ 32, 50, 100, 150) in some extent, but found the overall tendency
of the scatter plots does not dramatically change. This is partially understood from the Figure 1 in
the main manuscript: the loss curves of the vanilla GNNs and their GWM-augmented counterparts
evolve in roughly parallel. This implies the ratios of loss reductions are not so much dependent on
the hyperparameter choices.

Here we show the results of other hyperparameter settings. All cases we observe the similar plot
patterns.

Fig. 5 is the scatter plot of the (r̄train, r̄loss), L = 3 and D = 32. In this case, two HIV dataset
plus one case for QM9 reported the increase of the training loss. For other 13 pairs, the GWM
successfully reduce the training losses. It is remarkable that all 16 plots have positive test loss
reduction rates: namely, the generalization performances are improved by the GWM in this choice of
the hyperparameters.

Fig. 6 is the scatter plot of the (r̄train, r̄loss), L = 4 and D = 100. In this case, only two cases of the
HIV datasets record the negative r̄train values. For other 14 pairs, the GWM successfully reduce the
training losses and 13 out of these 14 pairs have positive r̄tests.

All models were trained for 30 epochs.

14

Under review as a conference paper at ICLR 2020

Reduction Ratio of Train Loss
Re

d
uc

tio
n

Ra
tio

 o
f T

es
t L

os
s

0.2 0.4 0.80.6-0.2 0.0 1.0

0.2

0.4

0.6

0.0

0.8

1.0

NFP
GGNN
RSGCN
GIN

Tox21
HIV

QM9
Lipo

DatasetGNN

Figure 5: Train (horizontal) and test (vertical) loss reduction ratios on various pairs of GNN models
and datasets. L = 3, D = 32. Each plot presents the rational train/test loss reductions induced by the
GWM attachment for a specific pair of (dataset(symbol), GNN(color)).

Reduction Ratio of Train Loss

Re
d

uc
tio

n
Ra

tio
 o

f T
es

t L
os

s

0.2 0.4 0.80.6-0.2 0.0 1.0

0.2

0.4

0.6

0.0

0.8

1.0

NFP
GGNN
RSGCN
GIN

Tox21
HIV

QM9
Lipo

DatasetGNN

Figure 6: Train (horizontal) and test (vertical) loss reduction ratios on various pairs of GNN models
and datasets. L = 4, D = 100. Each plot presents the rational train/test loss reductions induced by
the GWM attachment for a specific pair of (dataset(symbol), GNN(color)).

D.3 SECTION 4.4: THE FULL COMPARISON

For the experiments in the Section 4.3 (Table 2 and 3 in the main manuscript), we employed the
Bayesian optimization to tune L and D for each combinations of a dataset and a GNN model. The
Bayesian optimization (BO) trials were conducted by the Optuna library, with 200 sampling (searches)
for each combination. Ranges of the BO search is: 2 ≤ L ≤ 8, 4 ≤ D ≤ 512.

Chosen Ls and Ds are presented in the Table 4.

For the QM9 dataset, we trained the models for 50 epochs. For the HIV and the Tox21 dataset, we
trained the models for 100 epochs. For the LIPO dataset, we trained the models for 200 epochs.

Tables 5 and 6 are the full lists of the main comparison experiments in the main manuscript, with the
standard deviation values in parentheses.

15

Under review as a conference paper at ICLR 2020

Dataset GNN model NFP WeaveNet RGAT GGNN RSGCN GIN

LIPO vanilla GNN (4, 232) (3, 50) (4, 9) (4, 32) (5, 19) (6, 19)
+Simple Supernode (2, 71) (3, 9) (3, 8) (4, 18) (2, 27) (3, 14)
+NoGate GWM (2, 65) (2, 14) (3, 12) (5, 30) (2, 15) (6, 9)
+Proposed GWM (5, 231) (4, 15) (5, 19) (6, 127) (4, 22) (2, 26)

QM9 vanilla GNN (5, 86) (3, 22) (4, 40) (5, 71) (4, 100) (4, 250)
+Simple Supernode (5, 44) (3, 111) (6, 34) (5, 60) (5, 69) (3, 22)
+NoGate GWM (4, 48) (5, 250) (4, 31) (6, 50) (4, 48) (4, 34)
+Proposed GWM (5, 72) (3, 104) (4, 156) (8, 50) (4, 36) (4, 23)

HIV vanilla GNN (6, 213) (2, 65) (3, 28) (6, 29) (4, 57) (2, 72)
+Simple supernode (3, 30) (3, 39) (2, 9) (4, 54) (4, 255) (5, 93)
+NoGate GWM (4, 46) (3, 20) (2, 12) (2, 51) (3, 27) (3, 60)
+Proposed GWM (3, 200) (3, 92) (3, 23) (8, 135) (3, 106) (8, 38)

Tox21 vanilla GNN (3, 204) (5, 90) (3, 19) (6, 36) (5, 70) (5, 103)
+Simple supernode (5, 129) (6, 31) (2, 36) (6, 136) (5, 119) (5, 157)
+NoGate GWM (2, 123) (2, 157) (3, 43) (5, 79) (4, 31) (6, 117)
+Proposed GWM (3, 106) (4, 19) (3, 37) (7, 48) (8, 32) (6, 102)

Table 4: Hyperparameters L and D for the experiment in Section 4.4. The format of the table cells is:
(L,D).

16

Under review as a conference paper at ICLR 2020

D
at

as
et

G
N

N
m

od
el

N
FP

W
ea

ve
N

et
R

G
A

T
G

G
N

N
R

SG
C

N
G

IN

L
IP

O
va

ni
lla

G
N

N
.6

77
(.0

40
)

1.
19

(.3
27

)
.7

53
(.0

45
)

.5
82

(.0
22

)
.8

01
(.0

14
)

.8
44

(.0
26

)
+

Si
m

pl
e

Su
pe

rn
od

e
.6

93
(.0

27
)

1.
01

(.2
08

)
.7

40
(.0

32
)

.6
04

(.0
27

)
.7

75
(.0

11
)

.8
19

(.0
23

)
+

N
oG

at
e

G
W

M
.6

75
(.0

17
)

.7
21

(.2
25

)
.6

88
(.0

13
)

.5
76

(.0
22

)
.7

87
(.0

48
)

.8
47

(.0
48

)
+

Pr
op

os
ed

G
W

M
.6

72
*

(.0
40

)
.6

88
*

(.1
05

)
.6

59
*

(.0
16

)
.5

69
*

(.0
22

)
.7

52
*

(.0
14

)
.7

84
*

(.0
12

)

Q
M

9
va

ni
lla

G
N

N
6.

16
(.2

31
)

6.
38

(.2
89

)
8.

96
(.1

92
)

4.
92

(.1
45

)
15

.2
(1

.0
5)

14
.0

(2
.4

7)
+

Si
m

pl
e

Su
pe

rn
od

e
7.

68
(.3

16
)

5.
51

(.2
48

)
9.

00
(.3

99
)

5.
41

(.1
10

)
14

.6
(1

.7
1)

11
.5

*
(.7

55
)

+
N

oG
at

e
G

W
M

6.
84

(.3
48

)
5.

40
*

(.2
38

)
9.

21
(.3

68
)

5.
52

(.3
44

)
12

.5
(.5

64
)

12
.9

(1
.3

2)
+

Pr
op

os
ed

G
W

M
6.

64
*

(.3
60

)
5.

90
(.2

48
)

8.
39

*
(.2

19
)

4.
88

*
(.2

31
)

11
.9

*
(1

.4
8)

11
.8

(1
.2

1)

Ta
bl

e
5:

M
A

Es
on

th
e

LI
PO

da
ta

se
ta

nd
Q

M
9

da
ta

se
t.

Th
e

nu
m

be
ro

fl
ay

er
s

an
d

th
e

di
m

en
si

on
of

th
e

fe
at

ur
e

ve
ct

or
s

ar
e

de
fin

ed
vi

a
B

ay
es

ia
n

O
pt

im
iz

at
io

n
fo

re
ac

h
m

et
ho

d
an

d
ea

ch
da

ta
se

t.
A

ve
ra

ge
s

(s
ta

nd
ar

d
de

vi
at

io
ns

)o
ve

r1
0

ra
nd

om
ru

ns
.S

m
al

le
rv

al
ue

s
ar

e
be

tte
r.

D
at

as
et

G
N

N
m

od
el

N
FP

W
ea

ve
N

et
R

G
A

T
G

G
N

N
R

SG
C

N
G

IN

H
IV

va
ni

lla
G

N
N

.7
24

(.0
17

)
.6

70
(.0

20
)

.7
07

(.0
39

)
.7

46
(.0

18
)

.7
46

(.0
11

)
.7

29
(.0

20
)

+
Si

m
pl

e
su

pe
rn

od
e

.7
07

(.0
23

)
.6

76
(.0

31
)

.7
04

(.0
19

)
.7

64
*

(.0
14

)
.7

28
(.0

09
)

.7
29

(.0
25

)
+

N
oG

at
e

G
W

M
.7

14
(.0

18
)

.6
80

(.0
43

)
.7

26
(.0

24
)

.7
44

(.0
06

)
.7

42
(.0

19
)

.7
39

(.0
12

)
+

Pr
op

os
ed

G
W

M
.7

31
*

(.0
20

)
.6

81
*

(.0
10

)
.7

48
*

(.0
19

)
.7

62
(.0

16
)

.7
58

*
(.0

22
)

.7
55

*
(.0

09
)

To
x2

1
va

ni
lla

G
N

N
.7

63
(.0

04
)

.7
10

(.0
29

)
.7

44
(.0

08
)

.7
64

(.0
09

)
.7

60
(.0

05
)

.7
40

(.0
07

)
+

Si
m

pl
e

su
pe

rn
od

e
.7

70
(.0

08
)

.7
50

(.0
20

)
.7

87
*

(.0
05

)
.7

90
(.0

06
)

.7
70

*
(.0

06
)

.7
63

(.0
06

)
+

N
oG

at
e

G
W

M
.7

75
*

(.0
07

)
.7

64
(.0

11
)

.7
86

(.0
09

)
.7

92
*

(.0
08

)
.7

59
(.0

07
)

.7
66

(.0
08

)
+

Pr
op

os
ed

G
W

M
.7

69
(.0

07
)

.7
67

*
(.0

21
)

.7
87

*
(.0

09
)

.7
85

(.0
05

)
.7

69
(.0

06
)

.7
68

*
(.0

07
)

Ta
bl

e
6:

R
O

C
-A

U
C

s
on

th
e

H
IV

da
ta

se
ta

nd
To

x2
1

da
ta

se
t.

T
he

nu
m

be
ro

fl
ay

er
s

an
d

th
e

di
m

en
si

on
of

fe
at

ur
e

ve
ct

or
s

ar
e

de
fin

ed
vi

a
B

ay
es

ia
n

O
pt

im
iz

at
io

n
fo

r
ea

ch
m

et
ho

d
an

d
ea

ch
da

ta
se

t.
A

ve
ra

ge
s

(s
ta

nd
ar

d
de

vi
at

io
ns

)o
ve

r1
0

ra
nd

om
ru

ns
.L

ar
ge

rv
al

ue
s

ar
e

be
tte

r.

17

Under review as a conference paper at ICLR 2020

Finally we present the detailed reports on the sub-tasks of QM9 and Tox21. These datasets consists
of 12 sub-tasks and so far we reported the sub-task-averaged scores. Below we report the scores
changes brought by GWM-attached GNNs in Table 7 (QM9) and Table 8 (Tox21). For QM9, we
report the relative reductions of MAE in percentage(%). For Tox21, we report the improvements of
binary classification accuracy in percentage (%). Numbers of sub-tasks improved by GWM (positive
value slots) are in good accordance with the score gains in Table 2 and Table 3.

GNN/Tasks mu alpha HOMO LUMO gap r2 zpve cv u0 u298 h298 g298
GGNN -0.6 -0.9 1.0 1.6 4.6 2.9 19 0.3 -3.9 -4.8 -8.3 -4.2

WeaveNet -2.2 -0.3 27 -35 52 6.7 107 -11 84 91 86 87

Table 7: Relative reduction of MAE (%) GWM, 12 tasks in QM9. Larger values are better.

GNN/Tasks Task1 Task2 Task3 Task4 Task5 Task6
RGAT 0.9 0.2 0.7 0.5 1.2 0.2
GGNN 0.0 3.7 2.1 1.1 1.5 16

GNN/Tasks Task7 Task8 Task9 Task10 Task11 Task12
RGAT -0.5 1.2 -0.0 0.2 1.9 0.4
GGNN 5.9 2.8 0.7 1.0 2.4 1.5

Table 8: Improvements of binary classification accuracy (%) by GWM, 12 tasks in Tox21. Larger
values are better.

18

	Introduction
	Related Work
	Virtual supernode
	Message Passing and Attention/Gate Mechanism in GNN

	Graph Warp Module
	Premise: vanilla GNN and its I/O
	Supernode
	Transmitter Unit
	Warp Gate
	Computational Complexity

	Experiments
	Datasets
	Choices of the Main GNN Models and Implementations
	Training and Test Loss Reduction
	Effect of the GWM on the representation power of model space

	Conclusion
	Our Formulation of RGAT
	Our Implementation of GIN
	Experiments Details: General Issues
	Graph Data Representation
	Explicit Features for Supernode
	Data Splits
	Readout Layer
	Optimizer
	Ablation Models Formulation
	Hyperparameter
	Computational Environment

	Experiments Details: for each experiment
	Training Loss Behaviors over Number of Layers and Embedding Dimensions
	Section 4.3: Train and Test Loss Reduction
	Section 4.4: the full comparison

