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ABSTRACT

With a view to bridging the gap between deep learning and symbolic AI, we present
a novel end-to-end neural network architecture that learns to form propositional
representations with an explicitly relational structure from raw pixel data. In order
to evaluate and analyse the architecture, we introduce a family of simple visual
relational reasoning tasks of varying complexity. We show that the proposed
architecture, when pre-trained on a curriculum of such tasks, learns to generate
reusable representations that better facilitate subsequent learning on previously
unseen tasks when compared to a number of baseline architectures. The workings
of a successfully trained model are visualised to shed some light on how the
architecture functions.

1 INTRODUCTION

When humans face novel problems, they are able to draw effectively on past experience with other
problems that are superficially very different, but that have similarities on a more abstract, structural
level. This ability is essential for lifelong, continual learning, and confers on humans a degree of
data efficiency, powers of transfer learning, and a capacity for out-of-distribution generalisation that
contemporary machine learning has yet to match (Garnelo et al., 2016; Lake et al., 2017; Marcus, 2018;
Smith, 2019). A case may be made that all these issues are different facets of the same underlying
challenge, namely the challenge of devising systems that learn to construct general-purpose, reusable
representations (McCarthy, 1987; Bengio et al., 2013). A representation is general-purpose and
reusable to the extent that it contains information whose domain of application exceeds the context
within which it was acquired.

Representations that are general-purpose and reusable improve data efficiency because a system that
already knows how to build representations relevant to a novel task (despite its novelty) doesn’t have
to learn that task from scratch. Ideally, a system that efficiently exploits general-purpose, reusable
representations in this way should be the very same system that learned how to construct them in the
first place. Moreover, in learning to solve a novel task using such representations, we should expect
the system to learn further representations that are themselves general-purpose and reusable. So, with
the exception of the very first representations the system learns, all learning in such a system would
in effect be transfer learning, and the process of learning would be inherently cumulative, continual,
and lifelong.

One approach to building such a system is to take inspiration from the paradigm of classical, symbolic
AI (Garnelo & Shanahan, 2019). Building on the mathematical foundations of first-order predicate
calculus, a typical symbolic AI system works by applying logic-like rules of inference to language-like
propositional representations whose elements are objects and relations. Thanks to their declarative
character and compositional structure, these representations lend themselves naturally to generality
and reusability. However, in contrast to contemporary deep learning systems, the representations
deployed in classical AI are not usually learned from data but hand-crafted (Harnad, 1990). The aim
of the present work is to get the best of both worlds with an end-to-end differentiable neural network
architecture that builds in propositional, relational priors in much the same way that a convolutional
network builds in spatial and locality priors.

The architecture introduced here builds on recent work with non-local network architectures that
learn to discover and exploit relational information (Wang et al., 2018), notably relation nets (Santoro
et al., 2017; Palm et al., 2018) and architectures based on multi-head attention (Vaswani et al., 2017;
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Figure 1: The PrediNet architecture. WK and WS are shared across heads, whereas WQ1 and WQ2

are local to each head. See main text for more details.

Santoro et al., 2018; Zambaldi et al., 2019). However, these architectures generate representations
that lack explicit structure. There is, in general, no straightforward mapping from the parts of a
representation to the usual elements of a symbolic medium such as predicate calculus: propositions,
relations, and objects. To the extent that these elements are present, they are smeared across the
embedding vector, which makes representations hard to interpret and makes it more difficult for
downstream processing to take advantage of compositionality.

Here we present an architecture, which we call a PrediNet, that learns representations whose parts
map directly onto propositions, relations, and objects. To build a sound, scientific understanding
of the proposed architecture, and to facilitate a detailed comparison with other architectures, the
present study focuses on simple tasks requiring relatively little data and computation. We develop a
family of small, simple visual datasets that can be combined into a variety of multi-task curricula and
used to assess the extent to which an architecture learns representations that are general-purpose and
reusable. We report the results of a number of experiments using these datasets that demonstrate the
potential of an explicitly relational network architecture to improve data efficiency and generalisation,
to facilitate transfer, and to learn reusable representations.

The main contribution of the present paper is a novel architecture that learns to discover objects and
relations in high-dimensional data, and to represent them in a form that is beneficial for downstream
processing. The PrediNet architecture does not itself carry out logical inference, but rather extracts
relational structure from raw data that has the potential to be exploited by subsequent processing.
Here, for the purpose of evaluation, we graft a simple multi-layer perceptron output module to the
PrediNet and train it on a simple set of spatial reasoning problems. The aim is to acquire a sufficient
scientific understanding of the architecture and its properties in this minimalist setting before applying
it to more complex problems using more sophisticated forms of downstream inference.

2 THE PREDINET ARCHITECTURE

The idea that propositions are the building blocks of knowledge dates back to the ancient Greeks,
and provides the foundation for symbolic AI, via the 19th century mathematical work of Boole and
Frege (Russell & Norvig, 2009). An elementary proposition asserts that a relationship holds between
a set of objects. Propositions can be combined using logical connectives (and, or, not, etc), and
can participate in inference processes such as deduction. The task of the PrediNet is to (learn to)
transform high-dimensional data such as images into propositional representations that are useful for
downstream processing. A PrediNet module (Fig. 1) can be thought of as a pipeline comprising three
stages: attention, binding, and evaluation. The attention stage selects pairs of objects of interest, the
binding stage instantiates the first two arguments of a set of three-place predicates (relations) with
selected object pairs, and the evaluation stage computes values for each predicate’s remaining (scalar)
argument such that the resulting proposition is true.
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More precisely, a PrediNet module comprises k heads, each of which computes j relations between
pairs of objects (Fig. 1). The input to the PrediNet is a matrix, L, comprising n rows of feature vectors,
where each feature vector has length m. In the present work, L is computed by a convolutional neural
network (CNN). The CNN outputs a feature map consisting of n feature vectors that tile the input
image. The last two elements of the feature vector are the xy co-ordinates of the associated patch in
the image. So the length m of each feature vector corresponds to the number of filters in the final
CNN layer plus 2 (for the co-ordinates), and the ith element of a feature vector (for i < m − 2)
is the output of the ith filter. For a given input L, each head h computes the same set of relations
(using shared weights WS) but selects a different pair of objects, using dot-product attention based
on key-query matching (Vaswani et al., 2017). Each head computes a separate pair of queries Qh

1 and
Qh

2 (via Wh
Q1 and Wh

Q2), but the key space K (defined by WK) is shared between heads.

Qh
1 = flatten(L)Wh

Q1 Qh
2 = flatten(L)Wh

Q2 K = LWK

Applying the resulting pair of attention masks directly to L yields a pair of objects Eh
1 and Eh

2 , each
represented by a weighted sum of feature vectors.

Eh
1 = softmax(Qh

1K
>)L Eh

2 = softmax(Qh
2K
>)L

All j relations betweenEh
1 andEh

2 are then evaluated. There are many ways to compute a relationship
between a pair of objects represented as feature vectors. We chose to compute the values of relations
by taking vector differences, which has been shown to be effective in the context of relationally
structured knowledge bases (Bordes et al., 2011; Socher et al., 2013). In the current architecture, Eh

1
and Eh

2 are subject to a linear mapping (via WS) into j 1D spaces, one per relation, and the resulting
vector is passed through an element-wise comparator, yielding a vector of differences Dh.

Dh = Eh
1WS − Eh

2WS

The last two elements of Eh
1 and Eh

2 (the positions Ph
1 and Ph

2 , respectively) are concatenated to
the vector Dh of differences to give the head’s output Rh = (Dh, Ph

1 , P
h
2 ). Finally, the outputs

of all k heads are concatenated, yielding the output of the PrediNet module, a vector R∗ of length
k(j + 4). In predicate calculus terms, the final output of a PrediNet module with k heads and j
relations represents the conjunction of elementary propositions

Ψ ≡
k∧

h=1

j∧
i=1

ψi(d
h
i , e

h
1 , e

h
2 ) (1)

where ψi(d
h
i , e

h
1 , e

h
2 ) asserts that dhi is the distance between objects eh1 and eh2 in the 1D space defined

by column i of the weight matrix WS , and the denotations of eh1 and eh2 are captured by the vectors
Qh

1 and Qh
2 respectively, given the key-space defined by K.

Equation 1 supplies a semantics for the PrediNet’s final output vectorR∗ that maps each of its elements
onto a well-defined logical formula, something that cannot be claimed for other architectures, such
as the relation net or multi-head attention net. In the experiments reported here, only R∗ is used
for downstream processing, and this vector by itself doesn’t have the logical structure described
by Equation 1. However, the PrediNet module can easily be extended to deliver an additional
output in explicitly propositional form, with a predicate-argument structure corresponding to the
RHS of Equation 1. In the present paper, the pared-down vector form facilitates our experimental
investigation, but in its explicitly propositional form, the PrediNet’s output could be piped directly to
(say) a Prolog interpreter (Fig.7), to an inductive logic programming system, to a statistical relational
learning system, or indeed to another differentiable neural module.

3 DATASETS AND TASKS

It would be premature to apply the PrediNet architecture to rich, complex data before we have a
basic understanding of its properties and its behaviour. To facilitate in-depth scientific study, we need
small, simple datasets that allow the operation of the architecture to be examined in detail and the
fundamental premises of its design to be assessed. Our experimental goals in the present paper are 1)
to test the hypothesis that the PrediNet architecture learns representations that are general-purpose
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Figure 2: Relations Game object sets and tasks. (a) Example objects from the training set and held-out
test sets. (b) There are five possible row / column patterns. In a multi-task setting, recognising each
row pattern is a separate task. (c) Three examples tasks for the single-task setting. (d) An example
target task (left) and curriculum (right) for the multi-task setting. The curriculum task ids (right) for
each of the three examples (2, 4, and 3) correspond to the respective patterns in (b), and the task in
each case is to confirm whether or not the column of objects in the image conform to the designated
pattern. The aim of the target task (left) is to test whether the two rows of objects have the same
pattern according to (b).

and reusable, and 2) insofar as this is true, to investigate why. To do this, we devised a configurable
family of simple classification tasks that we collectively call the Relations Game.

A Relations Game task involves the presentation of an image containing a number of objects laid
out on a 3 × 3 grid, and the aim (in most tasks) is to label the image as True or False according to
whether a given relationship holds among the objects in the image. While the elementary propositions
learned by the PrediNet only assert simple relationships between pairs of entities, Relations Game
tasks generally involve learning compound relations involving multiple relationships among many
objects. The objects in question are drawn from either a training set or one of two held-out sets
(Fig. 2a). None of the shapes or colours in the training set occurs in either of the held-out sets. The
training object set contains 8 uniformly coloured pentominoes and their rotations and reflections (37
shapes in all) with 25 possible colours. The first held-out object set contains 8 uniformly coloured
hexominoes and their rotations and reflections (46 shapes in all) with 25 possible colours, and the
second held-out object set contains only squares, but with a striped pattern of held-out colours.

Each Relations Game task is tied to a given relation. Even with such a simple setup, the number of
definable relations among all possible combinations of objects is astronomical (2(n+1)9 for n distinct
objects), although only a few of them will make intuitive sense. For the present study, we defined a
handful of intuitively meaningful relations and generated corresponding labelled datasets comprising
50% positive and 50% negative examples. A selection is shown in Fig. 2c. The ‘between’ relation
holds iff the image contains three objects in a line in which the outer two objects have the same shape,
orientation, and colour. The ‘occurs’ relation holds iff there is an object in the bottom row of three
objects that has the same shape, orientation, and colour as the (single) object in the top row. The
‘same’ relation holds iff the image contains two objects of the same shape, orientation, and colour. In
each case, we balanced the set of negative examples to ensure that “tricky” images involving pairs of
objects with the same colour but different shape or the same shape but different colour occur just as
frequently as those with objects that differ in both colour and shape.
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Figure 3: The four-stage experimental protocol for multi-task curriculum training. The same input
module (CNN) and output module (MLP) are used for the PrediNet and all baseline architectures;
only the central module varies. Task identifiers are appended to the central module’s output vector.

4 EXPERIMENTAL SETUP

At the top level, each architecture we consider in this paper comprises 1) a single convolutional
input layer (CNN), 2) a central module (which might be a PrediNet or a baseline), and 3) a small
output multi-layer perceptron (MLP) (Fig. 3). A pair of xy co-ordinates is appended to each CNN
feature vector, denoting its position in convolved image space and, where applicable, a one-hot task
identifier is appended to the output of the central module. For most tasks, the final output of the MLP
is a one-hot label denoting True or False. The PrediNet was evaluated by comparing it to several
baselines: two MLP baselines (MLP1 and MLP2), a relation net baseline (Santoro et al., 2017) (RN),
and a multi-head attention baseline (Vaswani et al., 2017; Zambaldi et al., 2019) (MHA).

To facilitate a fair comparison, the top-level schematic is identical for the PrediNet and for all
baselines (Fig. 3). All use the same input CNN architecture and the same output MLP architecture,
and differ only in the central module. In MLP1, the central module is a single fully-connected layer
with ReLu activations, while in MLP2 it has two layers. In RN, the central module computes the set
of all possible pairs of feature vectors, each of which is passed through a 2-layer MLP; the resulting
vectors are then aggregated by taking their element-wise means to yield the output vector. Finally,
MHA comprises multiple heads, each of which generates mappings from the input feature vectors
to sets of keys K, queries Q, and values V , and then computes softmax(QK>)V . Each head’s
output is a weighted sum of the resulting vectors, and the output of the MHA central module is the
concatenation of all its heads’ outputs. The PrediNet used here comprises k = 32 heads and j = 16
relations (Fig. 1). All reported experiments were carried out using stochastic gradient descent, and all
results shown are averages over 10 runs. Further experimental details are given in the Supplementary
Material, which also shows results for experiments with different numbers of heads and relations,
and with the Adam optimiser, all of which present qualitatively similar results.

To assess the generality and reusability of the representations produced by the PrediNet, we adopted
a four-stage experimental protocol wherein 1) the network is pre-trained on a curriculum of one or
more tasks, 2) the weights in the input CNN and PrediNet are frozen while the weights in the output
MLP are re-initialised with random values, and 3) the network is retrained on a new target task or
set of tasks (Fig. 3). In step 3, only the weights in the output MLP change, so the target task can
only be learned to the extent that the PrediNet delivers re-usable representations to it, representations
the PrediNet has learned to produce without exposure to the target task. To assess this, we can
compare the learning curves for the target task with and without pre-training. We expect pre-training
to improve data efficiency, so we should see accuracy increasing more quickly with pre-training than
without it. For evidence of transfer, and to confirm the hypothesis of reusability, we are also interested
in the final performance on the target task after pre-training, given that the weights of the pre-trained
input CNN and PrediNet are frozen. This measure indicates how well a network has learned to form
useful representations. The more different the target task is from the pre-training curriculum, the
more impressed we should be that the network is able to learn the target task.
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Table 1: Data efficiency in a single-task Relations Game setting.

Relation Object set MLP1 MLP2 RN MHA PrediNet

same
Hexominoes 96.1±0.007 96.4±0.006 73.2±0.05 94.7±0.1 100±0.0

Stripes 93.3±0.01 94.0±0.01 72.9±0.05 93.7±0.1 100±0.0

between
Hexominoes 98.7±0.005 98.8±0.004 70.8±0.01 89.2±0.1 99.2±0.004

Stripes 96.9±0.008 97.3±0.004 65.2±0.05 85.5±0.1 98.7±0.007

occurs
Hexominoes 88.0±0.01 94.8±0.03 61.6±0.01 88.4±0.2 98.5±0.009

Stripes 73.2±0.03 87.3±0.07 62.6±0.02 80.8±0.1 96.9±0.01

xoccurs
Hexominoes 81.5±0.02 84.4±0.04 55.0±0.009 54.7±0.008 95.4±0.01

Stripes 78.2±0.03 80.8±0.05 54.0±0.01 53.6±0.007 95.5±0.01

colour/shape Hexominoes 53.4±0.07 55.8±0.05 45.1±0.05 88.6±0.03 94.3±0.01

5 RESULTS

As a prelude to investigating the issues of generality and reusabilty, we studied the data efficiency of
the PrediNet architecture in a single-task Relations Game setting. Results obtained on a selection of
five tasks – ‘same’, ‘between’, ‘occurs’, ‘xoccurs’, and ‘colour / shape’ – are summarised in Table 1.
The first three tasks are as described in Fig. 2. The ‘xoccurs’ relation is similar to occurs. It holds
iff the object in the top row occurs in the bottom row and the other two objects in the bottom row
are different. The ‘colour / shape’ task involves four labels, rather than the usual two: same-shape /
same-colour; different-colour / same-shape; same-colour / different shape; different-colour / different
shape. In the dataset for this task, each image contains two objects randomly placed, and one of the
four labels must be assigned appropriately. Table 1 shows the accuracy obtained by each of the five
architectures after 100,000 batches when tested on the two held-out object sets. The PrediNet is the
only architecture that achieves over 90% accuracy on all tasks with both held-out object sets after
100,000 batches. On the ‘xoccurs’ task, the PrediNet out-performs the baselines by more than 10%,
and on the ‘colour / shape’ task (where chance is 25%), it out-performs all the baselines except MHA
by 25% or more.

Next, using the protocol outlined in Fig. 3, we compared the PrediNet’s ability to learn re-usable
representations with each of the baselines. We looked at a number of combinations of target tasks
and pre-training curriculum tasks. Fig. 4 depicts our findings for one these combinations in detail,
specifically three target tasks corresponding to three of the five possible column patterns (ABA, AAB,
and ABB (Fig. 2d)), and a pre-training curriculum comprising the single ‘between’ task. The plots
present learning curves for each of the five architectures at each of the four stages of the experimental
protocol. In all cases, accuracy is shown for the ‘stripes’ held-out object set (not the training set).
Of particular interest are the (green) curves corresponding to Stage 3 of the experimental protocol.
These show how well each architecture learns the target task(s) after the central module has been
pre-trained on the curriculum task(s) and its weights are frozen. The PrediNet learns faster than
any of the baselines, and is the only one to achieve an accuracy of 90%. The rapid reusability of
the representations learned by both the MHA baseline and the PrediNet is noteworthy because the
‘between’ relation by itself seems an unpromising curriculum for subsequently learning the AAB and
ABB column patterns. As the (red) curve for Stage 4 of the protocol shows, the reusability of the
PrediNet’s representations cannot be accounted for by the pre-training of the input CNN alone.

Fig. 5 shows a larger range of target task / curriculum task combinations, concentrating exclusively
on the Stage 3 learning curves. Here a more complete picture emerges. In both Fig. 5a and Fig. 5d
the target task is ‘match rows’ (Fig. 2d), but they differ in their pre-training curricula. The curriculum
for Fig. 5d is three of the five row patterns (ABA, AAB, and ABB). This is the only case where the
PrediNet does not learn representations that are more useful for the target task than those of all the
baselines, outperforming only two of the four. However, when the curriculum is the three analogous
column patterns rather than row patterns, the performance of all four baselines collapses to chance,
while the PrediNet does well, attaining similar performance as for the row-based curriculum (Fig. 5a).
This suggests the PrediNet is able to learn representations that are orientation invariant, which aids
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Figure 4: Multi-task curriculum training. The target tasks are three column patterns (AAB, ABA, and
ABB) and the sole curriculum task is the ‘between’ relation.

a b c

d e
Target Pre-training

a match rows 3 colum patterns

b 5 column patterns between

c 3 column patterns between

d match rows 3 row patterns

e 5 row patterns 5 column patterns

Figure 5: Reusability of representations learned with a variety of target and pre-training tasks.

transfer. This hypothesis is supported by Fig. 5e, where the target tasks are all five row patterns,
while the curriculum is all five column patterns. None of the baselines is able to learn reusable
representations in this context; all remain at chance, whereas the PrediNet achieves 85% accuracy.

To better understand the operation of the PrediNet, we carried out a number of visualisations. One
way to find out what the PrediNet’s heads learn to attend is to submit images to a trained network and,
for each head h, apply the two attention masks softmax(Qh

1K
>) and softmax(Qh

2K
>) to each of

the n feature vectors in the convolved image L. The resulting matrix can then be plotted as a heat map
to show how attention is distrubuted over the image. We did this for a number of networks trained
in the single-task setting. Fig. 6a shows two examples, and the Supplementary Material contains a
more extensive selection. As we might expect, most of the attention focuses on the centres of single
objects, and many of the heads pick out pairs of distinct objects in various combinations. But some
heads attend to halves or corners of objects. Although most attention is focal, whether directed at
object centres or object parts, some heads exhibit diffuse attention, which is possible thanks to the
soft key-query matching mechanism. So the PrediNet can (but isn’t forced to) treat the background
as a single entity, or to treat an identical pair of objects as a single entity.

To gain some insight into how the PrediNet encodes relations, we carried out principal component
analysis (PCA) on each head of the central module’s output vectors for a number of trained networks,
again in the single-task setting (Fig. 6b). We chose the four-label ‘colour / shape’ task to train on, and
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Figure 6: (a) Attention heat maps for the first four heads of a trained PrediNet. Left: trained on the
‘same’ task. Right: trained on the ‘occurs’ task. (b) Principal component analysis. Left: PCA on the
output of a selected head for a PrediNet trained on the ‘colour / shape’ task for pentominoes images
(training set). Centre: The same PrediNet applied to hexominoes (held-out test set). Right: PCA
applied to a representative head of the MHA baseline with pentominoes (training set). (c) Ablation
study. Accuracy for PrediNet and MHA on the ‘colour / shape’ task when random subsets of the
heads are used at test time. PrediNet* only samples from heads that attend to the two objects.

holds(r0,V,X,Y) :- r0(V,X,Y).
holds(r1,V,X,Y) :- r1(V,X,Y).
holds(r2,V,X,Y) :- r2(V,X,Y).
holds(r3,V,X,Y) :- r3(V,X,Y).
holds(r4,V,X,Y) :- r4(V,X,Y).
holds(r5,V,X,Y) :- r5(V,X,Y).
holds(r6,V,X,Y) :- r6(V,X,Y).
holds(r7,V,X,Y) :- r7(V,X,Y).

small(V) :- V > -0.2, V < 0.2.

Hand-written Prolog code

? holds(R,V,ob_2,X), small(V).

Prolog query

PrediNet output in Prolog form Prolog answers

Input image

PrediNet attention masks and object ids
r0(-0.11, ob_0, ob_1).
r1(-0.34, ob_0, ob_1).
r2(-0.50, ob_0, ob_1).
r3(-0.54, ob_0, ob_1).
r4(0.80, ob_0, ob_1).

...

r3(0.06, ob_2, ob_0).
r4(-0.53, ob_2, ob_0).
r5(-0.45, ob_2, ob_0).
r6(1.00, ob_2, ob_0).
r7(-0.59, ob_2, ob_0).

R = r0,
V = -0.15,
X = ob_4
R = r0,
V = -0.07,
X = ob_0
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V = 0.06,
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V = -0.1,
X = ob_4
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(c)
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Figure 7: PrediNet output in propositional form. (a) A small PrediNet (8 heads, 8 relations) trained
on the ‘between’ task is given an image. (b) Mean shift clustering is applied to the set of all attention
masks computed by the heads. Each of the resulting 6 clusters is assigned a symbolic identifier. (c)
Each relation is also given a symbolic identifier, and all 64 propositions computed by the PrediNet are
enumerated in Prolog syntax, in accordance with Equation 1. (A subset is shown.) (d) The results can
be combined with further hand-written Prolog clauses. (Upper-case letters denote variables, while
constants start with lower-case letters.) (e) Prolog queries can then be submitted. Here we are asking
which relations r hold with a small value v between ob_2 and any other object x. (f) The query yields
four answers.
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mapped 10,000 example images onto the first two principal components, colouring each with their
ground-truth label. We found that, for some heads, differences in colour and shape appear to align
along separate axes (Fig. 6b). This contrasts with the MHA baseline, whose heads don’t seem to
individually cluster the labels in a meaningful way. For the other baselines, which lack the multi-head
organisation of the PrediNet and the MHA network, the only option is to carry out PCA on the whole
output vector of the central module. Doing this, however, does not produce interpretable results for
any of the architectures (Fig.S8). We also identified the heads in the PrediNet that attended to both
objects in the image and found that they overlapped almost entirely with those that meaningfully
clustered the labels (Fig.S10). Finally, still using the ‘shape / colour task’, we carried out an ablation
study, which showed that the PrediNet is significantly more robust than the MHA network to pruning
a random subset of heads at test time. Moreover, if pruned to leave only those heads that attended
to the two objects, the performance of the full network could be captured with just a handful of
heads (Fig. 6c). Taken together, these results are suggestive of something we might term relational
disentangling in the PrediNet.

Finally, to flesh out the claim that the PrediNet generates explicitly relational representations according
to the semantics of Equation 1, we extended the PrediNet module to generate an additional output in
the form of a Prolog program (Fig. 7). This involves assigning symbolic identifiers 1) to each of the
PrediNet’s j relations, and 2) to every object picked out by its k heads via the attention masks they
compute. Then the corresponding j × k propositions can be enumerated in Prolog syntax. Assigning
symbolic identifiers to the relations is trivial. But because attention masks can differ slightly even
when they ostensibly pick out the same region of the input image, it’s necessary to cluster them
before assigning symbolic identifiers to the corresponding objects. We used mean shift clustering
for this. Fig. 7 presents a sample of the PrediNet’s output in Prolog form, along with an example
of deductive inference carried out with this program. The example shown is not intended to be
especially meaningful; without further analysis, we lack any intuitive understanding of the relations
the PrediNet has discovered. But it demonstrates that the representations the PrediNet produces can
be understood in predicate calculus terms, and that symbolic deductive inference is one way (though
not the only way) in which they might be deployed downstream.

6 RELATED WORK

The need for good representations has long been recognised in AI (McCarthy, 1987; Russell & Norvig,
2009), and is fundamental to deep learning (Bengio et al., 2013). The importance of reusability and
abstraction, especially in the context of transfer, is emphasised by Bengio, et al. (Bengio et al., 2013),
who argue for feature sets that are “invariant to the irrelevant features and disentangle the relevant
features”. Our work here shares this motivation. Other work has looked at learning representations
that are disentangled at the feature level (Higgins et al., 2017a; 2018). The novelty of the PrediNet is
to incorporate architectural priors that favour representations that are disentangled at the relational
and propositional levels. Previous work with relation nets and multi-head attention nets has shown
how non-local information can be extracted from raw pixel data and used to solve tasks that require
relational reasoning. (Santoro et al., 2017; Palm et al., 2018; Santoro et al., 2018; Zambaldi et al.,
2019) But unlike the PrediNet, these networks don’t produce representations with an explicitly
relational, propositional structure. By addressing the problem of acquiring structured representations,
the PrediNet complements another thread of related work, which is concerned with learning how to
carry out inference with structured representations, but which assumes the job of acquiring those
representations is done elsewhere (Getoor & Taskar, 2007; Battaglia et al., 2016; Rocktäschel &
Riedel, 2017; Evans & Grefenstette, 2018).

In part, the present work is motivated by the conviction that curricula will be essential to lifelong,
continual learning in a future generation of RL agents if they are to exhibit more general intelligence,
just as they are for human children. Curricular pre-training has a decade-long pedigree in deep
learning (Bengio et al., 2009). Closely related to curriculum learning is the topic of transfer (Bengio,
2012), a hallmark of general intelligence and the subject of much recent attention (Higgins et al.,
2017b; Kansky et al., 2017; Schwarz et al., 2018). The PrediNet exemplifies a different (though not
incompatible) viewpoint on curriculum learning and transfer from that usually found in the neural
network literature. Rather than (or as well as) a means to guide the network, step by step, into a
favourable portion of weight space, curriculum learning is here viewed in terms of the incremental
accumulation of propositional knowledge. This necessitates the development of a different style of
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architecture, one that supports the acquisition of propositional, relational representations, which also
naturally subserve transfer.

Asai, whose paper was published while the present work was in progress, describes an architecture
with some similarities to the PrediNet, but also some notable differences (Asai, 2019). For example,
Asai’s architecture assumes an input representation in symbolic form where the objects have already
been segmented. By contrast, in the present architecture, the input CNN and the PrediNet’s dot-
product attention mechanism together learn what constitutes an object.

7 CONCLUSION AND FURTHER WORK

We have presented a neural network architecture capable, in principle, of supporting predicate logic’s
powers of abstraction without compromising the ideal of end-to-end learning, where the network
itself discovers objects and relations in the raw data and thus avoids the symbol grounding problem
entailed by symbolic AI’s practice of hand-crafting representations (Harnad, 1990). Our empirical
results support the view that a network architecturally constrained to learn explicitly propositional,
relational representations will have beneficial data efficiency, generalisation, and transfer properties.
But the findings reported here are just the first foray into unexplored architectural territory, and much
work needs to be done to gauge the architecture’s full potential.

The focus of the present paper is the acquisition of propositional representations rather than their
use. But thanks to the structural priors of its architecture, representations generated by a PrediNet
module have a natural semantics compatible with predicate calculus (Equation 1), which makes
them an ideal medium for logic-like downstream processes such as rule-based deduction, causal
or counterfactual reasoning, and inference to the best explanation (abduction). One approach here
would be to stack PrediNet modules and / or make them recurrent, enabling them to carry out the
sort of iterated, sequential computations required for such processes (Palm et al., 2018; Dehghani
et al., 2019). Another worthwhile direction for further research would be to develop reinforcement
learning (RL) agents using the PrediNet architecture. One form of inference of particular interest in
this context is model-based prediction, which can be used to endow an RL agent with look-ahead
and planning abilities (Racanière et al., 2017; Zambaldi et al., 2019). Our expectation is that RL
agents in which explicitly propositional, relational representations underpin these capacities will
manifest more of the beneficial data efficiency, generalisation, and transfer properties suggested by
the present results. As a stepping stone to such RL agents, the Relations Game family of datasets
could be extended into the temporal domain, and multi-task curricula developed to encourage the
acquisition of temporal, as well as spatial, abstractions.
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Table S2: Default hyperparameters

Parameter Value
Input images size 36 × 36 × 3
L size 25 × 34
Runs per experiment 10
Optimiser Gradient descent
Learning rate 0.01
Batch size 10

Input CNN output channels 32
Input CNN filter size 12
Input CNN stride 6
Input CNN activation ReLu
Bias Yes

Output MLP hidden layer size 8
Output MLP output size 2 (4)
Output MLP activation ReLu
Bias Yes (both)

MLP1 output size k(j + 4)
MLP1 activation ReLu
Bias Yes

MLP2 hidden layer size 1024
MLP2 activations ReLu
MLP2 output size k(j + 4)
Bias Yes (both)

RN MLP hidden layer size (pre-aggregation) 256
RN output size k(j + 4)
RN activation ReLu
RN aggregation Element-wise mean
Bias No

MHA no. of heads k
MHA key / query size 16
MHA value size j + 4
MHA output size k(j + 4)
MHA attention mechanism softmax(QK>)V
Bias No

PrediNet no. of heads k = 32
PrediNet key / query size g = 16
PrediNet relations j = 16
PrediNet output size k(j + 4)
Bias n/a

S1 HYPERPARAMETERS

Table S2 shows the default hyperparameters used for the experiments reported in the main text.

S2 SUPPLEMENTARY ANALYSIS

S2.1 DIMENSIONALITY REDUCTION ON INTERMEDIATE REPRESENTATIONS

To qualitatively assess the nature of the representations produced by each architecture, we performed a
dimensionality reduction analysis on the outputs of the central module of each architecture trained on
the ‘colour / shape’ task. After training, a batch of 10,000 images (pentominoes) was passed through
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MLP1 MLP2 RN MHA PrediNet

Figure S8: Representative central module outputs for networks trained on the ‘colour / shape’ task
when projected onto the two largest principal components.

the network and principal component analysis (PCA) was performed on the resulting representations,
which were then projected onto the two largest principal components for visualisation. The projected
representations were then colour-coded by the labels for the corresponding images (i.e. different/same
shape, different/same colour).

PCA on the full representations (concatenating the head outputs in the case of the PrediNet and MHA
models) did not yield any clear clustering of representations according to the labels for any of the
models (Figure S8).

For the PrediNet and MHA models, we also ran separate PCAs on the output relations of each head
in order to see how distributed / disentangled the representations were. While in the MHA model
there was no evidence of clustering by label on any of the heads, reflecting a heavily distributed
representation, there were several heads in the PrediNet architecture that individually clustered the
different labels (Figure S9). In some heads, colour and shape seemed to be projected along separate
axes (e.g. heads 5, 26, and 27), while in others objects with different colours seemed to be organised
in a hexagonal grid (e.g. heads 9 and 14).

We noted that the clustering was preserved (though slightly compressed in PC space) when the
held-out set of images (hexominoes) was passed through the PrediNet and projected onto the same
principal components derived using the training set. (In Section S2.2, we show that the PrediNet
heads that seem to cluster the labels also attend to the two objects in the image rather than the
background.)

S2.2 ATTENTION ANALYSIS

To assess the extent to which the various PrediNet heads attend to actual objects as opposed to the
background, we produced a lower resolution content mask for each image (with the same resolution as
the attention mask) containing 0.0s at locations where there are no objects in the corresponding pixels
of the full image, 1.0s where more than 90% of the pixels contain an object, and 0.5s otherwise. By
applying the attention mask to the content mask, and summing the resulting elements, we produced
a scalar indicating whether the attention mask was selecting a region of the image with an object
(value close to 1.0), or the background (value close to 0.0). This was tested over 1000 images from
the training set (Fig. S10), but similar results are obtained if the held-out set images are used instead.
The top plot in Fig. S10 shows that both attention masks of some heads consistently attend to objects,
while others to a combination of object and background. Importantly, the heads for which the PCA
meaningfully clusters the labels are also the ones in which both attention masks attend to objects
(Fig. S9).

We additionally provide a similar analysis with a position mask, where each pixel in the mask contains
a unique location index. The middle plot in Fig. S10 shows that the attention masks in the majority
of the heads do not consistently attend to specific locations. Finally, the mean absolute values of
the per-head input weights to the output MLP are shown in the bottom plot of the same figure.
Interestingly, the heads that consistently attend only to objects have higher weighting than the rest.
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(a) PrediNet training set

(b) PrediNet test set

(c) MHA training set
Same colour, same shape Different colour, same shape Same colour, different shape Different colour, different shape

Figure S9: Per-head PCA on the heads of a PrediNet and an MHA trained on the ‘colour / shape’
task. For all networks, PCA was performed using the training data (pentominoes). In (a) and (c), the
training data are projected onto the two largest PCs and in (b) the test data (hexominoes) was used.
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Figure S10: Top: The extent to which the two attention masks of the different heads attend to objects
rather than the background. Middle: The extent to which the two attention masks of the different
heads attend to specific locations in the image. Bottom: Mean absolute value of the weights from the
different PrediNet heads to the output MLP.

S3 EXPERIMENTAL VARIATIONS

Further experimental results are provided in this section, including variations in hyper-parameters.
Fig. S11 presents test accuracy curves for the ‘stripes’ object set, for which a summary is presented
in Table 1 of the main text. Fig. S12 shows the results on the same experiment but using the Adam
optimiser instead of SGD, with a learning rate of 10−4. The TensorFlow default values for all other
Adam parameters were used. While other learning rate values were also tested, a value of 10−4 gave
the best overall performance for all architectures. Multi-task experiments were also performed using
Adam with the same learning rate (Fig. S14 & S15), yielding an overall similar performance to SGD
with a learning rate of 10−2.

To assess the extent to which the number of heads and relations plays a role in the performance, we
ran experiments with k = 64 heads and j = 16 relations (Fig. S16 & S17), as well as k = 16 heads
and j = 32 relations (Fig. S18 & S19). The results indicate that having a greater number of heads
leads to better performance than having a greater number of relations, because they provide more
stability during training and, perhaps, a richer propositional representation.
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Figure S11: Relations Game learning curves for the different models. SGD with a learning rate of
0.01 was used with a PrediNet of k = 32 heads and j = 16 relations. The top and bottom rows show
results for the ‘hexominoes’ held-out object set, while the middle row is for the ‘stripes’ held-out
object set. The results for the top 10 batches are summarised in Table 1 of the main manuscript.

Figure S12: Relations Game learning curves for the different models trained with the Adam optimiser
(learning rate: 10−4). All other experimental parameters are the same as Fig. S11. The top row shows
results for the ‘hexominoes’ held-out object set, while the bottom row is for the ‘stripes’ held-out
object set
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No pre-training Pre-training task(s) Input & central nets pre-trained Input net pre-trained

Figure S13: Multi-task curriculum training. The columns correspond to different target / pre-training
task combinations, while the rows correspond to the different architectures. SGD with a learning rate
of 0.01 was used, with k = 32 and j = 16. Training was performed using the pentominoes object set
and testing using the ‘stripes’ object set. From left to right, the combinations of target / pre-training
tasks are: (‘match rows’, ‘3 row patterns’), (‘5 column patterns’, ‘between’), (‘3 column patterns’,
‘between’), (‘match rows’, ‘3 column patterns’) and (‘5 row patterns’, ‘5 column patterns’). From
top to bottom, the different architectures are: MLP1, MLP2, relation net (RN), multi-head attention
(MHA) and PrediNet.
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Figure S14: Multi-task curriculum training. The columns correspond to different target / pre-training
task combinations, while the rows correspond to the different architectures, as in Fig. S13. The Adam
optimiser with a learning rate of 10−4 was used. Training was performed using the pentominoes
object set and testing using the ‘stripes’ object set.
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Figure S15: Reusability of representations learned with a variety of target and pre-training tasks,
using the ‘stripes’ object set. All architectures were trained using Adam, with a learning rate of 10−4.
The experimental setup is the same as in Fig. S14.
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Figure S16: Multi-task curriculum training. The columns correspond to different target/pre-training
task combinations, while the rows correspond to the different architectures. SGD with a learning
rate of 0.01 was used. Training was performed using the pentominoes object set and testing using
the ‘stripes’ object set. The experimental setup is the same as for Fig. S13, except that k = 64 and
j = 16. Increasing the number of heads for the PrediNet increases the stability during training and
overall performance.
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Figure S17: Reusability of representations learned with a variety of target and pre-training tasks,
using the ‘stripes’ object set. All experimental parameters are as in Fig. S16.

22



Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP1, Task: match rows, Pre-training: 3 row patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP1, Task: 5 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP1, Task: 3 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP1, Task: match rows, Pre-training: 3 col. patt

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP1, Task: 5 row patt., Pre-training: 5 col. patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP2, Task: match rows, Pre-training: 3 row patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP2, Task: 5 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP2, Task: 3 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP2, Task: match rows, Pre-training: 3 col. patt

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MLP2, Task: 5 row patt., Pre-training: 5 col. patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

RN, Task: match rows, Pre-training: 3 row patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

RN, Task: 5 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

RN, Task: 3 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

RN, Task: match rows, Pre-training: 3 col. patt

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

RN, Task: 5 row patt., Pre-training: 5 col. patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MHA, Task: match rows, Pre-training: 3 row patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MHA, Task: 5 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MHA, Task: 3 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MHA, Task: match rows, Pre-training: 3 col. patt

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MHA, Task: 5 row patt., Pre-training: 5 col. patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

PrediNet, Task: match rows, Pre-training: 3 row patt.

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

PrediNet, Task: 5 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

PrediNet, Task: 3 col. patt., Pre-training: between

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

PrediNet, Task: match rows, Pre-training: 3 col. patt

0 50000 100000 150000 200000 250000
Batch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

PrediNet, Task: 5 row patt., Pre-training: 5 col. patt.

No pre-training Pre-training task(s) Input & central nets pre-trained Input net pre-trained

Figure S18: Multi-task curriculum training. The columns correspond to different target / pre-training
task combinations, while the rows correspond to the different architectures. SGD with a learning
rate of 0.01 was used. Training was performed using the pentominoes object set and testing using
the ‘stripes’ object set. The experimental setup is the same as for Fig. S13, except that k = 16 and
j = 32. Having fewer heads leads to a decrease in performance, even if the number of relations is
increased to maintain network size.
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Figure S19: Reusability of representations learned with a variety of target and pre-training tasks,
using the ‘stripes’ object set. All experimental parameters are as in Fig. S18.
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