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ABSTRACT

Deep reinforcement learning has successfully solved a number of challenging
control tasks. However, learned policies typically have difficulty generalizing to
novel environments. We propose an algorithm for learning programmatic state
machine policies that can capture repeating behaviors. By doing so, they have the
ability to generalize to instances requiring an arbitrary number of repetitions, a
property we call inductive generalization. However, state machine policies are hard
to learn since they consist of a combination of continuous and discrete structure.
We propose a learning framework called adaptive teaching, which learns a state
machine policy by imitating a teacher; in contrast to traditional imitation learning,
our teacher adaptively updates itself based on the structure of the student. We show
how our algorithm can be used to learn policies that inductively generalize to novel
environments, whereas traditional neural network policies fail to do so.

1 INTRODUCTION

Existing deep reinforcement learning (RL) approaches have difficulty generalizing to novel environ-
ments (Packer et al., 2018). More specifically, consider a task that requires performing a repeating
behavior—we would like to be able to learn a policy that generalizes to instances requiring an arbitrary
number of repetitions. We refer to this property as inductive generalization. In supervised learning,
specialized neural network architectures have been proposed that exhibit inductive generalization
on tasks such as list manipulation (Cai et al., 2017), but it is not obvious how those techniques
would generalize to the control problems discussed in this paper. Alternatively, algorithms have been
proposed for learning programmatic policies that generalize well (Verma et al., 2019), but existing
approaches have focused on simple stateless policies that cannot represent repeating behaviors.

We propose an algorithm for learning programmatic state machine policies. Such a policy consists of
a set of internal states, called modes, each of which is associated with a controller that is applied while
in that mode. The policy also includes transition predicates that describe how the mode is updated.
These policies are sufficiently expressive to capture tasks of interest—e.g., they can perform repeating
tasks by cycling through some subset of modes during execution. Additionally, state machine policies
are strongly biased towards policies that inductively generalize, that deep RL policies lack. In other
words, this policy class is both realizable (i.e., it contains a “right” policy that solves the problem for
all environments) and identifiable (i.e., we can learn the right policy from limited data).

However, state machine policies are challenging to learn because their discrete state transitions make
it difficult to use gradient-based optimization. We use a standard solution where we “soften” the state
transitions by making them probabilistic. However, these techniques alone are insufficient; they still
run into local optima due to the the constraints on the structure of the policy function, as well as the
relatively few parameters they possess.

To address this issue, we propose an approach called adaptive teaching, where we alternatingly learn
a teacher, which is an overparameterized version of a student, which is a state machine policy trained,
in turn, to mimic the teacher. Because the teacher is overparameterized, it can more easily accomplish
the task compared to the student (but does not generalize as well as the student). Furthermore, the
teacher is regularized to favor strategies similar to the ones taken by the student, to ensure the student
can successfully mimic the teacher. As the student improves, the teacher improves as well. This
alternating optimization can naturally be derived within the framework of variational inference, where
the teacher encodes the variational distribution (Wainwright et al., 2008).
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(a) d = 15 (train) (b) d = 13 (train) (c) d = 12 (train) (d) d = 11.2 (test)

(e) State machine based policy. Edges that have trivially false switching conditions are dropped.

Figure 1: Running example: retrieving an autonomous car from tight parking spots.

We implement our algorithm and evaluate it on a set of reinforcement learning problems focused on
tasks that require inductive generalization. We show that traditional deep RL approaches perform well
on the original task, but fail to generalize inductively, whereas our state machine policies successfully
generalize beyond the training distribution.

Example. Consider the autonomous car in Figure 1, which consists of a blue car (the agent) parked
between two stationary black cars. The system state is (x, y, θ, d), where (x, y) is the center of the
car, θ is the orientation, and d is the distance between the two black cars. The actions are (v, ψ),
where v is velocity and ψ is steering angle (we consider velocity control since the speed is low). The
dynamics are standard bicycle dynamics. The goal is to drive out of the parked spot to an adjacent
lane while avoiding collisions. This task is easy when d is large (Figure 1a). It is somewhat more
involved when d is small, since it requires multiple maneuvers (Figures 1b and 1c). However, it
becomes challenging when d is very small (Figure 1d). A standard RL algorithm will train a policy
that performs well on the distances seen during training but does not generalize to smaller distances.
In contrast, our goal is to train an agent on scenarios (a), (b), and (c), that generalizes to scenario (d).

In Figure 1e, we show a state machine policy synthesized by our algorithm for this task. We use df
and db to denote the distances between the agent and the front and back black cars, respectively. This
policy has three different modes (besides a start mode ms and an end mode me). Roughly speaking,
this policy says (i) immediately shift from mode ms to m1, and drive the car forward and to the left,
(ii) continue until close to the car in front; then, transition to mode m2, and drive the car backwards
and to the right, (iii) continue until close to the car behind; then, transition back to mode m1, (iv)
iterate between m1 and m2 until the car can safely exit the parking spot; then, transition to mode
m3, and drive forward and to the right to make the car parallel to the lane. This policy inductively
generalizes since it captures the iterative behavior of driving forward and then backward until exiting
the parking spot. Thus, it successfully solves the scenario in Figure 1d.

Related work. State machines have been used represent policies that have internal state (typically
called memory). To learn these policies, gradient ascent methods assume a fixed structure and
optimize over real-valued parameters (Meuleau et al., 1999; Peshkin et al., 2001; Aberdeen & Baxter,
2002), whereas policy iteration methods uses dynamic programming to extend the structure (Hansen,
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1998). Our method combines both, but similarly to Poupart & Boutilier (2004), the structure space is
bounded. In addition, programmatic state machines use programs to represent state transitions and
actions rules, and as a result can perform well while remaining small in size. Hierarchies of Abstract
Machines (HAM)s also use programmatic state machines for hierarchical reinforcement learning, but
assumed a fixed, hand-designed structure (Parr & Russell, 1998; Andre & Russell, 2002).

Next, there has been growing interest in using program synthesis to aid machine learning (Lake et al.,
2015; Ellis et al., 2015; 2018; Valkov et al., 2018; Young et al., 2019). Our work is most closely
related to recent work using imitation learning to learn programmatic policies (Verma et al., 2018;
Bastani et al., 2018; Zhu et al., 2019; Verma et al., 2019). However, these approaches all assume a
domain-specific program synthesizer that can learn programmatic policies given a supervised dataset.
Building such a synthesizer for state machine policies is challenging since they contain both discrete
and continuous parameters and internal state. Thus, our student does not learn based on examples
provided by the teacher, but is trained to mimic the internal structure of the teacher.

Our inductive generalization goal is related to that of meta-learning (Finn et al., 2017); however,
whereas meta-learning trains on a few examples from the novel environment, our goal is to generalize
without additional training. Our work is also related to guided policy search, which uses a teacher in
the form of a trajectory optimizer to train a neural network student (Levine & Koltun, 2013). However,
training programmitic policies is more challenging since the teacher must mirror the structure of
the student. Finally, it has recently been shown that overparameterization is essential in helping
neural networks avoid local minima (Allen-Zhu et al., 2019). Relaxing optimization problems by
adding more parameters is a well established technique; in many cases, re-parameterization can make
difficult non-convex problems solve efficiently (Carlone & Calafiore, 2018).

2 PROBLEM FORMULATION

Dynamics. We are interested in synthesizing control policies for deterministic, continuous-time
dynamical systems with continuous state and action spaces. In particular, we consider partially
observable Markov decision processes (POMDP) 〈X ,A,O, F, Z,X0, φS , φG〉 with states X ⊆ RdX ,
actions A ⊆ RdA , observations O ⊆ RdO , deterministic dynamics F : X × A → X (i.e., ẋ =
F (x,a)), deterministic observation function Z : X → O, and initial state distribution x0 ∼ X0.

We consider a safety specification φS : X → R and a goal specification φG : X → R. Then, the
agent aims to reach a goal state φG(x) ≤ 0 while staying in safe states φS(x) ≤ 0. A positive value
for φS(x) (resp., φG(x)) quantifies the degree to which x is unsafe (resp., away from the goal).

Policies. We consider policies π : O × S → A × S that keep internal memory; we assume the
memory is initialized to a constant s0. Given such a policy π, we sample a rollout (or trajectory)
τ = (x0,x1, ...,xN ) with horizon N ∈ N by sampling x0 ∼ X0 and then performing a discrete-time
simulation xn+1 = xn + F (xn,an) · ∆, where (an, sn+1) = π(Z(xn), sn) and ∆ ∈ R>0 is the
time increment. Since F , Z, and π are deterministic, τ is fully determined by x0 and π; τ can also
be represented as a list of actions combined with the initial state i.e τ = 〈x0, (a0,a1, · · · ,aN )〉.
The degree to which φS and φG are satisfied along a trajectory is quantified by a reward function
R(π,x0) = −φG(xN )+−

∑N
n=0 φS(xn)+, where x+ = max(0, x). The optimal policy π∗ in some

class Π is one which maximizes the expected reward Ex0∼X0
[R(π,x0)].

Inductive generalization. Beyond optimizing reward, we want a policy that inductively generalizes
to unseen environments. Formally, we actually consider two initial state distributions: a training
distribution X train

0 , and a test distribution X test
0 that includes the extreme states never encountered

during training. Then, the goal is to train a policy according to X train
0 —i.e.,

π∗ = arg max
π∈Π

Ex0∼X train
0

[R(π,x0)], (1)

but measure its performance according X test
0 —i.e., Ex0∼X test

0
[R(π,x0)].

3 PROGRAMMATIC STATE MACHINE POLICIES

To achieve inductive generalization, we aim to synthesize programmatic policies in the form of state
machines. At a high level, state machines can be thought of as compositions of much simpler policies,
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where the internal state of the state machines (called its mode) indicates which simple policy is
currently being used. Thus, state machines are capable of encoding complex nonlinear control tasks
such as iteratively repeating a complex sequence of actions (e.g., the car example in Figure 1). At the
same time, state machines are substantially more structured than more typical policy classes such as
neural networks and decision trees.

More precisely, a state machine π is a tuple 〈M,H,G,ms,me〉. The modes mi ∈ M of π are
the internal memory of the state machine. Each mode mi ∈ M corresponds to an action function
Hmi

∈ H, which is a function Hmi
: O → A mapping observations to actions. When in mode

mi, the agent takes action a = Hmi
(o). Furthermore, each pair of modes (mi,mj) corresponds to

a switching condition Gmj
mi ∈ G, which is a function Gmj

mi : O → R. When an agent in mode mi

observes o such that Gmj
mi (o) ≥ 0, then the agent transitions from mode mi to mode mj . If there are

multiple modes mj with non-negative switching weight Gmj
mi (o) ≥ 0, then the agent transitions to

the one that is greatest in magnitude; if there are several modes of equal weight, we take the first one
according to a fixed ordering. Finally, ms,me ∈ M are the start and end modes, respectively; the
state machine mode is initialized to ms, and the state machine terminates when it transitions to me.

Formally, π(on, sn) = (an, sn+1), where an = Hsn(on), s0 = ms and

sn+1 =

{
m = darg maxmG

m
sn(on) if Gmsn(on) ≥ 0

sn otherwise.
(2)

where darg max is a deterministic arg max that breaks ties as described above.

Action functions and switching conditions are specified by grammars that encode the space of
possible functions as a space of programs. Different grammars can be used for different problems.
Typical grammars for action functions include constants {Cα : o 7→ α} and proportional controls
{P iα0,α1

: o 7→ α0(o[i]− α1)}. A typical grammar for switching conditions is the grammar

B ::= o[i] ≤ α0 | o[i] ≥ α0 | B1 ∧B2 | B1 ∨B2

of Boolean predicates over the current observation o, where o[i] is the ith component of o. In all
these grammars, αi ∈ R are parameters to be learned. The grammar for switching conditions also has
discrete parameters encoding the choice of expression. For example, in Figure 1, the action functions
are constants, and the switching conditions are inequalities over components of o.

4 FRAMEWORK FOR SYNTHESIZING PROGRAMMATIC POLICIES

We now describe our adaptive teaching framework for synthesizing state machine policies. In this
section, the teacher is abstractly represented as a collection of trajectories τx0 (i.e., an open-loop
controller consisting of a fixed sequence of actions) for each initial state x0. A key insight is that
we can parameterize τx0

in a way that mirrors the structure of the state machine student. As we
discuss in Section 4.2, we parameterize τx0

as a “loop-free” state machine. Intuitively, our algorithm
efficiently computes τx0

(from multiple initial states x0) using gradient-based optimization, and then
“glues” them together using maximum likelihood to construct a state machine policy.

4.1 ADAPTIVE TEACHING VIA VARIATIONAL INFERENCE

We derive the adaptive teaching formulation by reformulating the learning problem in the framework
of probabilistic reinforcement learning, and also consider policies π that are probabilistic state
machines (see Section 4.3). Then, we use a variational approach to break the problem into the teacher
and the student steps. In this approach, the log-likelihood of a policy π is defined as follows:

`(π) = logEp(τ |π)[e
λR(τ)] (3)

where p(τ | π) is the probability of sampling rollout τ when using policy π from a random initial
state x0, λ ∈ R≥0 is a hyperparameter, and R(τ) is the reward assigned to τ . We have

`(π) = logEq(τ)

[
eλR(τ) · p(τ | π)

q(τ)

]
≥ Eq(τ)[λR(τ) + log p(τ |π)− log q(τ)] (4)

4



Under review as a conference paper at ICLR 2020

Figure 2: Flowchart connecting the different components of the algorithm.

where q(τ) is the variational distribution and the inequality follows from Jensen’s inequality. Thus,
we can optimize π by maximizing the lower bound Eq (4) on `(π). Since the first and third term of
Eq (4) are constant with respect to π, we have

π∗ = arg max
π

Eq(τ)[log p(τ |π)]. (5)

Next, the optimal choice for q (i.e., to minimize the gap in the inequality in Eq (4)) is

q∗ = arg min
q

DKL(q(τ) ‖ eλR(τ) · p(τ | π)/Z) (6)

where Z is a normalizing constant. We choose q to have the form q(τ) = p(x0) · δ(τ − τx0
) where

δ is the Dirac delta function, p(x0) is the initial state distribution, and τx0 are the parameters to be
optimized, where τx0 encodes a trajectory from x0. Then, up to constants, the objective of Eq (6)
equals

Ep(x0)

[
log p(x0) + Eδ(τ−τx0

)[log δ(τ − τx0
)]− (λR(τx0

) + log p(τx0
| π,x0))

]
.

The first term is constant; the second term is degenerate, but it is also constant. Thus, we have

q∗ = arg max
{τx0}

Ep(x0) [λR(τx0) + log p(τx0 | π,x0)] . (7)

Thus, we can optimize Eq (3) by alternatingly optimizing Eq (5) and Eq (7).

We interpret these equations as adaptive teaching. At a high level, the teacher (i.e., the variational
distribution q∗ in Eq (7)) is used to guide the optimization of the student (i.e., the state machine
policy π∗ in Eq (5)). Rather than compute the teacher in closed form, we approximate it by sampling
finitely many initial states xk0 ∼ X0 and then computing the optimal rollout from xk0 . Formally, on
the ith iteration, the teacher and student are updated as follows:

Teacher q∗i =

K∑
k=1

δ(τ ik) (8)

where τ ik = arg max
τ

λR(τ) + log p(τ | πi−1,xk0) (xk0 ∼ X0)

Student π∗i = arg max
π

K∑
k=1

log p(τ ik | π,xk0) (9)

The teacher objective Eq (8) is to both maximize the reward R(τ) from a random initial state x0 and
to maximize the probability p(τ | π,x0) of obtaining the rollout τ from initial state x0 according
to the current student π. The latter encourages the teacher to match the structure of the student.
Furthermore, the teacher is itself updated at each step to account for the changing structure of the
student. The student objective Eq (4) is to imitate the distribution of rollouts according to the teacher.
Figure 2 shows the different components of our algorithm.

4.2 TEACHER: COMPUTING LOOP-FREE POLICIES

We begin by describing how the teacher solves the trajectory optimization problem Eq (8)—i.e.,
computing τk for a given initial state xk0 .
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Parameterization. One approach is to parameterize τ as an arbitrary action sequence (a0,a1, ...)
and use gradient-based optimization to compute τ . However, this approach can perform poorly—even
though we regularize τ towards the student, it could exhibit behaviors that are hard for the student to
capture. Instead, we parameterize τ in a way that mirrors the student. In particular, we parameterize τ
like a state machine, but rather than having modes and switching conditions that adaptively determine
the sequence of action functions to be executed and the duration of execution, the sequence of action
functions is fixed and each action function is executed for a fixed duration.

More precisely, we represent τ as an loop-free policy τ = 〈H, T 〉. To execute τ , each action function
Hi ∈ H is applied for the corresponding duration Ti ∈ T , after which Hi+1 is applied. The action
functions are from the same grammar of action functions for the student.

The obvious way to represent a duration Ti is as a number of time steps Ti ∈ N. However, with
this choice, we cannot use continuous optimization to optimize Ti. Instead, we fix the number of
discretization steps P for which Hi is executed, and vary the time increment ∆i = Ti/P—i.e.,
xn+1 ≈ xn + F (xn, Hi(o)) · ∆i. We enforce ∆i ≤ ∆max for a small ∆max to ensure that the
discrete-time approximation of the dynamics is sufficiently accurate.

Optimization. We use model-based trajectory optimization to compute loop-free policies. The main
challenge is handling the term p(τ | π,x0) in the objective. Thus, we perform trajectory optimization
in two phases. First, we use the a sampling-based optimization algorithm to obtain a set of good
trajectories τ1, ..., τL. Then, we apply gradient-based optimization, replacing p(· | π,x0) with a
term that regularizes τ to be close to {τ `}L`=1.

The first phase proceeds as follows: (i) sample τ1, · · · , τL using π from x0, and let p` be the
probability of τ ` according to π, (ii) sort these samples in decreasing order of objective p`·eλR(τ`), and
(iii) discard all but the top ρ samples. This phase essentially performs one iteration of CEM (Mannor
et al., 2003). Then, in the second phase, we replace the probability expression with

p(τ | π,x0) ≈
∑ρ
`=1 p

` · e−d(τ,τ`)∑ρ
`=1 p

`
, (10)

which we use gradient-based optimization to optimize. Here, d(τ, τ `) is a distance metric between
two loop-free policies, defined as the L2 distance between the parameters of τ and τ `.

4.3 STUDENT: LEARNING STRUCTURED STATE MACHINE POLICIES VIA IMITATION

Next, we describe how the student solves the maximum likelihood problem Eq (9) to compute π∗.

Probabilistic state machines. Although the output of our algorithm is a student policy that is a
deterministic state machine, our algorithm internally relies on distributions over states induced by
the student policy to guide the teacher. Thus, we represent the student policy as a probabilistic
state machine during learning. To do so, we simply make the action functions Hmj and switching
conditions Gmj2

mj1
probabilistic—instead of constant parameters in the grammar for action functions

and switching conditions, now we have Gaussian distributionsN (α, σ). Then, when executing π, we

obtain i.i.d. samples of the parameters H ′mj
∼ Hmj

and {(Gm
′
j

mj )′ ∼ Gm
′
j

mj}m′j every time we switch

to mode mj , and act according to H ′mj
and {(Gm

′
j

mj )′} until the mode switches again. By re-sampling
these parameters on every mode switch, we avoid dependencies across different parts of a rollout or
different rollouts. On the other hand, by not re-sampling these parameters within a mode switch, we
ensure that the structure of π remains intact within a mode.

Optimization. Each τk can be decomposed into segments (k, i) where action function Hk,i is
executed for duration Tk,i. Furthermore, for the student π, let Hmj

be the action function distribution
for mode mj and Gmj2

mj1
be the switching condition distribution for mode mj1 to mode mj2 . Note

that Hmj
and Gmj2

mj1
are distributions whereas Hk,i and Tk,i are constants. We have

p(τk | π,xk0) =
∏
i

p(Hk,i | π,xk0) · p(Tk,i | π,xk0).

For each (k, i), let µk,i be the latent random variable indicating the ith mode used by π starting from
xk0 ; in particular, µk,i is a categorical random variable that takes values in the modes {mj}. And
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Figure 3: Comparison of performances on train (left) and test (middle) distributions. Our approach
outperforms the baselines on all benchmarks in terms of test performance. An empty bar indicates
that the policy learned for that experiment failed on all runs. We also plot test performance for
different choices of training distribution for the Car benchmark (right).

µk,i = mj means that Hk,i ∼ Hmj and Tk,i is determined by the sampled switching conditions

from distributions {Gm
′
j

mj}. Assuming the latent variable µk,i allows the student to compute π∗ by

computing H∗mj
and Gmj2

∗

mj1
separately.

Now, we use a standard expectation maximization (EM) approach to optimizing π, where the E-step
computes the distributions p(µi,k = mj) assuming π is fixed, and the M-step optimizes π assuming
the probabilities p(µi,k = mj) are fixed. See Appendix A for details.

5 EXPERIMENTS

Benchmarks. We use 5 control problems, each with different training and test distributions (summa-
rized in Figure 6 in Appendix B): (i) Car, the benchmark in Figure 1, (ii) Quad, where the goal is to
maneuver a 2D quadcopter through an obstacle course by controlling its vertical acceleration, where
we vary the obstacle course length, (iii) QuadPO, a variant where the obstacles are unobserved but
periodic (so the agent can perform well using a repeating motion), (iv) Pendulum, where we vary the
pendulum mass, and (v) Cart-Pole, where we vary the time horizon and pole length.

Baselines. We compare against: (i) RL: PPO with a feedforward neural network policy, (ii) RL-
LSTM: PPO with an LSTM, (iii) Direct-Opt: learning a state machine policy directly via numerical
optimization. Hyper-parameters are chosen to maximize performance on the training distribution.
Each algorithm is trained 5 times; we choose the one that performs best on the training distribution.

Results. Figure 3 shows results on both training and test distributions. We measure performance as
the fraction of rollouts (out of 1000) that both satisfy the safety specfication and reach the goal.

Inductive generalization. For all benchmarks, our policy generalizes well on the test distribution. In
three cases, we generalize perfectly (all runs satisfy the metric). For Quad and QuadPO, the policies
result in collisions on some runs, but only towards the end of the obstacle course.

Comparison to RL. The RL policies mostly achieve good training performance, but generalize
poorly since they over-specialize to states seen during training. The only exception is Pendulum,
which has a very small state space; even in this case, the RL policy takes longer to reach the goal
than our state machine policy (see Figure 7 in Appendix B). For QuadPO, the RL policy does not
achieve a good training performance since the states are partially observed. We may expect the LSTM
policies to alleviate this issue. However, the LSTM policies often perform poorly even on the training
distribution, and also generalize worse than the feedforward neural network policies.

We empirical analyze the policies. Figure 4 shows the trajectory taken by (a) the RL policy, compared
to (c) our policy, from a training initial state. The RL policy does not exhibit a repeating behavior,
which causes it to fail on the trajectory from a test state shown in (b). Similarly, Figure 5 (Right)
compares the actions taking by our policy to those taken by the RL policy on Quad and QuadPO. Our
policy produces smooth repeating actions, whereas the RL policy does not.

Comparison to direct-opt. The state machine policies learned using direct-opt perform poorly even
in training, illustrating the need to use adaptive teaching to learn state machine policies.
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(a) d = 12.0 (train) (b) d = 11.2 (test) (c) Original. (d) User change 1. (e) User change 2.

Figure 4: (a-c) The RL policy generates unstructured trajectories, and therefore does not generalize
from (a) the training distribution to (b) the test distribution. In contrast, our state machine policy in
(c) generates a highly structured trajectory that generalizes well. (c-e) A user can modify our state
machine policy to improve performance. In (d), the user sets the steering angle to 0.5, and in (e), the
user sets the thresholds in the switching conditions Gm2

m1
, Gm1

m2
to 0.1.

Figure 5: Left: Trajectories for the Quad (leftmost) and QuadPO (second from the left) benchmarks
using our state machine policy. Right: Graph of veritcal acceleration over time for both our policy
(red) and the neural network policy (blue), for Quad (second from the right) and QuadPO (rightmost).

Varying the training distribution. We study how test performance changes as we vary the
training distribution on the Car benchmark. We vary X train

0 as d ∼ [dmin, 13.5], where dmin =
{13, 12.5, 12, 11.5, 11.2, 11}, but fix X test

0 to d ∼ [11, 12]. Figure 3 (right) shows how test perfor-
mance varies with dmin for both our policy and the RL policy. Our policy inductively generalizes
for a wide range of training distributions. In contrast, the test performance of the RL policy initially
increases as the train distribution gets bigger, but it eventually starts declining. The reason is that its
training performance actually starts to decline. Thus, in some settings, our approach can outperform
RL policies even on the training distribution.

Interpretability. An added benefit of our state machine policies is interpretability. In particular, we
demonstrate the interpretability of our policies by showing how a user can modify a learned state
machine policy. Consider the policy from Figure 1e for the autonomous car. We manually make the
following changes: (i) increase the steering angle in Hm1 to its maximum value 0.5, and (ii) decrease
the gap maintained between the agent and the black cars by changing the switching condition Gm2

m1
to

df ≤ 0.1 and Gm1
m2

to db ≤ 0.1. Figure 4 demonstrates these changes—it shows trajectories obtained
using (c) the original policy, (d) the first modified policy, and (e) the second modified policy. There is
no straightforward way to make these kinds of changes to a neural network policy.

Conclusion. We have proposed an algorithm for learning state machine policies that inductively
generalize to novel environments. Our approach is based on a framework called adaptive teaching
that alternatively learns a student that imitates a teacher and a teacher who adapts to the structure of
the student. We demonstrate that our policies inductively generalize better than RL policies.
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A EXPECTATION MAXIMIZATION FOR STUDENT OPTIMIZATION

A.1 COMPUTING p(τ | π,x0)

First, note that we have

p(Hk,i | π,xk0) =
∑
j

p(Hk,i | Hmj ) · p(µk,i = mj).

Similarly, the duration Tk,i is determined both by the current mode µi,k = mj1 , and by the switching
conditions G−mj1

= {Gmj2
mj1
}mj2

from the current mode mj1 into some other mode mj2 . More
precisely, let γk,i denote the trajectory on the (k, i) segment of τk, and let ζ(γk,i, G

−
mj

) denote the
earliest time at which a switching condition G ∈ G−mj

becomes true along γk,i. Since G ∈ G−mj
are

distributions, ζ(γk,i, G
−
mj

) is a distribution on transition times. Then, we have

p(Ti,k | π,xk0) =
∑
mj1

∑
mj2

p(µi,k = mj1) · p(µi+1,k = mj2) · p(Ti,k | G
mj2
mj1

, G−mj1
)

p(Tk,i | G
mj2
mj1

, G−mj1
) = p(Tk,i = ζ(γk,i, G

mj2
mj1

)) ·
∏

mj3 6=mj2

p(Tk,i < ζ(γk,i, G
mj3
mj1

)).

In other words, Ti,k is the duration until Gmj2
mj1

triggers, conditioned on none of the conditions Gmj3
mj1

triggering (where mj3 6= mj2 ).

A.2 OPTIMIZING THE STUDENT POLICY

We use expectation minimization (EM) to optimize π. The E-step computes the probability distribu-
tions p(µk,i = mj) for a fixed π, and the M-step optimizes Hmj and Gmj2

mj1
given p(µk,i = mj).

E-step. Assuming π is fixed, we have

p(µk,i = mj | π, {τk}) =
p(Hk,i | Hmj ) · p(Tk,i = ζ(γk,i, G

−
mj

))∑
m′j
p(Hk,i | Hm′j

) · p(Tk,i = ζ(γk,i, G
−
m′j

))
. (11)

M-step. Assuming p(µi,k = mj) is fixed, we solve

arg max
{Hmj

}

∑
k,i

p(µk,i = mj) · log p(Hk,i | Hmj ) (12)

arg max
{G

mj2
mj1
}

∑
k,i

p(µk,i = mj1) · p(µk,i+1 = mj2) · log p(Tk,i = ζ(γk,i, G
mj2
mj1

))

+ p(µk,i = mj1) · (1− p(µk,i+1 = mj2)) · log p(Tk,i < ζ(γk,i, G
mj2
mj1

)) (13)

For Gmj2
mj1

, the first term handles the case µk,i+1 = mj2 , where we maximize the probability that
G
mj2
mj1

makes the transition at duration Tk,i, and the second term handles the case µk,i+1 6= mj2 ,
where we maximize the probability that Gmj2

mj1
does not make the transition until after duration Tk,i.

We briefly discuss how to solve these equations. For action functions, suppose that H encodes the
distribution N (αH , σ

2
H) over action function parameters. Then, we have

α∗Hmj
=

∑
k,i p(µk,i = mj) · αHk,i∑

k,i p(µk,i = mj)

(σ∗Hmj
)2 =

∑
k,i p(µk,i = mj) · (αHk,i

− α∗Hmj
)(αHk,i

− α∗Hmj
)T∑

k,i p(µk,i = mj)

Solving for the parameters of Gmj2
mj1

is more challenging, since there can be multiple kinds of
expressions in the grammar that are switching conditions, which correspond to discrete parameters.
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We first enumerate over these discrete choices; for each one, we encode Eq (13) as a numerical
optimization and solve it to get the means. We compute the standard deviations by computing
the deviation on a custom metric involving the parameters and the times. Computing the optimal
parameters for switching conditions is more expensive than doing so for action functions. Thus, on
each student iteration, we iteratively solve Eq (11) and Eq (12) multiple times, but only solve Eq (13)
once.

B ADDITIONAL RESULTS

Bench #A #O X train
0 X test

0 # modes A_G C_G
Car 2 5 d ∼ [12,13.5]m d ∼ [11,12]m 3 Constant Boolean tree (depth 1)
Quad 1 8 x dist = 40m x dist = 80m 2 Proportional Boolean tree (depth 1)
QuadPO 1 4 x dist = 60m x dist = 120m 2 Proportional Boolean tree (depth 1)
Pendulum 1 2 mass ∼ [1,1.5]kg mass ∼ [1.5,5]kg 2 Constant Boolean tree (depth 2)
Cartpole 1 4 time = 5s, len = 0.5 time = 300s, len = 1.0 2 Constant Boolean tree (depth 2)
Acrobot 1 4 masses = [0.2,0.5] masses = [0.5,2] 2 Constant Boolean tree (depth 2)
Mountain car 1 2 power = [5,15]e-4 power = [3,5]e-4 2 Constant Boolean tree (depth 1)

Figure 6: Summary of our benchmarks. #A is the action dimension, #O is the observation dimension,
X train

0 is the set of initial states used for training, X test
0 is the set of initial states used to test the

inductive generalizability, # modes is the number of modes in the state machine policy, and A_G and
C_G are the grammars for action functions and switching conditions, respectively. Depth of C_G
indicates the number of levels in the Boolean tree.

Figure 7: Trajectories taken by our state machine policy (left) and the RL policy (middle) on
Pendulum for a test environment (i.e., heavier pendulum). Green (resp., red) indicates positive (resp.,
negative) torque. Our policy performs optimally by using positive torque when angular velocity ≥ 0
and negative torque otherwise. In contrast, the RL policy performs suboptimally (especially in the
beginning of the trajectory).

Performance on Train dist. Performance on Test dist.
Bench Algorithm G T_G G T_G

Acrobot

Ours 0.08 7.9s 0.02 31.8s
RL 0.16 6.5s 0.0 45.2s
Direct-opt ⊥ ⊥ ⊥ ⊥

Mountain car

Ours 0.001 168.5s 0.008 290.1s
RL 0.0 98.7s 0.0 214.7s
Direct-opt 0.006 25.0s 2.18 216.0s

Figure 8: Experiment results for additional benchmarks. G is the average goal error (closer to 0 is
better). T_G is the average number of timesteps to reach the goal (lower the better). ⊥ indicates
timeout. We can see that both our approach and RL generalizes for these benchmarks.
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