
Under review as a conference paper at ICLR 2020

X-Forest: Approximate Random Projection
Trees for Similarity Measurement

Anonymous authors
Paper under double-blind review

Abstract
Similarity measurement plays a central role in various data mining and
machine learning tasks. Generally, a similarity measurement solution should,
in an ideal state, possess the following three properties: high accuracy,
high efficiency in terms of speed and independence from prior knowledge.
Yet unfortunately, vital as similarity measurements are, no previous works
have addressed all of them. In this paper, we propose X-Forest, consisting
of a group of approximate Random Projection Trees, such that all three
targets mentioned above are tackled simultaneously. Our key techniques
are as follows. First, we introduced RP Trees into similarity measurement
such that accuracy is improved. In addition, we enforce certain layers in
each tree to share identical projection vectors, such that exalted speed is
achieved. Last but not least, we introduce randomness into partition to
eliminate its reliance on prior knowledge. We conduct experiments on three
real-world datasets, whose results demonstrate that our model, X-Forest,
reaches an efficiency of up to 3.5 times higher than RP Trees with negligible
compromise on its accuracy, while also being able to outperform traditional
Euclidean distance-based similarity metrics by as much as 20% with respect
to clustering tasks.

1 Introduction

1.1 Background and motivation

Similarity measurement is to measure the similarity between every pair of items in a given
dataset. Generally, an item can be represented by a data point in the space (e.g., Euclidean
space). The target of similarity measurement is to generate a similarity matrix M whose
element Mij represents the similarity value between two data points: i and j.

Similarity measurement plays a central role in data mining and machine learning, and also
has practical applications in other fields such as biochemistry, biology, botany, etc. In data
mining, similarity is a vital criterion in unsupervised clustering which is to classify objects
into groups and eliminate inappropriate data Santos et al. (2013); Kushawah & Yadav (2016);
Jarvis & Patrick (1973). The result of clustering can be applied in various specific fields, e.g.,
the accurate segmentation of liver lesions Jha et al. (2010), the characterization of chemical
structures and biological activity spectra Fliri et al. (2005), or for ligand identification Koch
et al. (2004). In machine learning, similarity can be used in social filtering algorithms to
make predictions for recommendation systems Billsus & Pazzani (1998).

Therefore, these extensive applications require the similarity measurement solution to main-
tain high accuracy in different datasets Ma & Manjunath (1996), and this is the first design
goal of this paper. The second design goal is to achieve efficient similarity measurement.

1.2 Prior art and their limitations

For similarity measurement, existing works can be divided into two kinds: mathematical
distance-based similarity and multi-partition based similarity. Currently the prevailing
approaches belong to the first kind of solutions, such as Minkowski distance family, Fidelity
or Squared-chord family, Shannon’s entropy Cha (2007), Cosine similarity Irani et al. (2016),
etc. These similarity measurement solutions only depend on the pairwise information (i.e.,
partial information), but neglect the overall information, such as the dimensions, features,
distribution of the dataset. Consequently, they have low versatility, i.e., lacking the flexibility

1

Under review as a conference paper at ICLR 2020

to adapt to different datasets. Furthermore, they are not accurate enough, because they may
not preserve the perceptual similarity (intuitive similarity) of the dataset, especially when
encountered with high dimension datasets Ma & Manjunath (1996); Dasgupta & Freund
(2008).

The second kind of solutions such as Multiple RP+EM Fern & Brodley (2003) and RF
similarity Gray et al. (2013) overcome the shortcomings of the first kind by projecting and
partitioning the data. Unfortunately, this kind of solutions often depends on priori knowledge
about data distribution or data labels, which can hardly be acquired in common circumstances.
Consequently, The third design goal of this paper is to eliminate the dependence on priori
knowledge. No existing works can achieve all the design goals at the same time.
1.3 Our contributions
This paper aims to achieve the above three design goals at the same time. Towards the
first and third goal, we introduce the Random Projection Tree (RP Tree) to similarity
measurement. RP Tree is used to randomly partition a set of data points in a space into
several disjoint subsets. It is well known that in an RP Tree, data points that are closely
distributed, indicating their high level of similarity in space, are always partitioned into the
same subset Dasgupta & Freund (2008). This means that RP Tree can achieve the first goal –
high accuracy. As RP Tree uses random partitions, thus achieves the third goal – eliminating
priori knowledge dependence.

Unfortunately, directly using RP Tree cannot achieve the second goal – high efficiency, because
during each partition, we need to project all data points into a random vector which is time
consuming (see details in Section 2). To address this problem, we propose the X-Forest.
The key idea is to allow nodes at i, i+X, i+ 2X... (i=0,1,2...) layers of the tree to share
the same projection vector for partitioning. For example, let us assume that we are given a
complete binary RP Tree with 4 layers. The root node denotes the entire dataset and each
node denotes a subset of the entire dataset. For each inner node, the standard RP Tree needs
to project all data points into one random vector. In this way, it projects each data point
four times. Our solution is to let the nodes at the first and third layers share the same
projection vector, and do so for the second and fourth layers. For the nodes at the third
layer, we reuse the projection results of the first layer, and do so for the four layer. In this
way, we project each data point twice instead of four times.

Obviously, sharing vectors sacrifices the randomness of projection vectors, further degrading
the accuracy. Fortunately, the accuracy loss can be almost eliminated by using a great many
Trees and carefully choosing the sharing parameter – X (see details in Section 3.2).

We propose β-Similarity to record the results in X-Forest into a similarity matrix. It features
better representing the similarity relationship between data points, which is proved by the
higher accuracy in our clustering experiments.

Our key contributions are as follows:

• We introduce RP Trees into similarity measurement and proposed a new similarity matrix
β-Similarity, which better reveals the similarity relationships between data points than
traditional distance based similarity measurement.

• We propose X-Forest which significantly reduces the time of building procedure of RP
Trees by sharing projection vectors.
• We conduct extensive experiments on three real datasets, and our experimental results
show that RP Trees achieves two design goals, while X-Forest achieves all three desigan
goals at the same time.

We have released codes in github anonymously so as to meet the demand of reproducibility sou.
The mathematical proofs of our algorithm is detailed in supplementary materials.

2 Background and Related Work

2.1 Similarity Measurement
Existing solutions for similarity measurement can be classified into two categories: 1)
mathematical distance based similarity and 2) multi-partition based similarity.

2

Under review as a conference paper at ICLR 2020

Pmin

Pmax
Pτ

Figure 1: Relationship between projection
and space partitioning. The red arrow is
the projection direction. Pτ the a partition
point. The vertical line is the spatial parti-
tion hyperplane.

Figure 2: Example of a standard RP Tree.
Each node uses an independent unit random
projection direction.

The first kind is Mathematical distance based similarity which is widely used. It includes
Minkowski distance family, Fidelity or Squared-chord and Shannon’s entropy Cha (2007),
Cosine similarity Irani et al. (2016), the correlation coefficient Billsus & Pazzani (1998),
travel time, and edit distance Chen et al. (2009), etc. According to the applying method of
distance, it can be divided into two cases: 1) distance is directly applied as similarity; 2)
distance is first computed as a criterion for further similarity evaluation. An example of the
second case is shared neighbours based clustering Jarvis & Patrick (1973). The k nearest
neighbours of each data point are found using Euclidean distance. The similarity between
data point i and j is defined as the number of common neighbours.

Existing works of the second kind, multi-partition based similarity, is rare, and an example
is Multiple RP+EM Fern & Brodley (2003). In each operation of RP+EM, the dimension
of the original dataset is degraded through a linear transformation. Then, it applies EM
clustering to generate a probabilistic model θ of a mixture of k Gaussians. The similarity
between data points i and j is defined as the average value of P θij =

∑k
l=1 P (l | i, θ)×P (l | j, θ)

of each RP+EM.

The first kind of solutions falls short in terms of leading to unsatisfied results, especially in
high-dimensional spaces. And the second kind depends on prior knowledge about data labels
or data distribution.

2.2 Random Projection Tree

Sanjoy Dasgupta and Yoav Freund first propose the idea of RP Tree Dasgupta & Freund
(2008). An RP Tree is a variant of k − d tree Bentley (1975). The most popular application
of RP Tree is in nearest neighbours finding, where it compensates k − d tree’s diminishing
efficacy in high-dimensional spaces Dasgupta & Sinha (2015). Other applications of RP Tree
cover clustering Yan et al. (2009), pattern discovering Minnen et al. (2007) and nearest
neighbours finding, vector quantization Dasgupta & Freund (2009), local symmetry detection
in natural images Shen et al. (2016), etc.

The details of building an RP Tree are as follows. In an RP Tree, the root node includes all
items in a given set S. Through RP operation, RP Tree partitions S into two disjoint sets,
each of which is a child node of the root node. The child node will be recursively partitioned
until its size is smaller than a predefined threshold τ . In the end, each leaf node of an RP
Tree forms a set of size less than τ . Figure 2 shows the structure of an RP Tree. The main
operation of RP Tree, the RP operation, generates a random unit direction vector e for each
partition. After all data points have been projected into the random direction, we uniformly
choose a partition point at random within the projection range, where the projection range
refers to the interval between the smallest and the largest projection value.

The formal description of an RP operation is as follows. RP Tree computes the projection
value of each point in the set S into the unit directional vector e. Let P be the set of
projection values, i.e., P = {x · e | x ∈ S}. Let Pmax be the maximum value in P and Pmin

be the minimum value in P . The partition point Pτ is uniformly and randomly selected from

3

Under review as a conference paper at ICLR 2020

� �� ��� ���
���

���

���

�
�
�
�
�
�
�
�
�
�

(a) Basic Similarity.
� �� ��� ���
���

���

���

�
�
�
�
�
�
�
�
�
�

(b) β-Similarity (β = 0.9)

Figure 3: Similarity between data points of the first class (number 1-50) and the entire
dataset (number 1-50, number 51-100, number 101-150).

(Pmin,Pmax). Pτ partitions the set S into two disjoint subsets SL = {x · e 6 Pτ | x ∈ S}
and SR = {x · e > Pτ | x ∈ S}. This is equivalent to partitioning the space into two parts
with a (d− 1)-dimensional hyperplane xT · e = Pτ . When d = 2, as shown in Figure 1, the
(d − 1)-dimensional hyperplane degrades to a line. Building an RP Tree suffers from high
computation complexity since, a large number of RP operations are involved whenever an RP
Tree is built, worsened by the fact that, it requires another large number of inner products
to complete a single RP operation.

3 The X-Forest Algorithm

As detailed in Section 2.2, RP Tree cluster similarly data points into the same node. In this
section, we first show how to use a number of RP Trees to generate the similarity matrix.
Then we introduce X-Forest, which significantly accelerate the building procedure of these
trees.

3.1 Similarity Matrix Generation

In an RP Tree, two data points are regarded as similar if they are in the same leaf node.
Therefore, given a number of trees that are built independently, we can consider the probability
that two data points fall into the same leaf node as their similarity. Based on this idea, the
well known similarity matrix is defined as follows.

Definition 1 Given m RP Trees T1, ..., Tm, for RP Tree Ti, suppose a data point xj belongs
to the leaf node Li(xj) . The basic similarity matrix Mbasic is defined as

Mbasic
jk =

1

m

(
m∑
i=1

I [Li(xj) = Li(xk)]

)
(1)

, where I is the indicator function.

The basic similarity matrix is the average of some 01 matrix, and each 01 matrix is a
similarity matrix generated by one RP Tree. In a 01 matrix, the similarity between data
points falling into the same leaf node is 1 and the similarity between data points falling into
different leaf nodes is 0.

This definition does not consider the information of the structure of the RP Tree. This leads
to the 01 matrix is too sparse, i.e., has a large number of 0s. To show that, consider the
following example. Given n data points to build an RP Tree with each leaf nodes containing
r data points, this RP Tree has n

r leaf nodes and each leaf node fills the similarity matrix
with r2 1s. Therefore, the size of this 01 matrix generated by this RP Tree is n2, but only
nr elements are 1, accounting for r

n of all elements (e.g. n = 150, r = 3, 1 accounted for
only 0.02). The issue is that the similarity of data points in different leaf nodes should be a
number between 0 and 1 rather than 0. Thus we can get a matrix better representing the
similarity between data points, by reasonably eliminating some 0s. To achieve this, we need
to consider information about the whole structure of an RP Tree. If the distance between
two data points in an RP Tree is short (i.e., they are divided later), we should define their
similarity as a value closer to 1. If the distance between two data points in an RP Tree is
long (i.e., they are divided earlier), we should define their similarity as a value closer to 0.
Based on this observation, we propose the β-Similarity matrix.

4

Under review as a conference paper at ICLR 2020

Figure 4: Example of a layer-by-layer RP
tree. Different nodes of each layer use the
same projection direction. The projection
directions on each path from the root to the
leaf are still independent.

Figure 5: Example of a X-Projection Tree.
A tree uses only two random directions. One
(red) for odd layers and the other (yellow)
for even layers.

Definition 2 Given an RP Tree Ti, let DISi(X, Y) be the distance between nodes X and Y in
Ti. The β-Similarity matrix Mβ is defined as

Mβ
jk =

1

m

(
m∑
i=1

β DISi(Li(xj),Li(xk))

)
(2)

Here β is a parameter controlling the speed at which the similarity decays with increasing
distance. When β → 0, the β-Similarity matrix degenerates into the basic similarity
matrix. We use the most popular Iris flower dataset Dua & Graff (2017) to compare
the basic similarity and β-Similarity and the result is shown in Figure 3. For basic
similarity, most data points in the same class (number 1-50) have rather low similarity. For
β-Similarity, the similarity between data points in the same class is significantly greater
than that of the data points in different classes. In our experiments, we find that the accuracy
of clustering can be significantly improved by properly choosing β (Figure 8).

3.2 X-Projection Tree and X-Forest

Generating a similarity matrix requires a large number of different RP Trees. However, the
process of building such a large number of RP Trees is rather slow. To address this issue, we
propose X-Forest. The key idea is to allow nodes at i, i+X, i+ 2X, ...(i = 1, 2, ...) layers
of the tree to share the same direction vector.

In order to introduce the X-Forest, we first introduce an equivalent RP Tree called
Layer-by-Layer RP Tree. Compared to the standard RP Tree, Layer-by-Layer RP
Tree allows nodes in each layer share the same projection direction. An example of a
Layer-by-Layer RP Tree is shown in Figure 4. Theoretically, the Layer-by-Layer RP Tree
is equivalent to the standard RP tree. Here we give a brief explanation: For a standard
RP Tree, the partition of each node on the tree relies on a series of independent projection
directions. Intuitively, a random partition of the dataset demands each data point to go
through a series of mutually independent partitions. Thus, in an RP Tree, the nodes which
are ancestor-descendant related (ADR) need mutually independent projection directions,
and the nodes which are not ADR can share the same projection directions. Specifically, it
is sufficient that the projection directions used by different layers are mutually independent.
This shows the equivalence between the standard RP Tree and Layer-by-Layer RP Tree.

To further explore other avenues to economize computation time, X-Forest allows different
layers share the same projection directions. Sharing projection directions sacrifices the
randomness of partition, further affecting the similarity generated. To implement the trade-
off between speed and accuracy, we give a method by adjusting the sharing parameter
X.

Here we describe the details about building an X-Forest, which is a group of X-Projection
Trees. Given a dataset S, for each X-Projection Tree, we select X independent random
projection directions e0, e1, · · · , eX−1, and compute the projection value of all data points
into the X projection directions, i.e. Pi = {x · ei | x ∈ S}. When building an X-Projection

5

Under review as a conference paper at ICLR 2020

Tree, we rely on the following idea to allow data sharing of the projection directions: the
root node uses the first projection direction e0 for partitioning. The node in the i-th layer
uses the (i mod X)-th projection direction e(i mod X), and uses the pre-calculated projection
value in P(i mod X) to partition the set. The rest of the recursive tree construction is identical
to standard RP Tree. Figure 5 shows an example of using X = 2 version of X-Projection
Tree to partition data points.

The X-Projection Tree is equivalent to a Layer-by-Layer RP Tree when its depth is no
greater than X. When X = 1, it is equivalent to using a series of parallel (d− 1)-dimension
hyperplanes to partition the space. This is the most efficient case because only one RP
operation is required. According to our experimental analysis, we find out that: 1) the X = 2
version of X-Forest achieves the best trade-off between improvement in computational
efficiency and loss in partition precision. 2) the X = 4 version of X-Forest almost achieves
the accuracy of Layer-by-Layer RP Trees, while requiring little additional time compared
to the X = 2 version. Further experimental details are discussed in Section 5.

Here we provide an analysis of the computational complexity of X-Forest. Given a d-
dimensional dataset S with n data points, for m RP Trees, the time complexity of building
trees and generating the similarity matrix is O(m · n · (n + log n · d)) in the average, and
O(m · n2 · d) in the worst case. And the complexity for X-Forest made of m X-Projection
Trees is always O(m · n · (n+X · d)). Therefore, X-Forest is especially suitable for datasets
satisfying d� n/ log n.

In term of implementation, X-Forest can calculate Pi in parallel for all projection directions.
For the standard RP Tree, parallel acceleration cannot be used because information about
which set of data points is to be projected into each direction remains uncertain.

4 Applications of X-Forest

In this section, we demonstrate how to apply the similarity matrix to some classical clustering
algorithms, including Kernel K-means, density clustering, and spectral clustering.

Kernel K-means: K-means Hartigan & Wong (1979) is the most popular unsupervised
clustering algorithm. It partitions all data points into K clusters by finding K optimal
cluster centers. The optimization goal is to minimize the sum of the distances of each data
point to its nearest cluster center. The Kernel K-means is an optimization of K-means
clustering. The input data points are mapped into a feature space using a nonlinear mapping
φ. A kernel function Fjk = 〈φ(xj), φ(xk)〉 is used to calculate the distance in feature space.

For this application, X-Forest maps data points to unit vectors in the feature space, and
the kernel function is given by the similarity matrix M.

Fjk = 〈φ(xj), φ(xk)〉 = Mjk (3)

Density clustering: DBSCAN Ester et al. (1996) is the most popular density-based
clustering method. In DBSCAN, a point is considered as a dense part if its ε-neighborhood
has enough points. In the process of clustering, DBSCAN arbitrarily selects an unvisited
dense part and its ε-neighborhood as a cluster, and recursively adds the ε-neighborhoods of
the dense parts already added into this cluster, until no more points can be added. This
process is repeated until all dense parts are visited.

In this application, the similarity matrix M can be used to express the inner product of two
data points in the feature space φ. The distance of any two data points in the feature space
can be obtained by the following formula.

‖φ(xj)− φ(xk)‖2 = (〈φ(xj)− φ(xk), φ(xj)− φ(xk)〉)
1
2 =

√
(2− 2 ·Mjk) (4)

Spectral clustering: Spectral clustering Ng et al. (2002); Shi & Malik (2000) is an
algorithm derived from graph theory and has been widely used in clustering. By defining
the weight (similarity) between two data points, spectral clustering embeds data points into

6

Under review as a conference paper at ICLR 2020

an undirected weighted complete graph. The complete graph is divided into K sub-graphs
by cutting off the edge set with minimum weight to achieve the purpose of clustering.

Classic spectral clustering uses exp
(
−‖xj − xk‖2/2σ2

)
as the weight of the edge, where σ is

the bandwidth of the graph. In this application, we directly use Mjk of the similarity matrix
M as the edge weight.

5 Experimental Results

We first show the accuracy improvement of some classical clustering methods after using
the β-Similarity generated by X-Forest. Then, we compare the performance in terms of
computation time of X-Forest under different parameter settings.

5.1 Experimental Setup

Choice of Datasets: As is shown in Table 1, we conduct experiments on three real datasets
from the UC Irvine machine learning library Dua & Graff (2017), including Wine, Soybean
and WDBC. All three datasets are labeled, allowing us to evaluate the actual performance
of the clustering.

Dataset dimension # categories # data points

Wine 13 3 178

Soybean 35 4 47

WDBC 30 2 569

Table 1: A summary of datasets.

Choice of Clustering Algorithms: In the first part of this section, we compare
the accuracy of Kernel K-means, Density Clustering and Spectral Clustering using
β-Similarity generated by X-Forest and distance similarity. In the second part, we use
Kernel K-means as clustering algorithm to compare the performance of X-Forest under
different parameter settings.

Evaluation Metrics: We use Accuracy as an evaluation metric of the performance of
clustering. The definition of Accuracy is given by the formula below. It measures the fraction
of matching labels given by the clustering algorithm divided by the real label.

Definition 3 Let S = {x1 : y1,x2 : y2, · · · ,xn : yn} be the dataset, ŷ(.) be the label obtained
by the clustering algorithm, and σ(.) be the permutation of n elements.

Accuracy = max
σ

(
1

n

n∑
i=1

I [ŷ(xi) = σ(yi)]

)
(5)

Default Configuration: Table 2 shows the default parameter configuration of X-Forest
on 3 data sets, and lists the average depth of the X-Projection trees on these datasets.
Since all the average depths are between 8 and 16, we regard the X = 16 X-Forest as
standard RP Trees and layer-by-layer RP Trees. In the experiment, we generate 1000
similarity matrices for each parameter configuration and show the average value of Accuracy
and Time. All experiments are conducted on laptop with 2.6 GHZ Intel Core i7 CPU.

Dataset # Trees X τ β Average Depth

Wine 1000 2 10 0.9 9.6

Soybean 1000 2 3 0.9 12.4

WDBC 1000 2 30 0.9 15.1

Table 2: Default Configuraion.

7

Under review as a conference paper at ICLR 2020

���
���

���

���

���

��
��
��
��

�����������	
�����

�����������
�� ��	��� 	�����
�����������

Figure 6: Accuracy of different clustering algorithms on several datasets with distance
similarity and X-Similarity.

5.1.1 Experiments on Accuracy

Accuracy vs. Different Similarity (Figure 6): In this experiment, we use different
clustering algorithms (Kernel K-means, DBSCAN, Spectral Clustring) and different similarity
measurements (β-Similarity, distance similarity). Figure 6 shows that the Accuracy of
Kernel K-means using β-Similarity are respectively about 11.1%, 9%, 24% higher than the
of that of using distance similarity on the three datasets. The Accuracy of DBSCAN using
β-Similarity are respectively about 27.6%, 5.5%, 33.7% higher than that of using distance
similarity on the three datasets. The Accuracy of Spectral Clustering using β-Similarity
are respectively about 21.3%, 28.6%, 34.8% higher than that of using distance similarity on
the three datasets.

Accuracy vs. X (Figure 7): In this experiment, we change the value of X (1, 2, 4, 8,
16) and the number of X-Projection trees (20, 40, 80, 160, 320, 640, 1280) in an X-Forest
and use Kernel K-means for clustering. When tree number is 1280, for the soybean dataset
(Figure 7(a)), we see that the accuracy of the X = 2 and X = 4 version of X-Forest are
respectively about 96.4% and 99.1% of that of standard RP Trees. For the WDBC dataset
(Figure 7(b)), we see that the accuracy of the X = 2 and X = 4 version of X-Forest are
almost the same as that of standard RP Trees. For the wine dataset (Figure 7(c)), we see
that the accuracy of the X = 2 and X = 4 version of X-Forest are respectively about 99.4%
and 99.8% of that of standard RP Trees.

���������

����

���	

����

����

Ac
cur

acy

T r e e s

���������������
����������

(a) Soybean.

���������

����

����

����

Ac
cur

acy

T r e e s

���������������
����������

(b) WDBC.

���������
��
�

��
	

����

����

Ac
cur

acy

T r e e s

���������������
����������

(c) Wine.

Figure 7: Accuracy of X-Forest with different numbers of trees and Xs.

������������

����

����

����

����

Ac
cur

acy

�
(a) Soybean.

������������

����

����

����

Ac
cur

acy

�
(b) WDBC.

������������

����

����

����

Ac
cur

acy

�
(c) Wine.

Figure 8: Accuracy and variance of β-Similarity with different βs.
Accuracy vs. β (Figure 8): In this experiment, we change β ([0, 1)) and use Kernel
K-means for clustering. For the soybean dataset (Figure 8(a)), the accuracy of the β =
0.9 version of β-Similarity is about 25.9% higher than that of the β = 0 version of

8

Under review as a conference paper at ICLR 2020

������
�

��

��

��

Tim
e(m

s)

X

������
����������
���
������
����������
��	�

(a) Soybean.

������

	�

���

���

���

Tim
e(m

s)

X

������
����������
���
������
����������
��	�

(b) WDBC.

������
�

��

��

��

Tim
e(m

s)

X

������
����������
���
������
����������
��	�

(c) Wine.

Figure 9: Time to build X-Forest for different numbers of trees and Xs.

β-Similarity. For the WDBC dataset (Figure 8(b)), the accuracy of the β = 0.7 version of
β-Similarity is about 0.9% higher than that of the β = 0 version of β-Similarity, while
the variance is 5.28 times smaller. For the wine dataset (Figure 8(c)), the accuracy of the
β = 0.9 version of β-Similarity is about 3.8% higher than that of the β = 0 version of
β-Similarity , while the variance is 2.16 times smaller.

5.1.2 Experiments on Speed

Building Speed X-Forest vs. X (Figure 9): In this experiment, we vary X (1, 2, 4,
8, 16) and the number of X-Projection trees (160, 320, 640, 1280) in X-Forest and use
Kernel K-means for clustering. When the number of X-Projection trees is 1280, for the
soybean dataset (Figure 9(a)), the speed of the X = 2 and X = 4 versions of X-Forest are
respectively about 2.98 and 1.74 times faster than standard RP Trees. For the WDBC dataset
(Figure 9(b)), the speed of the X = 2 and X = 4 versions of X-Forest are respectively about
3.61 and 2.57 times faster than standard RP Trees. For the wine dataset (Figure 9(c)), the
speed of the X = 2 and X = 4 versions of X-Forest are respectively about 1.34 and 1.03
times faster than standard RP Trees.

6 Conclusion

The design goals of an ideal similarity measurement solution are respectively high accuracy,
high efficiency in terms of speed and independence from priori knowledge of the dataset.
We propose X-Forestto achieve all the above goals: 1) We introduce RP Tree into similarity
measurement because it better represents the similarity value between item pairs; 2) We
manage to reduce computational time through sharing projection values in the partition
process of some layers; 3) We rely on randomness in partition to get rid of the need of priori
knowledge of the dataset, such as data distribution characteristics.

9

Under review as a conference paper at ICLR 2020

References

Source code. https://github.com/X-Forest/Approximate-Random-Projection-Trees.
git.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

Daniel Billsus and Michael J Pazzani. Learning collaborative information filters. In Icml,
volume 98, pp. 46–54, 1998.

Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability
density functions. City, 1(2):1, 2007.

Yihua Chen, Eric K Garcia, Maya R Gupta, Ali Rahimi, and Luca Cazzanti. Similarity-based
classification: Concepts and algorithms. Journal of Machine Learning Research, 10(Mar):
747–776, 2009.

Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional manifolds.
In STOC, volume 8, pp. 537–546. Citeseer, 2008.

Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector quantization. IEEE
Transactions on Information Theory, 55(7):3229–3242, 2009.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for nearest neighbor search.
Algorithmica, 72(1):237–263, 2015.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pp.
226–231, 1996.

Xiaoli Z Fern and Carla E Brodley. Random projection for high dimensional data clustering:
A cluster ensemble approach. In Proceedings of the 20th international conference on
machine learning (ICML-03), pp. 186–193, 2003.

Anton F. Fliri, William T. Loging, Peter F. Thadeio, and Robert A. Volkmann. Biological
spectra analysis: Linking biological activity profiles to molecular structure. Proceedings of
the National Academy of Sciences, 102(2):261–266, 2005. ISSN 0027-8424. doi: 10.1073/
pnas.0407790101. URL https://www.pnas.org/content/102/2/261.

Katherine R Gray, Paul Aljabar, Rolf A Heckemann, Alexander Hammers, Daniel Rueck-
ert, Alzheimer’s Disease Neuroimaging Initiative, et al. Random forest-based similarity
measures for multi-modal classification of alzheimer’s disease. NeuroImage, 65:167–175,
2013.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

Jasmine Irani, Nitin Pise, and Madhura Phatak. Clustering techniques and the similarity
measures used in clustering: A survey. International Journal of Computer Applications,
134(7):9–14, 2016.

Raymond Austin Jarvis and Edward A Patrick. Clustering using a similarity measure based
on shared near neighbors. IEEE Transactions on computers, 100(11):1025–1034, 1973.

Abhinav K Jha, Jeffrey J Rodríguez, Renu M Stephen, and Alison T Stopeck. A clustering
algorithm for liver lesion segmentation of diffusion-weighted mr images. In 2010 IEEE
Southwest Symposium on Image Analysis & Interpretation (SSIAI), pp. 93–96. IEEE, 2010.

10

https://github.com/X-Forest/Approximate-Random-Projection-Trees.git
https://github.com/X-Forest/Approximate-Random-Projection-Trees.git
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.pnas.org/content/102/2/261

Under review as a conference paper at ICLR 2020

Marcus A. Koch, Lars-Oliver Wittenberg, Sudipta Basu, Duraiswamy A. Jeyaraj, Eleni
Gourzoulidou, Kerstin Reinecke, Alex Odermatt, and Herbert Waldmann. Compound
library development guided by protein structure similarity clustering and natural product
structure. Proceedings of the National Academy of Sciences, 101(48):16721–16726, 2004.
doi: 10.1073/pnas.0404719101.

Yogiraj Singh Kushawah and Ashish Mohan Yadav. A survey on unsupervised clustering
algorithm based on k-means clustering. International Journal of Computer Applications,
975:8887, 2016.

Wei-Ying Ma and Bangalore S Manjunath. Texture features and learning similarity. In
Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 425–430. IEEE, 1996.

David Minnen, Charles Isbell, Irfan Essa, and Thad Starner. Detecting subdimensional
motifs: An efficient algorithm for generalized multivariate pattern discovery. In Seventh
IEEE International Conference on Data Mining (ICDM 2007), pp. 601–606. IEEE, 2007.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pp. 849–856, 2002.

Ricardo S Santos, Suzana MF Malheiros, Sergio Cavalheiro, and JM Parente De Oliveira. A
data mining system for providing analytical information on brain tumors to public health
decision makers. Computer methods and programs in biomedicine, 109(3):269–282, 2013.

Wei Shen, Xiang Bai, Zihao Hu, and Zhijiang Zhang. Multiple instance subspace learning
via partial random projection tree for local reflection symmetry in natural images. Pattern
Recognition, 52:306–316, 2016.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Departmental
Papers (CIS), pp. 107, 2000.

Donghui Yan, Ling Huang, and Michael I Jordan. Fast approximate spectral clustering. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 907–916. ACM, 2009.

Donghui Yan, Yingjie Wang, Jin Wang, Honggang Wang, and Zhenpeng Li. K-nearest
neighbors search by random projection forests. IEEE Transactions on Big Data, 2019.

11

Under review as a conference paper at ICLR 2020

A Appendix

The growth of the individual X-Projection Tree in X-Forest involves randomness both in
projection directions and partition thresholds. A natural concern of the X-Forest would be
whether the distances in the similarity kernel maintain the characteristics of the Euclidean
space Rn. In this appendix, we will prove that during the growth of the X-Forest, far-away
points in the Euclidean space will be partitioned with higher probability than the near points.

Recall that during the partition of a tree node, we will choose a partition threshold randomly
in the range of the projection values. As the behavior of the partition depends on this range,
we first introduce the definition of the range as follows

Definition 4 Let S be a set of points. Define the range of one particular projection as the
following

L(S, e) = sup
x1,x2∈S

{|x1 · e− x2 · e|}

and define its boundaries as
ρ(S) = sup

e∈I
L(S, e)

δ(S) = inf
e∈I

L(S, e)

where I is the set of unit direction vectors, i.e., I = {e | e ∈ Rn ∧ ‖e‖ = 1}.

The upper bound ρ(S) can be seen as the largest distance of two points in Rn, and the lower
bound δ(S) is called neck size in Yan et al. (2019). Based on this definition, we will state that
the probability of two points not being partitioned in a tree can be bounded by a function.
Without loss of generality, we give the theorem and the proof under the 2-dimensional case
with X = 2. When it comes to the high-dimensional, the proof can become much more
difficult because projection directions are chosen on the hyper-sphere. This may be desirable
for the future work.

Theorem 1 Let S be a set of points in R2 on which the algorithm X-Forest runs. Given
two point A,B ∈ S having distance l, the probability of this two point not being partitioned
in a X-Projection Tree after 2n steps satisfies

Pr(A and B not partitioned) ≤ F 2
n

(l

ρ(S)

)

Fn(x) :=
2

π(n− 1)!

∫ π
2

0

dθ

∫ 1

xcos(θ)

(− log z)n−1 dz

Proof. Let V be a random variable defined as below

V =

{
0, A and B not partitioned
1, otherwise

Since the parameter is set as X = 2, two projection directions will be chosen at the beginning
of the algorithm. Let a, b represent them respectively. Let Y1, Y2 be random variables
representing the angle between the two directions and AB respectively. It is obvious that the
angle locates in the interval [0, π/2]. Because these vectors are uniformly and independently
chosen at random from I, we have Y1, Y2 ∼ i.i.d U[0,π/2].

We first analyze the probability of A and B not being partitioned given particular θ1 and θ2,
i.e., Pr (V = 0 | Y1 = θ1, Y2 = θ2). We notice that the partition performed on the direction
a affects the partition on direction b. This is because the partition on direction a will reduce
the elements of S, which shrinks the length L(S,b). If we assume that partitions on two
directions are independent with each other, then this shrink will not happen. In this case,
the probability of A and B not partitioned in a tree becomes larger. That is

Pr(V = 0 | Y1 = θ1, Y2 = θ2) ≤ Pr(Va = 0 | Y1 = θ1) · Pr(Vb = 0 | Y2 = θ2) (6)

12

Under review as a conference paper at ICLR 2020

where Va and Vb are random variables representing whether point A and B are partitioned
on direction a and b respectively, similar to V . It is obvious that Pr(Va = 0 | Y1 = θ1) has
the same form as Pr(Vb = 0 | Y2 = θ2), therefore we just need to focus on the direction a.

Recall that when the depth of a tree node is even, direction a will be used. Therefore, n
partition thresholds will be chosen on direction a. We can simplify the procedure of choosing
n partition thresholds as shrinking the total length L(S,a) by n times. The probability
of the final total length being bigger than l cos(θ1) is the probability of the two points A
and B not being partitioned in direction a. In our algorithm, the partition threshold is
uniformly chosen at random in the current range recursively, which means that the shrink
factor satisfies U[0,1]. Therefore, we have

Pr(Va = 0 | Y1 = θ1) = Pr
(
L(S,a) · Z1Z2 · · ·Zn ≥ l cos(θ1)

)
= Pr

(
Z(n) ≥ l cos(θ1)

L(S,a)

)
(7)

where Z1, Z2, . . . , Zn are i.i.d random variables such that Zi ∼ U[0,1], and Z(n) is the
product of Z1, Z2, . . . , Zn.

We now derive the upper bound of the probability as the following

Pr(V = 0) = Pr
(
V ≤ 0, Y1 ≤

π

2
, Y2 ≤

π

2

)
=

∫ π
2

0

dθ1

∫ π
2

0

dθ2 · Pr(V = 0 | Y1 = θ1, Y2 = θ2) · fY1
(θ1) · fY2

(θ2)

where fY1 and fY2 is the probability density function (PDF) of Y1 and Y2. Combining (6),
(7) and the result from Lemma 2, we find

Pr(V = 0) ≤
∫ π

2

0

dθ1

∫ π
2

0

dθ2 · Pr
(
Z(n) ≥ l cos(θ1)

L(S,a)

)
· Pr

(
Z(n) ≥ l cos(θ2)

L(S,b)

)
· 4

π2

≤ 4

π2

∫ π
2

0

dθ1

∫ π
2

0

dθ2 · Pr
(
Z(n) ≥ l cos(θ1)

ρ(S)

)
· Pr

(
Z(n) ≥ l cos(θ2)

ρ(S)

)
=

4

π2(n− 1)!2

∫ π
2

0

dθ1

∫ π
2

0

dθ2

∫ 1

l cos(θ1)

ρ(S)

dz1

∫ 1

l cos(θ2)

ρ(S)

dz2 · (log z1 log z2)n−1

= F 2
n

(l

ρ(S)

)
�

The inequality of Theorem 1 shows that the probability of the two point not being partitioned
has an upper bound F 2

n(l/ρ(S)). However, the reader may want to know whether Fn gives a
reasonable bound for the probability. Therefore, we give a lemma to further illustrate the
feature of Fn.

Lemma 1 Fn(x) is a strictly monotonically decreasing function with respect to x in
(0, 1), and satisfies

Fn(0) = 1 , Fn(1) = 0

Proof. First we prove that Fn is strictly monotonically decreasing. It is obvious that
(− log z)n−1 > 0 for any z ∈ (0, 1). Therefore, given x1, x2 ∈ (0, 1) such that x1 < x2, we
have

∫ 1

x1cos(θ)

(− log z)n−1 dz >

∫ 1

x2cos(θ)

(− log z)n−1 dz

13

Under review as a conference paper at ICLR 2020

Apply the inequality above to the expression of Fn yields

Fn(x1) =
2

π(n− 1)!

∫ π
2

0

dθ

∫ 1

x1cos(θ)

(− log z)n−1 dz

>
2

π(n− 1)!

∫ π
2

0

dθ

∫ 1

x2cos(θ)

(− log z)n−1 dz

= Fn(x2)

which indicates that Fk is strictly monotonically decreasing. Now we calculate

Fn(0) =
2

π(n− 1)!

∫ π
2

0

dθ

∫ 1

0

(− log z)n−1 dz

=
1

(n− 1)!

∫ 1

0

(− log z)n−1 dz

=
1

(n− 1)!

∫ ∞
0

un−1 · e−u du (u = − log z)

=
1

(n− 1)!
Γ(n)

= 1

Fn(1) =
2

π(n− 1)!

∫ π
2

0

dθ

∫ 1

1

(− log z)n−1 dz

= 0

�

The combination of Theorem 1 and Lemma 1 shows that the probability of far-away points
not being partitioned in a X-Projection Tree is low. This is because far-away points will
have a bigger l, resulting in a smaller F 2

n(l/ρ(S)) which approaches 0. On the other hand,
near points will have a loose upper bound approaching 1, therefore they are more likely
to stay together. In summary, we state that the characteristics of the Euclidean space are
maintained in our X-Forest algorithm.

Lemma 2 Suppose Z1, Z2, . . . , Zn are i.i.d random variables such that Zi ∼ U[0,1]. Let
Z(n) = Z1Z2 · · ·Zn. The probability density function (PDF) of Z(n) is

fZ(n)(x) =

{
(− log x)n−1

(n−1)! , 0 < x ≤ 1

0, otherwise

Proof. We use mathematical induction on n to prove the lemma.

Base case. When n = 1, we have Z(n) = Z1 ∼ U[0,1]. Obviously the statement is true.

Inductive step. Assume the statement holds for n = k. For brevity, we rewrite fZ(k)(x) as
fk(x).

First we calculate the cumulative distribution function (CDF) of Z(k + 1) based on the
assumption. For x ∈ [0, 1] we find

14

Under review as a conference paper at ICLR 2020

Pr
(
Z(k + 1) ≤ x

)
=

∫ 1

0

Pr
(
Z(k + 1) ≤ x | Z(k) = y

)
fk (y) dy

=

∫ x

0

1 · fk (y) dy +

∫ 1

x

x

y
· fk (y) dy

= Pr
(
Z(k) ≤ x

)
+ x

∫ 1

x

fk (y)

y
dy

Differentiating both sides we have

fk+1 (x) = fk (x) +

∫ 1

x

fk (y)

y
dy − x · fk (x)

x

=

∫ 1

x

fk (y)

y
dy

=

∫ 1

x

(− log y)k−1

(k − 1)!
· 1

y
dy

=

∫ 0

log x

(−t)k−1

(k − 1)!
dt (t = log y)

=
(− log x)k

k · (k − 1)!

Therefore, the statement holds for n = k+ 1 when x ∈ [0, 1]. For x < 0 or x > 1, it is obvious
that fk+1(x) = 0. In summary, the lemma holds for n = k + 1. �

15

	Introduction
	Background and motivation
	Prior art and their limitations
	Our contributions

	Background and Related Work
	Similarity Measurement
	Random Projection Tree

	The X-Forest Algorithm
	Similarity Matrix Generation
	X-Projection Tree and X-Forest

	Applications of X-Forest
	Experimental Results
	Experimental Setup
	Experiments on Accuracy
	Experiments on Speed

	Conclusion
	Appendix

