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ABSTRACT

Adversarial input poses a critical problem to deep neural networks (DNN). This
problem is more severe in the "black box" setting where an adversary only needs
to repeatedly query a DNN to estimate the gradients required to create adversarial
examples. Current defense techniques against attacks in this setting are not effective.
Thus, in this paper, we present a novel defense technique based on randomization
applied to a DNN’s output layer. While effective as a defense technique, this
approach introduces a trade off between accuracy and robustness. We show that
for certain types of randomization, we can bound the probability of introducing
errors by carefully setting distributional parameters. For the particular case of finite
difference black box attacks, we quantify the error introduced by the defense in
the finite difference estimate of the gradient. Lastly, we show empirically that the
defense can thwart three adaptive black box adversarial attack algorithms.

1 INTRODUCTION

The success of deep neural networks has led to scrutiny of the security vulnerabilities in deep neural
network based models. One particular area of concern is weakness to adversarial input: carefully
crafted inputs that resist detection and can cause arbitrary errors in the model (1; 2). This is especially
highlighted in the domain of image classification, where an adversary creates an image that resembles
a natural image to a human observer but easily fools deep neural network based image classifiers (3).

Different types of adversarial attacks exists throughout the lifecycle of a deep neural network model.
For example, adversaries can attack a model during training by injecting corrupting data into the
training set or by modifying data in the training set. However, inference time attacks are more
worrisome as they represent the bulk of realistic attack surfaces (4; 5; 6).

The input created under an inference time attack is known as an adversarial example and methods
for generating such examples have recently attracted much attention. In most cases, the adversarial
example is created by perturbing a (correctly classified) input such that the model commits an error.
The perturbation applied to the "clean" input is typically constrained to be undetectably small (7; 8; 9).

Defending againsts adversarial attacks on deep neural networks is crucial and has seen relatively slow
progress compared to the sophistication and progress of adversarial attacks (10; 11; 12; 13; 14; 15).
This is because it is difficult to prove a defense can withstand the types of attacks it is designed for
especially when the defense must prove capable of withstanding "adaptive" adversaries that have
knowledge of the details of the defense (16).

A defense against adversarial attacks is defined by the threat model it is designed to defend against (16).
The most permissive threat model makes the weakest assumptions about the adversary. One such
threat model can be assuming the adversary has complete knowledge of the model, including
architecture and parameters of the underlying network. This is known as the "white-box" setting.
Other threat models can also be useful, such as assuming the adversary has knowledge of the network
architecture but not the parameters of the model. More restrictive threat models allow only so called
“black-box” attacks, attacks that can create adversarial examples without having access to the model
architecture or weights and only accessing some form of output of the model.

The rest of the paper is organized as follows. In Section 2, we discuss the threat model considered. In
Section 3, we describe valid black box attacks under the threat model. Output randomization as a
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defense is described in Section 4. We show empirical results in Section 5, cover related approaches
in Section 6, and conclude in Section 7.

2 THREAT MODEL

Adversary goals: The goal of the adversary is to force the classifier to commit an error within a
distortion limit, such that the example crafted by the adversary is similar to the original example. The
adversary induces such an error in an untargeted or targeted attack. The goal of an untargeted attack
is misclassification of an input, whereas the goal of a targeted attack is misclassification of an input
as a class specified by the adversary.

Adversary knowledge: The adversary has access to the model only at the input and output level,
and has no knowledge of its architecture or parameters. This black-box adversary is aware of the
details of the defenses protecting the model and the type of randomness associated with any defense
but not the exact random numbers generated.

Adversary capability: The adversary only has access to the model by providing examples as input
and observing the output probability vector generated by the model as output. The adversary can
modify aspects of the input in any way as long as it remains similar to the original input. This
similarity is controlled by an lp distortion penalty on the adversarial image. Common choices for
the distortion penalty include l1, l2 and l∞. We use the l2 perturbation penalty as this type of attack
results in the strongest attacks (17). Attackers are allowed to query the model up to a maximum limit,
which we increase to our computational limit to strengthen attacks. In addition to a maximum query
limit, attackers often use an early stopping parameter to avoid wasting computation on unpromising
direction during optimization. We also increase this parameter to test our defense against stronger
attacks.

3 EXISTING BLACK BOX ATTACKS

Black box attacks are called “gradient-free” attacks since they do not involve computing gradients
of the input by backpropagation on the model under attack. Instead the gradients of the input are
estimated by using the finite difference estimate for each input feature.

Black box attacks can be categorized by the type of output the adversary is allowed to observe: logit
layer, class probabilities/softmax layer, or top k class probabilities/labels.

In general, designing successful black box attacks in the label only setting is much harder than the
setting where the logit layer or softmax layer is available to the attacker. We consider the easiest
setting for black box attacks, where all the class probabilities are available.

3.1 ZOO BLACK BOX ATTACK

The Zeroth Order Optimization based black-box (ZOO) attack (18) is a method for creating adversarial
examples for deep neural networks that only requires input and output access to the model. ZOO
adopts a similar iterative optimization based approach to adversarial example generation as other
successful attacks, such as the Carlini & Wagner (C&W) attack (17). The attack begins with a
correctly classified input image x, defines an adversarial loss function that scores perturbations δ
applied to the input, and optimizes the adversarial loss function using gradient descent to find δ∗ that
creates a succesful adversarial example. Specifically, gradient descent is used to find δ∗ such that:

f(x+ δ∗) = ya

‖x− (x+ δ∗)‖ ≤ ε
Namely, that the perturbed input x + δ∗ successfully fools the classifier f to predict the incorrect
class ya and that the perturbed input is similar to the original input up to some distortion limit ε.

The primary (and strongest) adversarial loss used by the ZOO attack for targeted attacks is given by:

L(x, t) = max

{
max
i 6=t
{log f(x)i − log f(x)t},−κ

}
(1)
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Where x is an input image, t is a target class, and κ is a tuning parameter. Minimizing this loss
function over the input x causes the classifier to predict class t for the optimized input. For untargeted
attacks, a similar loss function is used:

L(x) = max

{
log f(x)i −max

j 6=i

{
log f(x)j

}
,−κ

}
(2)

where i is the original label for the input x. This loss function simply pushes x to enter a region of
misclassification for the classifier f .

In order to limit distortion of the original input, the adversarial loss function is combined with a
distortion penalty in the full optimization problem. This is given by:

min
x
‖x− x0‖22 + c · L(x, t)

subject to x ∈ [0, 1]n

In the white box setting, attackers can take advantage of the backprogation algorithm to calculate
the gradient of the adversarial loss function with respect to the input coordinates ( δLδxi

) and solve
the optimization problem using gradient descent. In lieu of this, ZOO uses "zeroth order stochastic
coordinate descent" to optimize input on the adversarial loss directly. This is most easily understood
as a finite difference estimate of the gradient of the input with the symmetric difference quotient (18):

δL

δxi
≈ gi :=

L(x+ hei)− L(x− hei)
2h

with ei as the basis vector for coordinate/pixel i and h set to a small constant. The ZOO attack uses
this approximation to the gradients to create an adversarial example from the given input. Note that
for an image with n pixels, computing an estimate of the gradient with respect to each pixel requires
2n queries to the model. Since this is usually prohibitive, the ZOO attack circumvents this by only
estimating the gradients for a subset of coordinates at each step. ZOO also uses dimensionality
reduction and a hierarchical approach to further increase the efficiency of the attack and show
empirically that these methods are effective (18).

3.2 QUERY LIMITED (QL) BLACK BOX ATTACK

A similar approach to ZOO is adopted by (19) in a query limited setting. Like ZOO, the QL attack
estimates the gradients of the adversarial loss using a finite difference based approach. However, the
QL attack reduces the number of queries required to estimate the gradients by employing a search
distribution. Natural Evolutionary Strategies (NES) (20) is used as a black box to estimate gradients
from a limited number of model evaluations. Projected Gradient Descent (PGD) (12) is used to
update the adversarial example using the estimated gradients. PGD uses the sign of the estimated
gradients to perform an update: xt = xt−1−η · sign(gt), with a step size η and the estimated gradient
gt. The estimated gradient for the QL attack using NES is given by:

gt =

m∑
i=1

L(x+ σ · ui) · ui − L(x− σ · ui) · ui
2mσ

where ui is sampled from a standard normal distribution with the same dimension as the input x, σ is
the search variance, and m is the number of samples used to estimate the gradient. The difference
between this approach and ZOO is that ZOO attempts to estimate the gradient with respect to one
coordinate at a time while this approach averages over perturbations to many coordinates to estimate
the entire gradient directly.

In the next section, we show that applying a simple randomization function (that does not affect
model accuracy) to the output of a model causes these types of attacks to fail even if the attack is
adapted to the specific randomization function.

4 THWARTING BLACK BOX ATTACKS

The intuition behind output randomization is that a model may deliberately make errors in its
predictions in order to thwart a potential attacker. This simple idea introduces a tradeoff between
accurate predictions and the effectiveness of finite difference based black box adversarial attacks.
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Output randomization for a model that produces a probability distribution over class labels replaces
the output of the model p by a stochastic function d(p). The function d must satisfy two conditions:

1. The probability of misclassifying an input due to applying d is bounded by K
2. The vector d(p) prevents adversaries under the given threat model from generating adversar-

ial examples.

The first condition ensures that the applied defense minimally impacts non-adversarial users of the
model, such as users of an online image classification service. The effectiveness of the defense comes
from satisfying the second condition as the introduced randomness must prevent an adversary (in the
appropiate setting) from producing an adversarial example.

In the following two sections, we consider a simple noise-inducing function d(p) = p+ ε where ε is
a random variable.

4.1 MISSCLASSIFICATION RATE

A simple function useful for defending a model is the gaussian noise function d(p) = p+ ε where ε
is a gaussian random variable with mean µ and variance σ2 (ε ∼ N (µ, σ2 · IC)). In the black box
setting, a user querying the model with an input x receives the perturbed vector d(p) instead of the
true probability vector p. Note that d(p) does not necessarily represent a probability mass function
like p.

To verify that this function satisfies the first condition above, we wish to know the probability that the
class predicted by the undefended model is the same as the class predicted by the defended model. If
the output of the model for an input x is p, we will refer to the maximum element of p as pm and the
rest of the elements of p in decreasing order as p2, p3, ...pC .

Suppose the model correctly classifies the input x in the vector p, we can express the probability that
x is misclassified in the vector d(p) as:

C∑
i=2

P(d(pi) > d(pm))

We can write P(d(pi) > d(pm)) for i = 2, 3, ...C as:

P(d(pi) > d(pm)) = P(pi + εi > pm + εm)

If we define δi = pm − pi, as shown in Figure 1a, and since ei := εi − εm is itself a gaussian with
mean µi − µm and variance σ2

i + σ2
m then we can write:

P(ei > δi) = 1− P(ei ≤ δi) = 1− P
(
ei − µi + µm
σ2
i + σ2

m

≤ δi − µi + µm
σ2
i + σ2

m

)
Using the cumulative distribution function of a standard gaussian distribution Φ, we can write the
misclassification probability as:

K := P(d(pi) > d(pm)) = 1− Φ

(
δi − µi + µm
σ2
i + σ2

m

)
= Φ

(
−δi − µi + µm

σ2
i + σ2

m

)
For the special case of a gaussian noise function d(p) with mean 0 and variance σ2 we would like to
fix the probability of misclassification to a value K and compute the appropiate variance σ2. We can
use the inverse of the standard gaussian cdf Φ−1, or the probit function, to write this easily:

σ2 = − δi
2Φ−1(K)

Note that the desired misclassification rate K < 0.5 in any real case and so the rhs will be positive.
If we consider δi as the confidence of the model, then the allowable variance will be larger when
the model is confident and smaller otherwise. We show the calculations above for one class i, the
misclassification probability (K) and level of noise (σ2) can be set for each class separately. In
Figure 1b we show the maximum allowable variance for different misclassification rates.
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(a) Probability distribution over classes generated
by a classification model. δi represents the relative
confidence of the model’s prediction.
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(b) Maximum output randomization σ2 vs δi for mis-
classification rates K = {20%, 10%, 1%, 0.5%}

Figure 1: Controlling misclassification caused by output randomization

4.2 FINITE DIFFERENCE GRADIENT ERROR

To verify the function d(p) satisfies the second condition, that it introduces error that prevents a finite
difference based black box attack, we show the effect of the output randomization on the gradient
accessible to the adversary.

Finite difference (FD) based approaches involve evaluating the adversarial loss at two points, x+ hei
and x− hei, close to x (with small h and unit vector ei) and using the slope to estimate the gradient
of the loss with respect to pixel i of the input. For a loss function L, the finite difference estimate of
the gradient of pixel i is given by:

gi =
L(f(x+ hei))− L(f(x− hei))

2h

Here, we write the adversarial loss function (either the untargeted loss in Equation 2 or the targeted
loss in Equation 1) in terms of the output of the model to make explicit the dependence of L on the
output vector of the network p = f(·). p and p′ are used to distinguish between the two output vectors
needed to compute the gradient estimate.When the network is defended using output randomization,
the function d() is applied to the output vector of the network. Thus, the finite difference gradient
computed by the attacker is:

γi =
L(d(p))− L(d(p′))

2h

The error in the FD gradient introduced by the defense is given by |gi − γi|. When d is a function
that adds noise ε to the output of the network, the expected value of the error is:

|E[gi − γi]| =
∣∣∣∣gi − E [L(p+ ε)− L(p′ + ε′)

2h

]∣∣∣∣
This error term depends on the choice of the adversarial loss function L(·). Since the untargeted
attack is generally considered easier than the targeted attack, consider how the gradient error of the
defended model behaves under the untargeted adversarial loss function. For untargeted attacks, we
simplify the loss function to: Lu(p) = log(pc)− log(po) = log( pcpo ) where pc is the probability of
the true class and po is the maximum probability assigned to a class other than the true class of the
input image.

Substituting the untargeted adversarial loss for L(·) we see:

|E[gi − γi]| =
∣∣∣∣gi − 1

2h
E

[
log(

pc + εc
po + εo

)− log(
p′c + ε′c
p′o + ε′o

)

]∣∣∣∣
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We use a second order Taylor series approximation of E[log(X)] ≈ log(E[X])− V ar[X]
2E[X]2 to approxi-

mate the expectations. If we further assume ε is zero-mean with variance σ2, then E[p+ ε] = p and
the expectation of the defended gradient is approximately:

|E[gi − γi]| ≈

∣∣∣∣∣σ2

4h

(
σ2 + p2o + p2

′

c

p2′c p
2
o

− σ2 + p2
′

o + p2c
p2cp

2′
o

)∣∣∣∣∣
This approximation summarizes the suprising effect output randomization has on finite difference
based black box attacks. Firstly, it is easy to see that the error scales with the variance of ε (in
the zero mean case). Even when the adversary adapts to the defense by averaging over the output
randomization the variance is only reduced linearly by the number of samples. Secondly, even in
expectation the error is never non-zero. This is because one of two cases must be true in order for the
error to be zero:

1. pc == po and p′c == p′o

2. pc == p′c and po == p′o

Case 1 cannot occur because it implies the model is predicting two different classes simultaneously.
Case 2 will only occur if L(p) == L(p′) which means gi = 0.

The reason for this behavior is mostly due to the log operation in the adversarial loss function L. As
noted by the authors in (18), the log is crucial to the success of finite difference black box attacks as
well trained models yield skewed distributions in the output p = f(x). In our experiments, we show
that this behavior holds in real world experiments on image classification datasets.

5 EMPIRICAL RESULTS

To evaluate the output randomization defense against black box attacks, we select three successful
black box attacks (ZOO (18), QL (19), and BAND (21)) on benchmark image classification datasets
(MNIST (22), CIFAR10 (23), and ImageNet (24)). For all defended models, we use ε ∼ N (0, σ2 ·IC).
Details of both the attacks and defenses can be found in our code 1 and the appendix. We follow
the guidelines laid out in (16), most importantly we attempt to adapt the attacks to the proposed
defense. In this case, this means the attacker is aware of the type of randomization applied to the
output of the network. Therefore, we adapt the attacks by allowing the attacker to average over the
output randomization in an attempt to bypass the defense. This type of adaptation has been shown to
overcome certain types of input and model randomization defenses (25). In our results, we refer to
this as the adaptive attack.

As a sanity check, we also measure the attack success rate of a white box attacker (Carlini &
Wagner L2 (17) attack) with randomized output. We find that the defense has some success in
defending against this attack in the non-adaptive case. However the adaptive white box attacker is
able to overcome the output randomization by averaging over a small number of samples. This is
summarized in Figure 2.

Our main set of experiments is shown in Figure 3 and show the effects of output randomization on
the non-adaptive and adaptive ZOO attacks. We show that the defense reduces the attack success rate
significantly even in the adaptive attacker setting, where we average over randomness and double
attack iterations. The effectiveness of the defense was not affected by targeted or untargeted attacks.
Table 1 summarizes the results for three finite difference based black box attacks on ImageNet.

It is important to show how a defense affects the "normal" operating properties of a model and this is
typically demonstrated by comparing the test set accuracy of the defended model to the undefended
model. Figure 2a and Figure 3a show the effect of increasing noise levels on test set accuracy. Output
randomization is an effective defense against black box attacks at noise levels as small as σ2 = 1e-4
where model performance is identical to undefended models.

1Our attack code is based on https://github.com/IBM/ZOO-Attack, https://github.
com/labsix/limited-blackbox-attacks, and https://github.com/MadryLab/
blackbox-bandits for the ZOO, QL, and BAND attacks respectively.
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(a) Attack success rate (solid) and test set accuracy
(dashed) vs variance for the non-adaptive attacker. Out-
put randomization is not effective against a white box
attacker at small noise levels.
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(b) Attack success rate vs variance (groups) for adap-
tive attacker with increasing averaging (10, 50, 100
samples). Averaging allows the white box adaptive
attacker to overcome output randomization.

Figure 2: Carlini & Wagner (17) white box attack versus output randomization. Top row shows
untargeted attacks, bottom row shows targeted attacks.
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(a) Attack success rate (solid) and test set accuracy
(dashed) vs variance for the non-adaptive attacker. Out-
put randomization blocks attacks even at very small
noise levels (σ2 < 1e-6).
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(b) Attack success rate vs variance (bar groups) for
adaptive attacker with increasing averaging (10, 50, 100
samples). Averaging does not improve attack success
rate of the black box attacker.

Figure 3: ZOO (18) black box attack versus output randomization. Top row shows untargeted attacks,
bottom row shows targeted attacks. Compare this figure with the white box attack results in Figure 2.

Defensive techniques without output randomization are still vulnerable to black box attacks. We
evaluated defensive distillation (10) and input randomization (26) against the ZOO attack and found
that these defenses did not reduce the attack success rate significantly as shown in Table 2. Distillation
is shown to be vulnerable to white box attacks in (17), we show it is also vulnerable to finite difference
black box attacks. Input randomization (26) has limited success in defending against ZOO (reducing
attack success rate to 0.76), however it is not as effective as output randomization. This is because
randomization applied at the input is not guaranteed to affect the finite difference gradient estimates.
In addition,input randomization also does not allow fine control over model accuracy.

Table 1: Output randomization vs 3 black box attacks on 100 correctly classified ImageNet examples
measured by attack success rate (fraction of examples misclassified)

Noise Variance ZOO (18) QL (19) BAND (21)

(undefended) 0.69 1.00 0.92
1.00e-4 0.03 0.73 0.58
1.00e-2 0.00 0.02 0.07
5.76e-2 0.00 0.01 0.06
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Table 2: ZOO black box attack success rate vs three defenses

Dataset Ex. Type Distillation(10) Mitigation(26) OR (ours)

MNIST Targeted 1.00 - 0.00
MNIST Untargeted 0.99 - 0.01
CIFAR10 Targeted 1.00 - 0.011
CIFAR10 Untargeted 1.00 - 0.19
ImageNet Untargeted - 0.76 0.005

6 RELATED WORK

In this section, we discuss related gradient masking or obfuscated gradient defenses. We will focus
on proactive defenses, which attempt to make a network robust, compared to reactive defenses, which
attempt to detect adversarial examples. (25) defined three ways to obfuscate gradients: shattered
gradients, exploding/vanishing gradients, and stochastic gradients.

Shattered gradients are a non-differentiable defense that causes a gradient to be nonexistent or
incorrect. This can be done unintentionlly by introducing numeric instability. (27) and (28) proposed
shattered gradients defenses that introduce a non-differentiable and non-linear discretization to
a model’s input. These transformation are ineffective as black box attacks are agnostic of input
randomization.

Exploding gradients make a network hard to train because of an extremely deep neural network.
This is generally done by using an output of a neural network as the input of another. (29) and (30)
both proposed defenses that utilize GANs. However, (25) shows that these defenses can be bypassed
using transferability of adversarial attacks. The transferability property allows an attacker to use
adversarial examples created using one model (often a surrogate model) to fool another model (31).
Although this is a valid attack vector for even black box models, we do not consider this type of
attack in this work.

Stochastic gradients randomize gradients by introducing some randomization to the network or
randomly transforming the input to the network. (32) proposed a stochastic gradients defense in
which a random subset of activations are pruned. (26) introduced randomness by randomly rescaling
input images. (25) showed that an adaptive attacker can bypass these defenses by computing the
expected value over multiple queries. We test a similar approach on output randomization and show
it is not effective in the black box case (Figure 3b).

Although other defense methods consider introducing randomness to the input or model itself, this
work is the first to our knowledge to consider randomizing the output of the model directly.

7 CONCLUSION

Black box attacks based on finite difference gradient estimates pose a threat to classification models
without needing priveleged access to the model. In this paper, we show that this threat can averted by
introducing simple types of randomization to the output of the model. Our empirical results show
that even very small (σ2 = 1e-6) perturbations to the output can prevent these type of attacks.

Although our work shows an encouraging result for defending against black box attacks, we show
that output randomization (or other types of randomization) do not prevent white box attacks (25).
Furthermore, output randomization only prevents query based black box attacks and does not address
the problem of transfer attacks (33; 31). Other attacks, such as NAttack (34), utilize derivative-free
optimization to find adversarial examples bypassing the need for finite difference estimates. We leave
defense against these types of attacks to future work.
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APPENDIX

ATTACK DETAILS

For our evaluation, we trained models for MNIST, CIFAR10, and ImageNet that acheived 99%, 79%, and ∼
72% test set accuracies respectively using the code provided by (18). Non-adaptive attacks were conducted using
the parameters suggested by the attacks. For ZOO, these include using the ADAM (35) solver, 9 binary search
steps, and image resizing + reset ADAM for ImageNet. The adaptive attackers (both white and black) were
modeled in two ways. (i) We added averaging over randomness to the attack and (ii) the number of iterations
was doubled. For all of our experiments, we averaged the attack success rate over 100 images and report the
mean value over 30 runs.

EXTENSIONS

Other randomization functions can be used to introduce randomness in the output instead of gaussian noise. As
an extension, we considered noise sampled from a gaussian mixture model with random mixing coefficients
and parameters. In theory, this type of randomization should be harder for attackers to average over and avoid.
However, we saw that a white box attacker could still average over the added noise with 100 samples and
circumvent the defense. Since the simple gaussian noise was effective in the blackbox case, we demonstrate our
results using gaussian noise.

We also experimented with randomization of the logit layer and observed improvements over softmax layer
randomization. However, we chose to present the more general softmax layer randomization for clarity.

Figure 4 shows the error between the finite difference gradients for the ZOO attack on a defended and undefended
model at varying noise levels. As we expect, increased noise levels cause the overall error (measured by the
norm of difference of the gradients) to increase dramatically.
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Figure 4: L2 norm of difference between the true finite difference gradient calculated by ZOO on the
undefended model and the finite difference gradient calculated on the defended model with increasing
variance. As expected the error is significantly higher for noise with larger variance.
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