
Under review as a conference paper at ICLR 2020

CM3: COOPERATIVE MULTI-GOAL MULTI-STAGE
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A variety of cooperative multi-agent control problems require agents to achieve
individual goals while contributing to collective success. This multi-goal multi-
agent setting poses difficulties for recent algorithms, which primarily target settings
with a single global reward, due to two new challenges: efficient exploration for
learning both individual goal attainment and cooperation for others’ success, and
credit-assignment for interactions between actions and goals of different agents. To
address both challenges, we restructure the problem into a novel two-stage curricu-
lum, in which single-agent goal attainment is learned prior to learning multi-agent
cooperation, and we derive a new multi-goal multi-agent policy gradient with a
credit function for localized credit assignment. We use a function augmentation
scheme to bridge value and policy functions across the curriculum. The complete
architecture, called CM3, learns significantly faster than direct adaptations of exist-
ing algorithms on three challenging multi-goal multi-agent problems: cooperative
navigation in difficult formations, negotiating multi-vehicle lane changes in the
SUMO traffic simulator, and strategic cooperation in a Checkers environment.

1 INTRODUCTION

Many real-world scenarios that require cooperation among multiple autonomous agents are multi-goal
multi-agent control problems: each agent needs to achieve its own individual goal, but the global
optimum where all agents succeed is only attained when agents cooperate to allow the success of
other agents. In autonomous driving, multiple vehicles must execute cooperative maneuvers when
their individual goal locations and nominal trajectories are in conflict (e.g., double lane merges) (Cao
et al., 2013). In social dilemmas, mutual cooperation has higher global payoff but agents’ individual
goals may lead to defection out of fear or greed (Van Lange et al., 2013). Even settings with a
global objective that seem unfactorizable can be formulated as multi-goal problems: in Starcraft
II micromanagement, a unit that gathers resources must not accidentally jeopardize a teammate’s
attempt to scout the opponent base (Blizzard Entertainment, 2019); in traffic flow optimization,
different intersection controllers may have local throughput goals but must cooperate for high global
performance (Zhang et al., 2019). While the framework of multi-agent reinforcement learning
(MARL) (Littman, 1994; Stone and Veloso, 2000; Shoham et al., 2003) has been equipped with
methods in deep reinforcement learning (RL) (Mnih et al., 2015; Lillicrap et al., 2016) and shown
promise on high-dimensional problems with complex agent interactions (Lowe et al., 2017; Mordatch
and Abbeel, 2018; Foerster et al., 2018; Lin et al., 2018; Srinivasan et al., 2018), learning multi-agent
cooperation in the multi-goal scenario involves significant open challenges.

First, given that exploration is crucial for RL (Thrun, 1992) and even more so in MARL with larger
state and joint action spaces, how should agents explore to learn both individual goal attainment
and cooperation for others’ success? Uniform random exploration is common in deep MARL
(Hernandez-Leal et al., 2018) but can be highly inefficient as the value of cooperative actions may
be discoverable only in small regions of state space where cooperation is needed. Furthermore, the
conceptual difference between attaining one’s own goal and cooperating for others’ success calls for
more modularized and targeted approaches. Second, while there are methods for multi-agent credit
assignment when all agents share a single goal (i.e., a global reward) (Chang et al., 2004; Foerster
et al., 2018; Nguyen et al., 2018), and while one could treat the cooperative multi-goal scenario as a
problem with a single joint goal, this coarse approach makes it extremely difficult to evaluate the
impact of an agent’s action on another agent’s success. Instead, the multi-goal scenario can benefit

1

Under review as a conference paper at ICLR 2020

from fine-grained credit assignment that leverages available structure in action-goal interactions, such
as local interactions where only few agents affect another agent’s goal attainment at any time.

Given these open challenges, our paper focuses on the cooperative multi-goal multi-agent setting
where each agent is assigned a goal1 and must learn to cooperate with other agents with possibly
different goals. To tackle the problems of efficient exploration and credit assignment in this complex
problem setting, we develop CM3, a novel general framework involving three synergistic components:

1. We approach the difficulty of multi-agent exploration from a novel curriculum learning perspective,
by first training an actor-critic pair to achieve different goals in an induced single-agent setting
(Stage 1), then using them to initialize all agents in the multi-agent environment (Stage 2). The
key insight is that agents who can already act toward individual objectives are better prepared for
discovery of cooperative solutions with additional exploration once other agents are introduced.
In contrast to hierarchical learning where sub-goals are selected sequentially in time (Sutton et al.,
1999), all agents act toward their goals simultaneously in Stage 2 of our curriculum.

2. Observing that a wide array of complex MARL problems permit a decomposition of agents’
observations and state vectors into components of self, others, and non-agent specific environment
information (Hernandez-Leal et al., 2018), we employ function augmentation to bridge Stages 1-2:
we reduce the number of trainable parameters of the actor-critic in Stage 1 by limiting their input
space to the part that is sufficient for single-agent training, then augment the architecture in Stage
2 with additional inputs and trainable parameters for learning in the multi-agent environment.

3. We propose a credit function, which is an action-value function that specifically evaluates action-
goal pairs, for localized credit assignment in multi-goal MARL. We use it to derive a multi-goal
multi-agent policy gradient for Stage 2. In synergy with the curriculum, the credit function is
constructed via function augmentation from the critic in Stage 1.

We evaluate our method on challenging multi-goal multi-agent environments with high-dimensional
state spaces: cooperative navigation with difficult formations, double lane merges in the SUMO
simulator (Lopez et al., 2018), and strategic teamwork in a Checkers game. CM3 solved all domains
significantly faster than IAC and COMA (Tan, 1993; Foerster et al., 2018), and solved four out of five
environments significantly faster than QMIX (Rashid et al., 2018). Exhaustive ablation experiments
show that the combination of all three components is crucial for CM3’s overall high performance.

2 RELATED WORK

While early theoretical work analyzed Markov games in discrete state and action spaces (Tan, 1993;
Littman, 1994; Hu and Wellman, 2003), recent literature have leveraged techniques from deep RL
to develop general algorithms for high dimensional environments with complex agent interactions
(Tampuu et al., 2017; Mordatch and Abbeel, 2018; Lowe et al., 2017), which pose difficulty for
traditional methods that do not generalize by learning interactions (Bhattacharya et al., 2010).

Cooperative multi-agent learning is important since many real-world problems can be formulated
as distributed systems in which decentralized agents must coordinate to achieve shared objectives
(Panait and Luke, 2005). Austerweil et al. (2016) showed that agents whose rewards depend on all
agents’ success perform better than agents who optimize for their own success, which motivates
the multi-agent credit assigment problem. In the special case when all agents have a single goal
and share a global reward, COMA (Foerster et al., 2018) uses a counterfactual baseline, while
Nguyen et al. (2018) employs count-based variance reduction limited to discrete-state environments.
However, their centralized critic does not evaluate the specific impact of an agent’s action on another’s
success in the general multi-goal setting. When a global objective is the sum of agents’ individual
objectives, value-decomposition methods optimize a centralized Q-function while preserving scalable
decentralized execution (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019), but do not
address credit assignment. While MADDPG (Lowe et al., 2017) and M3DDPG (Li et al., 2019)
apply to agents with different rewards, they do not specifically address multi-goal cooperation as they
do not distinguish between cooperation and competition, despite the fundamental difference.

1The hard problem of goal discovery and assignment is an open question for MARL. However, many practical
multi-agent problems have clear goal assignments, such as in autonomous driving and soccer. Our work is
specific to known goal assignment and is complementary to methods for the unknown case.

2

Under review as a conference paper at ICLR 2020

Multi-goal MARL was considered in Zhang et al. (2018), who analyzed convergence in a special
networked setting restricted to fully-decentralized training, while we conduct centralized training
with decentralized execution (Oliehoek et al., 2008). In contrast to multi-task MARL, which aims
for generalization among non-simultaneous tasks (Omidshafiei et al., 2017), and in contrast to
hierarchical methods that sequentially select subtasks (Vezhnevets et al., 2017; Shu and Tian, 2019),
our decentralized agents must cooperate concurrently to attain all goals. To the best of our knowledge,
few have investigated the benefits of curriculum learning (Bengio et al., 2009) for MARL. Gupta
et al. (2017) solved a single cooperative task defined by the number of agents. Rusu et al. (2016)
instantiate new neural network columns for task transfer in single-agent RL. Techniques in transfer
learning (Pan and Yang, 2010) are complementary to our novel curriculum approach to MARL.

3 PRELIMINARIES

In multi-goal MARL, each agent should achieve a goal drawn from a finite set, cooperate with other
agents for collective success, and act independently with limited local observations. We formalize
the problem as an episodic multi-goal Markov game, review an actor-critic approach to centralized
training of decentralized policies, and summarize counterfactual-based multi-agent credit assignment.

Multi-goal Markov games. A multi-goal Markov game is a tuple 〈S, {On}, {An}, P,R,G, N, γ〉
with N agents labeled by n ∈ [N]. In each episode, each agent n has one fixed goal gn ∈ G that
is known only to itself. At time t and global state st ∈ S, each agent n receives an observation
ont := on(st) ∈ On and chooses an action ant ∈ An. The environment moves to st+1 due to
joint action at := {a1t , . . . , aNt }, according to transition probability P (st+1|st,at). Each agent
receives a reward Rnt := R(st,at, g

n), and the learning task is to find stochastic decentralized
policies πn : On × G ×An → [0, 1], conditioned only on local observations and goals, to maximize
J(π) := Eπ

[∑∞
t=0 γ

t
∑N
n=1R(st,at, g

n)
]
, where γ ∈ (0, 1) and joint policy π factorizes as

π(a|s,g) :=
∏N
n=1 π

n(an|on, gn) due to decentralization. Let a−n and g−n denote all agents’
actions and goals, respectively, except that of agent n. Let boldface a and g denote the joint action
and joint goals, respectively. For brevity, let π(an) := πn(an|on, gn). This model covers a diverse
set of cooperation problems in the literature (Hernandez-Leal et al., 2018), without constraining how
the attainability of a goal depends on other agents: at a traffic intersection, each vehicle can easily
reach its target location if not for the presence of other vehicles; in contrast, agents in a strategic
game may not be able to maximize their rewards in the absence of cooperators (Sunehag et al., 2018).

Centralized learning of decentralized policies. A centralized critic that receives full state-action in-
formation can speed up training of decentralized actors that receive only local information (Lowe et al.,
2017; Foerster et al., 2018). Directly extending the single-goal case, for each n ∈ [1..N] in a multi-
goal Markov game, critics are represented by the value function V π

n (s) := Eπ

[∑∞
t=0 γ

tRnt
∣∣ s0 = s

]
and the action-value function Qπ

n (s,a) := Eπ

[∑∞
t=0 γ

tRnt
∣∣ s0 = s,a0 = a

]
, which evaluate the

joint policy π against the reward Rn for each goal gn.

Multi-agent credit assignment. In MARL with a single team objective, COMA addresses credit
assignment by using a counterfactual baseline in an advantage function An(s,a) := Qπ(s,a) −∑
ân π

n(ân|on)Qπ(s, (ân, a−n)) (Foerster et al., 2018, Lemma 1) , which evaluates the contribution
of a chosen action an versus the average of all possible counterfactuals ân, keeping a−n fixed. The
analysis in Wu et al. (2018) for a formally equivalent action-dependent baseline in RL suggests that
COMA is a low-variance estimator for single-goal MARL. We derive its variance in Appendix C.1.
However, COMA is unsuitable for credit assignment in multi-goal MARL, as it would treat the
collection of goals g as a global goal and only learn from total reward, making it extremely difficult
to disentangle each agent’s impact on other agents’ goal attainment. Furthermore, a global Q-function
does not explicitly capture structure in agents’ interactions, such as local interactions involving a
limited number of agents. We substantiate these arguments by experimental results in Section 6.

4 METHODS

We describe the complete CM3 learning framework as follows. First we define a credit function as
a mechanism for credit assignment in multi-goal MARL, then derive a new cooperative multi-goal
policy gradient with localized credit assignment. Next we motivate the possibility of significant

3

Under review as a conference paper at ICLR 2020

training speedup via a curriculum for multi-goal MARL. We describe function augmentation as a
mechanism for efficiently bridging policy and value functions across the curriculum stages, and
finally synthesize all three components into a synergistic learning framework.

4.1 CREDIT ASSIGNMENT IN MULTI-GOAL MARL

If all agents take greedy goal-directed actions that are individually optimal in the absence of other
agents, the joint action can be sub-optimal (e.g. straight-line trajectory towards target in traffic).
Instead rewarding agents for both individual and collective success can avoid such bad local optima.
A naïve approach based on previous works (Foerster et al., 2018; Lowe et al., 2017) would evaluate
the joint action a via a global Q-functionQπ

n (s,a) for each agent’s goal gn, but this does not precisely
capture each agent’s contribution to another agent’s attainment of its goal. Instead, we propose an
explicit mechanism for credit assignment by learning an additional function Qπ

n (s, am) that evaluates
pairs of action am and goal gn, for use in a multi-goal actor-critic algorithm. We define this function
and show that it satisfies the classical relation needed for sample-based model-free learning.
Definition 1. For n,m ∈ [N], s ∈ S, the credit function for goal gn and am ∈ Am by agent m is:

Qπ
n (s, am) := Eπ

[∞∑
t=0

γtRnt
∣∣ s0 = s, am0 = am

]
(1)

Proposition 1. For all m,n ∈ [N], the credit function (1) satisfies the following relations:
Qπ
n (s, am) = Eπ

[
Rnt + γQπ

n (st+1, a
m
t+1)

∣∣ st = s, amt = am
]

(2)

V π
n (s) =

∑
am

πm(am|om, gm)Qπ
n (s, am) (3)

Derivations are given in Appendix B.1, including the relation between Qπ
n (s, am) and Qπ

n (s,a).
Equation (2) takes the form of the Bellman expectation equation, which justifies learning the credit
function, parameterized by θQc , by optimizing the standard loss function in deep RL:

L(θQc) = Eπ

[(
Rnt + γQπ

n (st+1, a
m
t+1; θQc)−Qπ

n (st, a
m
t ; θQc)

)2]
(4)

While centralized training means the input space scales linearly with agent count, many practical
environments involving only local interactions between agents allows centralized training with few
agents while retaining decentralized performance when deployed at scale (evidenced in Appendix E).

4.2 COOPERATIVE MULTI-GOAL MULTI-AGENT POLICY GRADIENT

We use the credit function as a critic within a policy gradient for multi-goal MARL. Letting θ
parameterize π, the overall objective J(π) is maximized by ascending the following gradient:
Proposition 2. The cooperative multi-goal credit function based MARL policy gradient is

∇θJ(π) = Eπ

[N∑
m,n=1

(∇θ log πm(am|om, gm))Aπ
n,m(s,a)

]
(5)

Aπ
n,m(s,a) := Qπ

n (s,a)−
∑
âm

πm(âm|om, gm)Qπ
n (s, âm) (6)

This is derived in Appendix B.2. For a fixed agent m, the inner summation over n considers all
agents’ goals gn and updates m’s policy based on the advantage of am over all counterfactual actions
âm, as measured by the credit function for gn. The strength of interaction between action-goal pairs
is captured by the extent to which Qπ

n (s, âm) varies with âm, which directly impacts the magnitude
of the gradient on agent m’s policy. For example, strong interaction results in non-constant Qπ

n (s, ·),
which implies larger magnitude of Aπ

n,m and larger weight on ∇θ log π(am). The double summation
accounts for first-order interaction between all action-goal pairs, but complexity can be reduced by
omitting terms when interactions are known to be sparse, and our empirical runtimes are on par with
other methods due to efficient batch computation (Appendix F). As the second term in Aπ

n,m is a
baseline, the reduction of variance can be analyzed similarly to that for COMA, given in Appendix C.2.
While Aπ

n,m = Qπ
n (s,a)− V π

n (s) (due to (3)), ablation results show stability improvement due to
the credit function (Section 6). As the credit function takes in a single agent’s action, it synergizes
with both CM3’s curriculum and function augmentation as described in Section 4.5.

4

Under review as a conference paper at ICLR 2020

4.3 CURRICULUM FOR MULTI-GOAL MARL

Multi-goal MARL poses a significant challenge for exploration. Random exploration can be highly
inefficient for concurrently learning both individual task completion and cooperative behavior. Agents
who cannot make progress toward individual goals may rarely encounter the region of state space
where cooperation is needed, rendering any exploration useless for learning cooperative behavior. On
the other extreme, exploratory actions taken in situations that require precise coordination can easily
lead to penalties that cause agents to avoid the coordination problem and fail to achieve individual
goals. Instead, we hypothesize and confirm in experiments that agents who can achieve individual
goals in the absence of other agents can more reliably produce state configurations where cooperative
solutions are easily discovered with additional exploration in the multi-agent environment2.

We propose a MARL curriculum that first solves a single-agent Markov decision process (MDP),
as preparation for subsequent exploration speedup. Given a cooperative multi-goal Markov game
MG, we induce an MDP M to be the tuple 〈Sn,On, An, Pn, R, γ〉, where an agent n is selected to
be the single agent in M. Entities Sn, Pn, and R are defined by removing all dependencies on agent
interactions, so that only components depending on agent n remain. This reduction to M is possible in
almost all fully cooperative multi-agent environments used in a large body of work3 (Hernandez-Leal
et al., 2018), precisely because they support a variable number of agents, including N = 1. Important
real-world settings that allow this reduction include autonomous driving, multi traffic light control,
and warehouse commissioning (removing all but one car/controller/robot, respectively, from the
environment). Given a full Markov game implementation, the reduction involves only deletion of
components associated with all other agents from state vectors (since an agent is uniquely defined
by its attributes), deletion of if-else conditions from the reward function corresponding to agent
interactions, and likewise from the transition function if a simulation is used. Appendix G provides
practical guidelines for the reduction. Based on M, we define a greedy policy for MG.

Definition 2. A greedy policy πn by agent n for cooperative multi-goal MG is defined as the optimal
policy π∗ for the induced MDP M where only agent n is present.

This naturally leads to our proposed curriculum: Stage 1 trains a single agent in M to achieve a
greedy policy, which is then used for initialization in MG in Stage 2. Next we explain in detail how
to leverage the structure of decentralized MARL to bridge the two curriculum stages.

4.4 FUNCTION AUGMENTATION FOR MULTI-GOAL CURRICULUM

In Markov games with decentralized execution, an agent’s observation space decomposes into
On = Onself ∪ Onothers, where onself ∈ Onself captures the agent’s own properties, which must be
observable by the agent for closed-loop control, while onothers ∈ Onothers is the agent’s observation of
surrounding agents, which depends on the category of observability (Pynadath and Tambe, 2002).
Similarly, global state s decomposes into s := (senv, s

n, s−n), where senv is environment information
not specific to any agent (e.g., position of a landmark), and sn captures agent n’s information. While
this decomposition is implicitly available in a wide range of complex multi-agent environments
(Bansal et al., 2018; Foerster et al., 2018; Lowe et al., 2017; Rashid et al., 2018; Liu et al., 2019;
Jaderberg et al., 2019), we explicitly use it to implement our curriculum. In Stage 1, as the ability
to process onothers and s−n is unnecessary, we reduce the input space of policy and value functions,
thereby reducing the number of trainable parameters and lowering the computation cost. In Stage 2,
we restore Stage 1 parameters and activate new modules to process additional inputs onothers and s−n.
This augmentation is especially suitable for efficiently learning the credit function (1) and global
Q-function, since Q(s, a) can be augmented into both Qπ

n (s,a) and Qπ
n (s, am), as explained below.

4.5 A COMPLETE INSTANTIATION OF CM3

We combine the preceding components to create CM3, using deep neural networks for function
approximation (Figure 1 and Algorithm 1). Without loss of generality, we assume parameter-sharing

2We provide a synthetic example to aid intuition in Appendix D
3Environments include: discrete 2D worlds, continuous 3D physics simulators, StarCraft II, transportation

tasks, 3D first-person multiplayer games, etc. Exceptions are settings where a single task is purely defined by
inter-agent communication, but these are not multi-goal Markov games.

5

Under review as a conference paper at ICLR 2020

Environment

Environment

hi*
1

hi*−1

1

⋮

⋮

W i*
1

hK
2

⋮

(oself
n , gn) oothers

n

input input

Stage 1 Stage 2

∇ J

Q1
π

1

(oself , g)

R(s , a , g)
a

π
2

W 1: 2
(o N , gN

)(o1,g1
)

a1

(s , g , {Rn
}n)

Q1(s ,a)

π1 πN

Q1(s , am)

aN∇ J

⋯

⋯

⋯

a1 aN

QN (s , am)

QN (s , a)

Function augmentation

π
π

1

Figure 1: In Stage 1, Q1 and π1 learn to achieve multiple goals in a single-agent environment.
Between Stage 1 and 2, π is constructed from the trained π1 and a new module π2 according to (
same construction is done for Qn(s,a) and Qn(s, am), not shown). In the multi-agent environment
of Stage 2, these augmented functions are instantiated for each of N agents (with parameter-sharing).

(Foerster et al., 2018) among homogeneous agents with goals as input (Schaul et al., 2015). The
inhomogeneous case can be addressed by N actor-critics. Drawing from multi-task learning (Taylor
and Stone, 2009), we sample goal(s) in each episode for the agent(s), to train one model for all goals.

Stage 1. We train an actor π1(a|o, g) and critic Q1(s1, a, g) to convergence according to (4) and (5)
in the induced MDP (with N = 1, see Appendix J). This uses orders of magnitude fewer samples
than for the full multi-agent environment—compare Figure 6 with Figure 5 below.

Stage 2. The Markov game is instantiated with all N agents. We retain the trained π1 parameters,
instantiate a second neural network π2 for agents to process onothers, and connect the output of π2

to a selected hidden layer of π1. Concretely, let h1i ∈ Rmi denote hidden layer i ≤ L with
mi units in an L-layer network π1, connected to layer i − 1 via h1i = f(W 1

i h
1
i−1) with W 1

i ∈
Rmi×mi−1 and nonlinear activation f . Stage 2 introduces a K-layer network π2(onothers) with outputs
h2K ∈ RmK , chooses a particular layer4 i∗ of π1, and augments the hidden activations h1i∗ to be
h1i∗ = f(W 1

i∗h
1
i∗−1 + W 1:2h2K) with W 1:2 ∈ Rmi∗×mK . Hence, hidden layers i < i∗ begin with

the ability to process (onself, g
n), while the new module specifically learns the effect of surrounding

agents. Higher layers i ≥ i∗ that already take greedy actions to achieve goals in Stage 1 must now do
so while cooperating to allow other agents’ success. This augmentation scheme is simplest for deep
policy and value networks using fully-connected or convolutional layers.

The middle panel of Figure 1 depicts the construction of π from π1 and π2. The global Qπ(s,a, gn)
is constructed from Q1 similarly: when the input to Q1 is (senv, s

n, an, gn), a new module takes
input (s−n, a−n) and connects to a chosen hidden layer of Q1. Credit function Qπ(s, am, gn) is
augmented from a copy of Q1, such that when Q1 inputs are (senv, s

n, am, gn), the new module’s
inputs are (sm, s−n).5 We train the policy using (5), train the credit function with loss (4), and train
the global Q-function with the joint-action analogue of (4).

5 EXPERIMENTAL SETUP

We investigated the performance and robustness of CM3 versus existing methods on diverse and
challenging multi-goal MARL environments: cooperative navigation in difficult formations, double
lane merge in autonomous driving, and strategic cooperation in a Checkers game. We evaluated
ablations of CM3 on all domains. We describe key setup here, with full details in Appendices G to J.

Cooperative navigation: We created three variants of the cooperative navigation scenario in Lowe
et al. (2017), where N agents cooperate to reach a set of targets. We increased the difficulty by giving
each agent only an individual reward based on distance to its designated target, not a global team

4Setting i∗ to be the last hidden layer worked well in our experiments, without needing to tune.
5Input sm is needed for disambiguation, so that input action am is associated with agent m.

6

Under review as a conference paper at ICLR 2020

A

B

Figure 2: Checkers

(a) Antipodal (b) Cross (c) Merge

Figure 3: Cooperative navigation

Lane 3

Lane 0

Figure 4: Agent sedans must perform double lane merge to
reach goal lanes. SUMO controls yellow sedans and trucks.
Policy generalization was tested on such traffic conditions.

reward, but initial and target positions require complex cooperative maneuvers to avoid collision
penalties (Figure 3). Agents observe relative positions and velocities (details in Appendix G.1).
SUMO: Previous work modeled autonomous driving tasks as MDPs in which all other vehicles do
not learn to respond to a single learning agent (Isele et al., 2018; Kuefler et al., 2017). However,
real-world driving requires cooperation among different drivers’ with personal goals. Built in the
SUMO traffic simulator with sublane resolution (Lopez et al., 2018), this experiment requires agent
vehicles to learn double-merge maneuvers to reach goal lane assignments (Figure 4). Agents have
limited field of view and receive sparse rewards (Appendix G.2). Checkers: We implemented a
challenging strategic game (Appendix G.3, an extension of Sunehag et al. (2018)), to investigate
whether CM3 is beneficial even when an agent cannot maximize its reward in the absence of another
agent. In a gridworld with red and yellow squares that disappear when collected (Figure 2), Agent A
receives +1 for red and -0.5 for yellow; Agent B receives -0.5 for red and +1 for yellow. Both have a
limited 5x5 field of view. The global optimum requires each agent to clear the path for the other.

Algorithm implementations. We describe key points here, leaving complete architecture details
and hyperparameter tables to Appendices H and I. CM3: Stage 1 is defined for each environment
as follows (Appendix G): in cooperative navigation, a single particle learns to reach any specified
landmark; in SUMO, a car learns to reach any specified goal lane; in Checkers, we alternate between
training one agent as A and B. Appendix H describes function augmentation in Stage 2 of CM3.
COMA (Foerster et al., 2018): the joint goal g and total reward

∑
nR

n can be used to train COMA’s
global Q function, which receives input (s, on, gn, n, a−n, g−n). Each output node i represents
Q(s, an = i, a−n,g). IAC (Tan, 1993; Foerster et al., 2018): IAC trains each agent’s actor and
critic independently, using the agent’s own observation. The TD error of value function V (on, gn) is
used in a standard policy gradient (Sutton et al., 2000). QMIX (Rashid et al., 2018): we used the
original hypernetwork, giving all goals to the mixer and individual goals to each agent network. We
used a manual coordinate descent on exploration and learning rate hyperparameters, including values
reported in the original works. We ensured the number of trainable parameters are similar among all
methods, up to method-specific architecture requirements for COMA and QMIX.

Ablations. We conducted ablation experiments in all domains. To discover the speedup from the
curriculum with function augmentation, we trained the full Stage 2 architecture of CM3 (labeled as
Direct) without first training components π1 and Q1 in an induced MDP. To investigate the benefit
of the new credit function and multi-goal policy gradient, we trained an ablation (labeled QV) with
advantage function Aπ

n (s,a) := Qπ
n (s,a)− V π

n (s), where credit assignment between action-goal
pairs is lost. QV uses the same π1, Q1, and function augmentation as CM3.

6 RESULTS AND DISCUSSIONS

CM3 finds optimal or near-optimal policies significantly faster than IAC and COMA on all domains,
and performs significantly higher than QMIX in four out of five. We report absolute runtime in
Appendix F and account for CM3’s Stage 1 episodes (Appendix J) when comparing sample efficiency.

Main comparison. Over all cooperative navigation scenarios (Figures 5a to 5c), CM3 (with 1k
episodes in Stage 1) converged more than 15k episodes faster than IAC. IAC reached the same final
performance as CM3 because dense individual rewards simplifies the learning problem for IAC’s
fully decentralized approach, but CM3 benefited significantly from curriculum learning, as evidenced

7

Under review as a conference paper at ICLR 2020

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

900

800

700

600

500

400

300

200

100

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
IAC
COMA
QMIX

(a) Antipodal

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

800

600

400

200

0

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
IAC
COMA
QMIX

(b) Cross

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

350

300

250

200

150

100

50

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
IAC
COMA
QMIX

(c) Merge

0 1 2 3 4 5
Episode (1e4) 1e4

8

10

12

14

16

18

20

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
IAC
COMA
QMIX

(d) SUMO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode (1e4) 1e4

10

5

0

5

10

15

20

25

30

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
IAC
COMA
QMIX

(e) Checkers

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

800

700

600

500

400

300

200

100

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
QV
Direct

(f) Antipodal

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

800

600

400

200

0

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
QV
Direct

(g) Cross

0 1 2 3 4 5 6 7 8
Episode (1e4) 1e4

100

90

80

70

60

50

40

30

20

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
QV
Direct

(h) Merge

0 1 2 3 4 5
Episode (1e4) 1e4

6

8

10

12

14

16

18

20

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
QV
Direct

(i) SUMO

0 1 2 3 4 5
Episode (1e4) 1e4

0

5

10

15

20

25

30

Su
m

 o
f i

nd
iv

id
ua

l r
ew

ar
ds

CM3
QV
Direct

(j) Checkers

Figure 5: a-e: Comparison against baselines in cooperative navigation (a-c), SUMO (d), Checkers (e).
f-j: Comparison against ablations. Average and standard deviation (shaded) of 10 evaluation episodes
conducted every 100 training episodes, across 3 independent runs.

by comparison to “Direct” in Figure 5f. QMIX and COMA settled at suboptimal behavior. Both
learn global critics that use all goals as input, in contrast to CM3 and IAC that process each goal
separately. This indicates the difficulty of training agents for individual goals under a purely global
approach. In SUMO (Figure 5d), CM3 and QMIX found cooperative solutions with performances
within the margin of error, while COMA and IAC could not break out of local optima where
vehicles move straight but do not perform merge maneuvers. Since initial states force agents into
the region of state space requiring cooperation, credit assignment rather than exploration is the
dominant challenge, which CM3 addressed via the credit function, as evidenced in Figure 5i. IAC
underperformed because SUMO requires a longer sequence of cooperative actions and gave much
sparser rewards than the “Merge” scenario in cooperative navigation. We also show that centralized
training of merely two decentralized agents allows them to generalize to settings with much heavier
traffic (Appendix E). In Checkers (Figure 5e), CM3 (with 5k episodes in Stage 1) converged 10k
episodes faster than COMA and QMIX to the global optimum with score 24. Both exploration of the
combinatorially large joint trajectory space and credit assignment for path clearing are challenges
that CM3 successfully addressed. COMA only solved Checkers among all domains, possibly because
the small bounded environment alleviates COMA’s difficulty with individual goals in large state
spaces. IAC underperformed all centralized learning methods because cooperative actions that give
no instantaneous reward are hard for selfish agents to discover in Checkers. These results demonstrate
CM3’s ability to attain individual goals and find cooperative solutions in diverse multi-agent systems.
Ablations. The significantly better performance of CM3 versus “Direct” (Figures 5f to 5j) shows
that learning individual goal attainment prior to learning multi-agent cooperation, and initializing
Stage 2 with Stage 1 parameters, are crucial for improving learning speed and stability. It gives
evidence that while global action-value and credit functions may be difficult to train from scratch,
function augmentation significantly eases the learning problem. While “QV” initially learns quickly
to attain individual goals, it does so at the cost of frequent collisions, higher variance, and inability to
maintain a cooperative solution, giving clear evidence for the necessity of the credit function.

7 CONCLUSION

We presented CM3, a general framework for cooperative multi-goal MARL. CM3 addresses the need
for efficient exploration to learn both individual goal attainment and cooperation, via a two-stage
curriculum bridged by function augmentation. It achieves local credit assignment between action and
goals using a credit function in a multi-goal policy gradient. In diverse experimental domains, CM3
attains significantly higher performance, faster learning, and overall robustness than existing MARL
methods, displaying strengths of both independent learning and centralized credit assignment while
avoiding shortcomings of existing methods. Ablations demonstrate each component is crucial to the
whole framework. Our results motivate future work on analyzing CM3’s theoretical properties and
generalizing to inhomogeneous systems or settings without known goal assignments.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Austerweil, J. L., Brawner, S., Greenwald, A., Hilliard, E., Ho, M., Littman, M. L., MacGlashan,
J., and Trimbach, C. (2016). How other-regarding preferences can promote cooperation in non-
zero-sum grid games. In Proceedings of the AAAI Symposium on Challenges and Opportunities in
Multiagent Learning for the Real World.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mordatch, I. (2018). Emergent complexity via
multi-agent competition. In International Conference on Learning Representations.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pages 41–48. ACM.

Bhattacharya, S., Likhachev, M., and Kumar, V. (2010). Multi-agent path planning with multiple
tasks and distance constraints. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 953–959. IEEE.

Blizzard Entertainment (2019). Starcraft ii. https://starcraft2.com/en-us/, Last ac-
cessed on 2019-09-07.

Cao, Y., Yu, W., Ren, W., and Chen, G. (2013). An overview of recent progress in the study of
distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1), 427–438.

Chang, Y.-H., Ho, T., and Kaelbling, L. P. (2004). All learning is local: Multi-agent learning in global
reward games. In Advances in neural information processing systems, pages 807–814.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018). Counterfactual
multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial Intelligence.

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pages 66–83. Springer.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2018). Is multiagent deep reinforcement learning
the answer or the question? a brief survey. arXiv preprint arXiv:1810.05587.

Hu, J. and Wellman, M. P. (2003). Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov), 1039–1069.

Isele, D., Rahimi, R., Cosgun, A., Subramanian, K., and Fujimura, K. (2018). Navigating oc-
cluded intersections with autonomous vehicles using deep reinforcement learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 2034–2039. IEEE.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G., Beattie, C.,
Rabinowitz, N. C., Morcos, A. S., Ruderman, A., et al. (2019). Human-level performance in 3d
multiplayer games with population-based reinforcement learning. Science, 364(6443), 859.

Kuefler, A., Morton, J., Wheeler, T., and Kochenderfer, M. (2017). Imitating driver behavior with
generative adversarial networks. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 204–211.
IEEE.

Li, S., Wu, Y., Cui, X., Dong, H., Fang, F., and Russell, S. (2019). Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradient. In AAAI Conference on Artificial
Intelligence (AAAI).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement learning. In International Conference on
Learning Representations.

Lin, K., Zhao, R., Xu, Z., and Zhou, J. (2018). Efficient large-scale fleet management via multi-agent
deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1774–1783. ACM.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pages 157–163. Elsevier.

9

https://starcraft2.com/en-us/

Under review as a conference paper at ICLR 2020

Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess, N., and Graepel, T. (2019). Emergent
coordination through competition. In International Conference on Learning Representations.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L.,
Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simulation using SUMO. In
The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems, pages 6382–6393.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529.

Mordatch, I. and Abbeel, P. (2018). Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence.

Nguyen, D. T., Kumar, A., and Lau, H. C. (2018). Credit assignment for collective multiagent rl with
global rewards. In Advances in Neural Information Processing Systems, pages 8112–8123.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. (2008). Optimal and approximate q-value functions for
decentralized pomdps. Journal of Artificial Intelligence Research, 32, 289–353.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J. (2017). Deep decentralized multi-task
multi-agent reinforcement learning under partial observability. In International Conference on
Machine Learning, pages 2681–2690.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10), 1345–1359.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3), 387–434.

Pynadath, D. V. and Tambe, M. (2002). The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of artificial intelligence research, 16, 389–423.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., and Whiteson, S. (2018).
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning. In
Proceedings of the 35th International Conference on Machine Learning, pages 4295–4304.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu,
R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International Conference on Machine Learning, pages 1312–1320.

Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent reinforcement learning: a critical
survey. Technical report, Technical report, Stanford University.

Shu, T. and Tian, Y. (2019). M3rl: Mind-aware multi-agent management reinforcement learning. In
International Conference on Learning Representations.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic
policy gradient algorithms. In ICML.

Son, K., Kim, D., Kang, W. J., Hostallero, D., and Yi, Y. (2019). Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International Conference on
Machine Learning.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J., Tuyls, K., Munos, R., and Bowling, M. (2018).
Actor-critic policy optimization in partially observable multiagent environments. In Advances in
Neural Information Processing Systems, pages 3426–3439.

10

Under review as a conference paper at ICLR 2020

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3), 345–383.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., Lanctot, M.,
Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. (2018). Value-decomposition networks for cooperative
multi-agent learning based on team reward. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, pages 2085–2087. International Foundation for
Autonomous Agents and Multiagent Systems.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2), 181–211.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information processing
systems, pages 1057–1063.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J., and Vicente, R.
(2017). Multiagent cooperation and competition with deep reinforcement learning. PloS one,
12(4), e0172395.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pages 330–337.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul), 1633–1685.

Thrun, S. B. (1992). Efficient exploration in reinforcement learning. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA.

Van Lange, P. A., Joireman, J., Parks, C. D., and Van Dijk, E. (2013). The psychology of social
dilemmas: A review. Organizational Behavior and Human Decision Processes, 120(2), 125–141.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and Kavukcuoglu,
K. (2017). Feudal networks for hierarchical reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3540–3549. JMLR. org.

Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M., Kakade, S., Mordatch, I., and Abbeel,
P. (2018). Variance reduction for policy gradient with action-dependent factorized baselines. In
International Conference on Learning Representations.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and Basar, T. (2018). Fully decentralized multi-agent
reinforcement learning with networked agents. In Proceedings of the 35th International Conference
on Machine Learning, pages 5872–5881.

Zhang, Z., Yang, J., and Zha, H. (2019). Integrating independent and centralized multi-agent
reinforcement learning for traffic signal network optimization. arXiv preprint arXiv:1909.10651.

11

Under review as a conference paper at ICLR 2020

A ALGORITHM

Algorithm 1 Cooperative multi-goal multi-stage multi-agent reinforcement learning (CM3)

1: for curriculum stage c = 1 to 2 do
2: if c = 1 then
3: Set number of agents N = 1
4: Initialize Stage 1 main networks Qg := Q = Q1, π := π1 with parameters θQ1 , θπ1

5: Initialize target networks with θ′π1 , θ′Q1

6: else if c = 2 then
7: Instantiate N > 1 agents
8: Construct global Qg := Qπ

n (s,a) = {Q1, Q2
g}, credit function Qc := Qπ

n (s, am) =

{Q1, Q2
c} and π := {π1, π2} using function augmentation with parameters θQg , θQc , θπ

9: Initialize target networks with θ′Qg , θ
′
Qc
, θ′π

10: Restore values of trained parameters θQ1 , θπ1 into the respective subsets of θQg , θQc , θπ
11: end if
12: Set all target network weights to equal main networks weights
13: Initialize exploration parameter ε = εstart and empty replay buffer B
14: for each training episode e = 1 to E do
15: Assign goal(s) gne to agent(s) according to given distribution
16: Get initial state s1 and observation(s) o1

17: for t = 1 to T do // execute policies in environment
18: Sample action ant ∼ π(ant |ont ; θπ, ε) for each agent.
19: Execute action(s) at, receive {rnt }n, st+1, and ot+1

20: Store (st,ot,ge,at, {rnt }n, R
g
t , st+1,ot+1) into B

21: st ← st+1,ot ← ot+1

22: end for
23: if e mod Etrain = 0 then
24: for epochs 1 . . .K do // conduct training
25: Sample minibatch of S transitions (si,oi,gi,ai, {rni }n, si+1,oi+1) from B
26: Compute global target for all n: xni = rni + γQ(si+1,ai+1, g

n
i ; θ′Qg)|ai+1∼π′

27: Gradient descent on L(θQg) = 1
S

∑
i

1
N

∑N
n=1

(
xni −Q(si,ai, g

n
i ; θQg)

)2
28: if c = 1 then
29: Aπ(si, ai) = Q1(si, ai, gi; θQ1)−

∑
âi
π(âi|oi, gi)Q1(si, âi, gi; θQ1)

30: else if c = 2 then
31: ∀m,n ∈ [1..N], compute target yni = rni +γQ(si+1, a

m
i+1, g

n; θ′Qc)|ami+1∼π′m

32: Minimize (4): L(θQc) = 1
S

∑
i

1
N2

∑N
n=1

∑N
m=1 (yni −Q(si, a

m
i , g

n
i ; θQc))

2

33: Aπ
n,m(si,ai) := Q(si,ai, g

n
i ; θQg)−

∑
âm π(âm)Q(si, â

m, gni ; θQc)
34: end if
35: ∇θπJ(π) = 1

S

∑
i

∑N
m,n=1(∇θπ log π(ami |omi , gmi))Aπ

n,m(si,ai)

36: Update policy: θπ ← θπ + β∇θπJ(π)
37: Update all target network parameters using: θ′ ← τθ + (1− τ)θ′

38: Reset buffer B
39: end for
40: end if
41: If ε > εend, then ε← ε− εstep
42: end for
43: end for

Off-policy training with a large replay buffer allows RL algorithms to benefit from less correlated
transitions (Silver et al., 2014; Lillicrap et al., 2016). The algorithmic modification for off-policy
training is to maintain a circular replay buffer that does not reset (i.e. remove line 38), and conduct
training (lines 24-41) while executing policies in the environment (lines 17-22). Despite introducing
bias in MARL, we found that off-policy training benefited CM3 in SUMO and Checkers.

12

Under review as a conference paper at ICLR 2020

B DERIVATIONS

B.1 PROPOSITION 1

By stationarity and relabeling t, the credit function can be written:

Qπ
n (s, am) := Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣∣ s0 = s, am0 = am

]
= Eπ

[∞∑
t=1

γt−1R(st,at, g
n)
∣∣∣ s1 = s, am1 = am

]
Using the law of iterated expectation, the credit function satisfies the Bellman expectation equation
(2):

Qπ
n (s, am) = Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am

]
= Eπ

[
R(s0,a0, g

n) +

∞∑
t=1

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am

]
= Es1,am1 |s0,a0,π

[
Eπ

[
R(s0,a0, g

n) +
∞∑
t=1

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am, s1 = s′, am1 = âm

] ∣∣∣ s0 = s, am0 = am
]

= Es1,am1 |s0,a0,π
[∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn)

+ Eπ

[∞∑
t=1

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am, s1 = s′, am1 = âm

] ∣∣∣ s0 = s, am0 = am
]

=
∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn)

+ Es1,am1 |s0,a0,π
[
Eπ

[∞∑
t=1

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am, s1 = s′, am1 = âm

] ∣∣∣ s0 = s, am0 = am
]

=
∑
a−m

π(a−m|s,g−m)R(s, (am, a−m), gn)

+
∑
a−m

π(a−m|s,g−m)
∑
s′

P (s′|s, (am, a−m))
∑
âm

π(âm|om(s′))Eπ

[∞∑
t=1

γtR(st,at, g
n)
∣∣∣ s1 = s′, am1 = âm

]
=
∑
a−m

π(a−m|s,g−m)

[
R(s, (am, a−m), gn)

+ γ
∑
s′

P (s′|s, (am, a−m))
∑
âm

π(âm|om(s′))Eπ
[∞∑
t=1

γt−1R(st,at, g
n)
∣∣ s1 = s′, am1 = âm

]]
=
∑
a−m

π(a−m|s,g−m)
[
R(s, (am, a−m), gn) + γ

∑
s′

P (s′|s, (am, a−m))
∑
âm

πm(âm|om(s′))Qπ
n (s′, âm)

]
= Eπ

[
R(st,at,g

n) + γQπ
n (st+1, a

m
t+1)

∣∣∣st = s, amt = am
]

�

The goal-specific joint value function is the marginal of the credit function:

V π
n (s) = Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s

]
= Eam0 |s0,π

[
Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s, am0 = am

] ∣∣∣ s0 = s

]
=
∑
am

π(am|om(s), gm)Qπ
n (s, am) �

13

Under review as a conference paper at ICLR 2020

The credit function can be expressed in terms of the goal-specific action-value function:

V π
n (s) =

∑
am

π(am|om, gm)Qπ
n (s, am) by (3)

V π
n (s) =

∑
a

π(a|s,g)Qπ
n (s,a) by (8)

=
∑
am

∑
a−m

π(am|om, gm)π(a−m|s, g−m)Qπ
n (s, (am, a−m))

⇒ Qπ
n (s, am) =

∑
a−m

π(a−m|s, g−m)Qπ
n (s,a) �

B.2 PROPOSITION 2

First we state some elementary relations between global functions V πn (s) and Qπn(s,a). These carry
over directly from the case of an MDP, by treating the joint policy π as as an effective “single-agent”
policy and restricting attention to a single goal gn (standard derivations are included at the end of this
section).

Qπ
n (s,a) = R(s,a, gn) + γ

∑
s′

P (s′|s,a)V π
n (s′) (7)

V π
n (s) =

∑
a

π(a|s,g)Qπ
n (s,a) (8)

We follow the proof of the policy gradient theorem (Sutton et al., 2000):

∇θV π
n (s) = ∇θ

∑
a

π(a|s,g)Qπ
n (s,a)

=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s,a) + π(a|s,g)∇θQπ

n (s,a)
]

=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s,a) + π(a|s,g)∇θ

(
R(s,a, gn) + γ

∑
s′

P (s′|s,a)V π
n (s′)

)]
=
∑
a

[(
∇θπ(a|s,g)

)
Qπ
n (s,a) + π(a|s,g)γ

∑
s′

P (s′|s,a)∇θV π
n (s′)

]
=
∑
ŝ

∞∑
k=0

γkP (s→ ŝ, k,π)
∑
a

(∇θπ(a|ŝ,g))Qπ
n (ŝ,a) (by recursively unrolling)

∇θJn(π) := ∇θV π
n (s0) =

∑
s

∞∑
k=0

γkP (s0 → s, k,π)
∑
a

(∇θπ(a|s,g))Qπ
n (s,a)

=
∑
s

ρπ(s)
∑
a

π(a|s,g)
(
∇θ logπ(a|s,g)

)
Qπ
n (s,a)

= Eπ [(∇θ logπ(a|s,g))Qπ
n (s,a)] (9)

We can replace Qπ
n (s,a) by the advantage function Aπ

n (s,a) := Qπ
n (s,a)− V π

n (s), which does not
change the expectation in Equation (9) because:

Eπ [∇θ logπ(a|s,g)V π
n (s)] =

∑
s

ρπ(s)
∑
a

π(a|s,g)∇θ logπ(a|s,g)V π
n (s)

=
∑
s

ρπ(s)V π
n (s)∇θ

∑
a

π(a|s,g) = 0

So the gradient (9) can be written

∇θJn(π) = Eπ

[(
∇θ

N∑
m=1

log π(am|om, gm)
)(
Qπ
n (s,a)− V π

n (s)
)]

(10)

14

Under review as a conference paper at ICLR 2020

Recall that from (3), for any choice of agent label k ∈ [1..N]:

V π
n (s) =

∑
ak

π(ak|ok, gk)Qπ
n (s, ak) (11)

Then substituting (3) into (10):

∇θJn(π) = Eπ

[(
∇θ

N∑
m=1

log π(am|om, gm)
)
Aπ
n,k(s,a)

]
(12)

Aπ
n,k(s,a) := Qπ

n (s,a)−
∑
âk

π(âk|ok, gk)Qπ
n (s, âk) (13)

Now notice that the choice of k in (13) is completely arbitrary, since (3) holds for any k ∈ [1..N].
Therefore, it is valid to distribute Aπ

n,k(s,a) into the summation in (12) using the summation index
m instead of k. Further summing (12) over all n, we arrive at the result of Proposition 2:

∇θJ(π) = Eπ

[N∑
m=1

N∑
n=1

(
∇θ log π(am|om, gm)

)
Aπ
n,m(s,a)

]
Aπ
n,m(s,a) := Qπ

n (s,a)−
∑
âm

π(âm|om, gm)Qπ
n (s, âm) �

The relation between V πn (s) and Qπn(s,a) in (7) and (8) are derived as follows:

Qπ
n (s,a) := Eπ

[∑
t

γtR(st,at, g
n)
∣∣ s0 = s,a0 = a

]
= Eπ

[
R(s0,a0, g

n) +

∞∑
t=1

γtR(st,at, g
n)
∣∣ s0 = s,a0 = a

]
= R(s,a, gn) + Es1|s0,a0,π

[
Eπ
[∞∑
t=1

R(st,at, g
n)
∣∣ s0 = s,a0 = a, s1 = s′

] ∣∣∣ s0 = s,a0 = a

]

= R(s,a, gn) + γ
∑
s′

P (s′|s,a)Eπ

[∞∑
t=1

γt−1R(st,at, g
n)
∣∣ s1 = s′

]
= R(s,a, gn) + γ

∑
s′

P (s′|s,a)V π
n (s′)

V π
n (s) := Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s

]
= Ea0|s0,π

[
Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s,a0 = a

] ∣∣∣ s0 = s

]

=
∑
a

π(a|s,g)Eπ

[∞∑
t=0

γtR(st,at, g
n)
∣∣ s0 = s,a0 = a

]
=
∑
a

π(a|s,g)Qπ
n (s,a) �

15

Under review as a conference paper at ICLR 2020

C VARIANCE

C.1 VARIANCE OF COMA GRADIENT.

For convenience, let Q := Qπ(s,a,g) denote the centralized Q function, let π(an) := π(an|on, gn)
denote a single agent’s policy, and let π(a−n) := π(a−n|o−n, g−n) denote the other agents’ joint
policy.

In the cooperative multi-goal MARL context, the direct application of COMA has the following
gradient.

∇θJ = E
[∑
n

∇θ log π(an|on, gn)
(
Q− bn(s, a−n,g)

)]
bn(s, a−n,g) :=

∑
ân

π(ân|on, gn)Qπ(s, ân, a−n,g)

Define the following:

zn := ∇θ log π(an|on, gn)

fn := ∇θ log π(an|on, gn)
(
Q− bn(s, a−n)

)
= zn

(
Q− bn(s, a−n,g)

)
Define Mnm := Eπ[fn]TEπ[fm] and let M :=

∑
n,mMnm. Then we have Mnm =

Eπ[znQ]TEπ[zmQ] since

Eπ[znbn] = Eπ

[∑
s

ρπ(s)
∑
a

π(a|s,g)∇θ log π(an|on, gn)bn(s, a−n,g)
]

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n)
∑
an

π(an|on, gn)∇θ log π(an|on, gn)bn(s, a−n,g)

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n)
∑
an

∇θπ(an|on, gn)bn(s, a−n,g)

=
∑
s

ρπ(s)
∑
a−n

π−n(a−n|o−n, g−n)bn(s, a−n,g)∇θ
∑
an

π(an|on, gn) = 0

Since the COMA gradient is Eπ[
∑N
n=1 fn]. its variance can be derived to be (Wu et al., 2018):

Var(

N∑
n=1

fn) =
∑
n

Eπ

[
zTn znQ

2 − 2bnz
T
n znQ+ b2nz

T
n zn

]
+
∑
n

∑
m6=n

Eπ

[
zTn zm(Q− bn)(Q− bm)

]
−M

C.2 VARIANCE OF THE CM3 GRADIENT

For convenience, let Qn := Qπ
n (s,a) = Qπ(s,a, gn) denote the global Q function for goal gn, and

let π(am) := π(am|om, gm). The CM3 gradient can be rewritten as

∇θJ(π) = Eπ

[N∑
n=1

N∑
m=1

∇θ log π(am)
(
Qn − bnm(s)

)]
bnm(s) :=

∑
âm

π(âm)Qπ
n (s, âm)

As before, zm := ∇θ log π(am). Define hnm := zm(Qn − bnm(s)) and let hn :=
∑
m hnm. Then

the variance is

Var(
∑
n

hn) =
∑
n

Var(hn) +
∑
n

∑
m 6=n

Cov(hn, hm)

=
∑
n

(∑
m

Var(hnm) +
∑
m

∑
k 6=m

Cov(hnm, hnk)
)

+
∑
n

∑
m 6=n

Cov(hn, hm)

16

Under review as a conference paper at ICLR 2020

D EXAMPLE OF GREEDY INITIALIZATION FOR MARL EXPLORATION

A greedy initialization can provide significant improvement in multi-agent exploration versus naïve
random exploration, as shown by a simple thought experiment. Consider a two-player MG defined
by a 4× 3 gridworld with unit actions (up, down, left, right). Agent A starts at (1,2) with goal (4,2),
while agent B starts at (4,2) with goal (1,2). The greedy policy for each agent in MG is to move
horizontally toward its target, since this is optimal in the induced M (when the other agent is absent).
Case 1: Suppose that for ε ∈ (0, 1), A and B follow greedy policies with probability 1 − ε, and
take random actions (p(a) = 1/4) with probability ε. Then the probability of a symmetric optimal
trajectory is P (cooperate) = 2ε2((1 − ε) + ε/4)8. For ε = 0.5, P (cooperate) ≈ 0.01. Case 2: If
agents execute uniform random exploration, then P (cooperate) = 3.05e-5� 0.01.

E GENERALIZATION

Table 1: Test performance with heavy traffic on difficult initial and goal lanes configurations

Config Initial lanes Goal lanes CM3 IAC COMA

C1 [1, 2] [3, 0] 16.17 11.40 10.00
C2 Unif. random Unif. random 14.93 12.20 12.93
C3 [1, 2] [2, 1] 15.85 14.32 15.00
C4 [0, 1] [3, 2] 16.35 9.73 8.1

We investigated whether policies trained with few agent vehicles (N = 2) on an empty road can
generalize to situations with heavy SUMO-controlled traffic. We also tested on initial and goal lane
configurations (C3 and C4) which occur with low probability when training with configurations
C1 and C2. Table 1 shows the sum of agents’ reward, averaged over 100 test episodes, on these
configurations that require cooperation with each other and with minimally-interactive SUMO-
controlled vehicles for success. CM3’s higher performance than IAC and COMA in training is
reflected by better generalization performance on these test configurations. There is almost negligible
decrase in performance from train Figure 5d to test, giving evidence to our hypothesis that centralized
training with few agents is feasible even for deployment in situations with many agents, for certain
applications where local interactions are dominant.

F ABSOLUTE RUNTIME

CM3’s higher sample efficiency does not come at greater computational cost, as all methods’ runtimes
are within an order of magnitude of one another. Test times have no significant difference as all
neural networks were similar.

Table 2: Absolute training runtime of all algorithms in seconds

Environment CM3 IAC COMA QMIX

Antipodal 1.1e4±348 0.9e4±20 1.9e4±238 1.0e4±19
Cross 1.9e4±256 1.5e4±26 1.3e4±12 1.1e4±34
Merge 8.5e3±21 6.8e3±105 9.6e3±294 1.2e4±61
SUMO 9.6e3±278 7.0e3±1.5e3 8.7e3±1.3e3 6.3e3±21

Checkers 9.2e3±880 8.5e3±568 7.7e3±2.2e3 11e3±1.4e3

G ENVIRONMENT DETAILS

The full Markov game for each experimental domain, along with the single-agent MDP induced
from the Markov game, are defined in this section. In all domains, each agent’s observation in the
Markov game consists of two components, oself and oothers. CM3 leverages this decomposition for
faster training, while IAC and SUMO do not.

17

Under review as a conference paper at ICLR 2020

G.1 COOPERATIVE NAVIGATION

This domain is adapted from the multi-agent particle environment in Lowe et al. (2017). Movable
agents and static landmarks are represented as circular objects located in a 2D unbounded world
with real-valued position and velocity. Agents experience contact forces during collisions. A simple
model of inertia and friction is involved.

State. The global state vector is the concatenation of all agents’ absolute position (x, y) ∈ R2 and
velocity (vx, vy) ∈ R2.

Observation. Each agent’s observation of itself, oself, is its own absolute position and velocity. Each
agent’s observation of others, oothers, is the concatenation of the relative positions and velocities of all
other agents with respect to itself.

Actions. Agents take actions from the discrete set do nothing, up, down, left, right, where the
movement actions produce an instantaneous velocity (with inertia effects).

Goals and initial state assignment. With probability 0.2, landmarks are given uniform random
locations in the set (−1, 1)2, and agents are assigned initial positions uniformly at random within
the set (−1, 1)2. With probability 0.8, they are predefined as follows (see Figure 3). In “Antipodal”,
landmarks for agents 1 to 4 have (x, y) coordinates [(0.9,0.9), (-0.9,-0.9), (0.9,-0.9), (-0.9,0.9)], while
agents 1 to 4 are placed at [(-0.9,-0.9), (0.9,0.9), (-0.9,0.9), (0.9,-0.9)]. In “Intersection”, landmark
coordinates are [(0.9,-0.15), (-0.9,0.15), (0.15,0.9), (-0.15,-0.9)], while agents are placed at [(-0.9,-
0.15), (0.9,0.15), (0.15,-0.9), (-0.15,0.9)]. In “Merge”, landmark coordinates are [(0.9,-0.2), (0.9,0.2)],
while agents are [(-0.9,0.2), (-0.9,-0.2)]. Each agent’s goal is the assigned landmark position vector.

Reward. At each time step, each agent’s individual reward is the negative distance between its
position and the position of its assigned landmark. If a collision occurs between any pair of agents,
both agents receive an additional -1 penalty. A collision occurs when two agents’ distance is less than
the sum of their radius.

Termination. Episode terminates when all agents are less than 0.05 distance from assigned land-
marks.

Induced MDP. This is the N = 1 case of the Markov game, used by Stage 1 of CM3. The single
agent only receives oself. In each episode, its initial position and the assigned landmark’s initial
position are both uniform randomly chosen from (−1, 1)2.

G.2 SUMO

We constructed a straight road of total length 200m and width 12.8m, consisting of four lanes. All
lanes have width 3.2m, and vehicles can be aligned along any of four sub-lanes within a lane, with
lateral spacing 0.8m. Vehicles are emitted at average speed 30m/s with small deviation. Simula-
tion time resolution was 0.2s per step. Supplementary file merge_stage3_dense.rou.xml
contains all vehicle parameters, and merge.net.xml defines the complete road architecture.

State. The global state vector s is the concatenation of all agents’ absolute position (x, y), normalized
respectively by the total length and width of the road, and horizontal speed v normalized by 29m/s.

Observation. Each agent observation of itself onself is a vector consisting of: agent speed normalized
by 29m/s, normalized number of sub-lanes between agent’s current sub-lane and center sub-lane
of goal lane, and normalized longitudinal distance to goal position. Each agent’s observation of
others onothers is a discretized observation tensor of shape [13,9,2] centered on the agent, with two
channels: binary indicator of vehicle occupancy, and normalized relative speed between agent and
other vehicles. Each channel is a matrix with shape [13,9], corresponding to visibility of 15m forward
and backward (with resolution 2.5m) and four sub-lanes to the left and right.

Actions. All agents have the same discrete action space, consisting of five options: no-op (maintain
current speed and lane), accelerate (2.5m/s2), decelerate (−2.5m/s2), shift one sub-lane to the left,
shift one sub-lane to the right. Each agent’s action an is represented as a one-hot vector of length 5.

Goals and initial state assignment. Each goal vector gn is a one-hot vector of length 4, indicating
the goal lane at which agent n should arrive once it crosses position x=190m. With probability 0.2,
agents are assigned goals uniformly at random, and agents are assigned initial lanes uniformly at

18

Under review as a conference paper at ICLR 2020

random at position x=0. With probability 0.8, agent 1’s goal is lane 2 and agent 2’s goal is lane 1,
while agent 1 is initialized at lane 1 and agent 2 is initialized at lane 2 (see Figure 4). Departure times
were drawn from a normal distribution with mean 0s and standard deviation 0.5s for each agent.

Reward. The reward R(st,at, g
n) for agent n with goal gn is given according to the conditions:

-1 for a collision; -10 for time-out (exceed 33 simulation steps during an episode); 10(1 −∆) for
reaching the end of the road and having a normalized sub-lane difference of ∆ from the center of the
goal lane; and -0.1 if current speed exceeds 35.7m/s.

Termination. Episode terminates when 33 simulation steps have elapsed or all agents have x >190m.

Induced MDP. This is the N = 1 case of the Markov game defined above, used by Stage 1 of
CM3. The single agent receives only oself. For each episode, agent initial and goal lanes are assigned
uniformly at random from the available lanes.

G.3 CHECKERS

This domain is adapted from the Checkers environment in Sunehag et al. (2018). It is a gridworld
with 5 rows and 13 columns (Figure 2). Agents cannot move to the two highest and lowest rows
and the two highest and lowest columns, which are placed for agents’ finite observation grid to be
well-defined. Agents cannot be in the same grid location. Red and yellow collectible reward are
placed in a checkered pattern in the middle 3x8 region, and they disappear when any agent moves to
their location.

State. The global state s consists of two components. The first is sT , a tensor of shape [3,9,2], where
the two “channels” in the last dimension represents the presence/absence of red and yellow rewards
as 1-hot matrices. The second is sV , the concatenation of all agents’ (x, y) location (integer-valued)
and the number of red and yellow each agent has collected so far.

Observation. Each agent’s obsevation of others, onothers, is the concatenation of all other agents’
normalized coordinates (normalized by total size of grid). An agent’s observation of itself, onself,
consists of two components. First, onself,V is a vector concatenation of agent n’s normalized coordinate
and the number of red and yellow it has collected so far. Second, onself,T is a tensor of shape [5,5,3],
centered on its current location in the grid. The tensor has three “channels”, where the first two
represent presence/absence of red and yellow rewards as 1-hot matrices, and the last channel indicates
the invalid locations as a 1-hot matrix. The agent’s own grid location is a valid location, while other
agents’ locations are invalid.

Actions. Agents choose from a discrete set of actions do-nothing, up, down, left, right. Movement
actions transport the agent one grid cell in the chosen direction.

Goals. Agent A’s goal is to collect all red rewards without touching yellow. Agent B’s goal is to
collect all yellow without touching red. The goal is represented as a 1-hot vector of length 2.

Reward. Agent A gets +1 for red, -0.5 for yellow. Agent B gets -0.5 for red, +1 for yellow.

Initial state distribution. Agent A is initialized at (2,8), Agent B is initialized at (4,8). (0,0) is the
top-left cell (Figure 2).

Termination. Each episode finishes when either 75 time steps have elapsed, or when all rewards
have been collected.

Induced MDP. For Stage 1 of CM3, the single agent is randomly assigned the role of either Agent A
or Agent B in each episode. Everything else is defined as above.

H ARCHITECTURE

For all experiment domains, ReLU nonlinearity was used for all neural network layers unless
otherwise specified. All layers are fully-connected feedforward layers, unless otherwise spec-
ified. All experiment domains have a discrete action space (with |A| = 5 actions), and ac-
tion probabilities were computed by lower-bounding softmax outputs of all policy networks by
P (an = i) = (1 − ε)softmax(i) + ε/|A|, where ε is a decaying exploration parameter. To keep
neural network architectures as similar as possible among all algorithms, our neural networks for

19

Under review as a conference paper at ICLR 2020

COMA differ from those of Foerster et al. (2018) in that we do not use recurrent networks, and
we do not feed previous actions into the Q function. For the Q network in all implementations of
COMA, the value of each output node i is interpreted as the action-value Q(s, a−n, an = i,g) for
agent n taking action i and all other agents taking action a−n. Also for COMA, agent n’s label vector
(one-hot indicator vector) and observation oself were used as input to COMA’s global Q function,
to differentiate between evaluations of the Q-function for different agents. These were choices in
Foerster et al. (2018) that we retain.

H.1 COOPERATIVE NAVIGATION

CM3. The policy network π1 in Stage 1 feeds the concatenation of oself and goal g to one layer with
64 units, which is connected to the special layer h1∗ with 64 units, then connected to the softmax
output layer with 5 units, each corresponding to one discrete action. In Stage 2, oothers is connected to
a new layer with 128 units, then connected to h1∗.

The Q1 function in Stage 1 feeds the concatenation of state s, goal g, and 1-hot action a to one layer
with 64 units, which is connected to the special layer h1∗ with 64 units, then to a single linear output
unit. In Stage 2, Q1 is augmented into both Qπ

n (s,a) and Qπ
n (s, am) as separate networks. For

Qπ
n (s,a), s−n (part of state s excluding agent n) and a−n are concatenated and connected to a layer

with 128 units, then connected to h1∗. For Qπ
n (s, am), sm (agent m portion of state s) and s−n are

concatenated and connected to a layer with 128 units, then connected to h1∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of IAC concatenates
onself and goal gn, connects to a layer with 64 units, which connects to a second layer h2 with 64 units,
then to a single linear output unit. onothers is connected to a layer with 128 units, then connected to h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The global Q function of COMA
computes Q(s, (an, a−n)) for each agent n as follows. Input is the concatenation of state s, all other
agents’ 1-hot actions a−n, agent n’s goal gn, all other agent goals g−n, agent label n, and agent n’s
observation onself. This is passed through two layers of 128 units each, then connected to a linear
output layer with 5 units.

QMIX. Individual value functions take input (onself, o
n
others, g

n) and connects to one hidden layer with
64 units, which connects to the output layer. The mixing network follows the exact architecture of
Rashid et al. (2018) with embedding dimension 64.

H.2 SUMO

CM3. The policy network π1 during Stage 1 feeds each of the inputs oself and goal gn to a layer
with 32 units. The concatenation is then connected to the layer h1∗ with 64 units, and connected to a
softmax output layer with 5 units, each corresponding to one discrete action. In Stage 2, the input
observation grid onothers is processed by a convolutional layer with 4 filters of size 5x3 and stride 1x1,
flattened and connected to a layer with 64 units, then connected to the layer h1∗ of π1.

The Q1 function in Stage 1 feeds the concatenation of state s, goal g, and 1-hot action a to one layer
with 256 units, which is connected to the special layer h1∗ with 256 units, then to a single linear
output unit. In Stage 2, Q1 is augmented into both Qπ

n (s,a) and Qπ
n (s, am) as separate networks.

For Qπ
n (s,a), s−n (part of state s excluding agent n), a−n, and g−n are concatenated and connected

to a layer with 128 units, then connected to h1∗. For Qπ
n (s, am), sm (agent m portion of state s), s−n,

and g−n are concatenated and connected to a layer with 128 units, then connected to h1∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of IAC concatenates
onself and gn, feeds it into a layer with 64 units, which connects to a layer h2 with 64 units, which
connects to one linear output unit. onothers is processed by a convolutional layer with 4 filters of size
5x3 and stride 1x1, flattened and connected to a layer with 128 units, then connected to h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The Q function of COMA is
exactly the same as the one in COMA for cooperative navigation defined above.

QMIX. Individual value functions take input (onself, g
n) and connects to one hidden layer with 64

units, which connects to layer h2 with 64 units. onothers is passed through the same convolutional layer

20

Under review as a conference paper at ICLR 2020

as above and connected to h2. h2 is fully-connected to an output layer. The mixing network follows
the exact architecture of Rashid et al. (2018) with embedding dimension 64.

H.3 CHECKERS

CM3. The policy network π1 during Stage 1 feeds onself,T to a convolution layer with 6 filters of size
3x3 and stride 1x1, which is flattened and connected to a layer with 32 units, which is concatenated
with onself,V , previous action, and its goal vector. The concatenation is connected to a layer with 256
units, then to the special layer h1∗ with 256 units, finally to a softmax output layer with 5 units. In
Stage 2, onothers is connected to a layer with 256 units, then to the layer h1∗ of π1.

The Q1 function in Stage 1 is defined as: state tensor sT is fed to a convolutional layer with 4 filters
of size 3x5 and stride 1x1 and flattened. onself,T is given to a convolution layer with 6 filters of size
3x3 and stride 1x1 and flattened. Both are concatenated with sn (agent n part of the sV vector),
goal gn, action an and onself,V . The concatenation is fed to a layer with 256 units, then to the special
layer h1∗ with 256 units, then to a single linear output unit. In Stage 2, Q1 is augmented into both
Qπ
n (s,a) and Qπ

n (s, am) as separate networks. For Qπ
n (s,a), s−n (part of state vector sV excluding

agent n) and a−n are concatenated and connected to a layer with 32 units, then connected to h1∗. For
Qπ
n (s, am), sm (agent m portion of state sV) and s−n are concatenated and connected to a layer with

32 units, then connected to h1∗.

IAC. IAC uses the same policy network as Stage 2 of CM3. The value function of IAC feeds onself,T
to a convolutional layer with 6 filters of size 3x3 and stride 1x1, which is flattened and concatenated
with onself,V and goal gn. The concatenation is connected to a layer with 256 units, then to a layer h2
with 256 units, then to a single linear output unit. onothers is connected to a layer with 32 units, then to
the layer h2.

COMA. COMA uses the same policy network as Stage 2 of CM3. The global Q(s, (an, a−n))
function of COMA is defined as follows for each agent n. Tensor part of global state sT is given to
a convolutional layer with 4 filters of size 3x5 and stride 1x1. Tensor part of agent n’s observation
onself,T is given to a convolutional layer with 6 filters of size 3x3 and stride 1x1. Outputs of both
convolutional layers are flattened, then concatenated with sV , all other agents’ actions a−n, agent n’s
goal gn, other agents’ goals g−n, agent n’s label vector, and agent n’s vector observation onself,V . The
concatenation is passed through two layers with 256 units each, then to a linear output layer with 5
units.

QMIX. Individual value functions are defined as: onself,T is passed through the same convolutional
layer as above, connected to hidden layer with 32 units, then concatenated with onself,V , ant−1, and
gn. This is connected to layer h2 with 64 units. onothers is connected to a layer with 64 units then
connectd to h2. h2 is fully-connected to an output layer. The mixing network feeds sT into the
same convolutional network as above and follows the exact architecture of Rashid et al. (2018) with
embedding dimension 128.

I PARAMETERS

We used the Adam optimizer in Tensorflow with hyperparameters in Tables 3 to 5. εdiv is used to
compute the exploration decrement εstep := (εstart − εend)/εdiv.

21

Under review as a conference paper at ICLR 2020

Table 3: Parameters used for CM3, ablations, and baselines in cooperative navigation

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 1e3 8e4 8e4 8e4 8e4 8e4 8e4
εstart 1.0 0.5 0.5 1.0 1.0 1.0 1.0
εend 0.01 0.05 0.05 0.05 0.05 0.05 0.05
εdiv 1e3 2e4 2e4 8e4 8e4 2e4 8e4
Replay buffer 1e4 1e4 1e4 1e4 1e4 1e4 1e4
Minibatch size 256 128 128 128 128 128 128
Episodes per train 10 10 10 10 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-4 1e-3
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs 24 24 24 24 24 24 NA
Steps per train N/A N/A N/A N/A N/A N/A 10
Max env steps 25 50 50 50 50 50 50

Table 4: Parameters used for CM3 and baselines in SUMO

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 2.5e3 5e4 5e4 5e4 5e4 5e4 5e4
εstart 0.5 0.5 0.5 0.5 0.5 0.5 0.5
εend 0.05 0.05 0.05 0.05 0.05 0.05 0.05
εstep 2e3 1e3 4e4 4e4 1e3 1e4 4e4
Replay buffer 1e4 2e4 2e4 2e4 2e4 2e4 2e4
Minibatch size 128 128 128 128 128 128 128
Steps per train 10 10 10 10 N/A N/A 10
Episodes per train N/A N/A N/A N/A 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-3 1e-3
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs N/A N/A N/A N/A 33 33 N/A
Max env steps 33 33 33 33 33 33 33

Table 5: Parameters used for CM3 and baselines in Checkers

CM3

Parameter Stage 1 Stage 2 QV Direct IAC COMA QMIX

Episodes 5e3 5e4 5e4 5e4 5e4 5e4 5e4
εstart 1.0 0.5 0.5 1.0 1.0 1.0 1.0
εend 0.1 0.1 0.1 0.1 0.1 0.1 0.1
εstep 5e2 1e3 1e3 1e4 2e4 1e4 1e4
Replay buffer 1e4 1e4 1e4 1e4 1e4 1e4 1e4
Minibatch size 128 128 128 128 128 128 128
Steps per train N/A 10 10 10 N/A N/A 10
Episodes per train 10 N/A N/A N/A 10 10 N/A
Learning rate π 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 N/A
Learning rate Q 1e-3 1e-3 1e-3 1e-3 N/A 1e-3 1e-5
Learning rate V N/A N/A 1e-3 N/A 1e-3 N/A N/A
Epochs 10 N/A N/A N/A 33 33 N/A
Max env steps 75 75 75 75 75 75 75

22

Under review as a conference paper at ICLR 2020

J STAGE 1

The Stage 1 functions Q1 and π1 for a single agent are trained with the N = 1 equivalents of (4) and
(5):

L(θQ) = Eπ

[(
yi −Q1

θQ(si, ai)
)2]

(14)

yi := R(si,ai, g
n) + γQ1

θQ(si+1, ai+1) (15)

∇θJ(π1) = Eπ1

[
∇θ log π(a)

(
Qπ

1

(s, a)−
∑
â

π1(â)Qπ
1

(s, â)
)]

(16)

Stage 1 training curves for all three experimental domains are shown in Figure 6.

200 400 600 800 1000
Episode

30

25

20

15

10

Re
wa

rd

(a) Cooperative navigation

0 500 1000 1500 2000 2500
Episode

5

6

7

8

9

Re
wa

rd

(b) SUMO

0 1000 2000 3000 4000 5000
Episode

4

2

0

2

4

6

8

10

Re
wa

rd

(c) Checkers

Figure 6: Stage 1 reward curves for CM3 in cooperative navigation, SUMO and Checkers.

23

	Introduction
	Related work
	Preliminaries
	Methods
	Credit assignment in multi-goal MARL
	Cooperative multi-goal multi-agent policy gradient
	Curriculum for multi-goal MARL
	Function augmentation for multi-goal curriculum
	A complete instantiation of CM3

	Experimental setup
	Results and Discussions
	Conclusion
	Algorithm
	Derivations
	prop:q
	prop:gradient

	Variance
	Variance of COMA gradient.
	Variance of the CM3 gradient

	Example of greedy initialization for MARL exploration
	Generalization
	Absolute runtime
	Environment details
	Cooperative navigation
	SUMO
	Checkers

	Architecture
	Cooperative navigation
	SUMO
	Checkers

	Parameters
	Stage 1

