
Under review as a conference paper at ICLR 2020

DREAM TO CONTROL: LEARNING BEHAVIORS
BY LATENT IMAGINATION

Anonymous authors
Paper under double-blind review

Abstract

To select effective actions in complex environments, intelligent agents need to
generalize from past experience. World models can represent knowledge about the
environment to facilitate such generalization. While learning world models from
high-dimensional sensory inputs is becoming feasible through deep learning, there
are many potential ways for deriving behaviors from them. We present Dreamer,
a reinforcement learning agent that solves long-horizon tasks purely by latent
imagination. We efficiently learn behaviors by backpropagating analytic gradients
of learned state values through trajectories imagined in the compact state space of
a learned world model. On 20 challenging visual control tasks, Dreamer exceeds
existing approaches in data-efficiency, computation time, and final performance.

1 INTRODUCTION

Value and Action Learned 
by Latent Imagination

Dataset of Experience

Learned Latent Dynamics

Figure 1: Dreamer
learns a world model
from past experience
and learns farsighted
behaviors in its latent
space by backpropa-
gating value estimates
through imagined tra-
jectories.

Intelligent agents can achieve goals in complex environments even though
they never encounter the exact same situation twice. This ability requires
building representations of the world from past experience that enable
generalization to novel situations. World models offer an explicit way to
represent an agent’s knowledge about the world in a parametric model
learned from experience that can make predictions about the future.
When the sensory inputs are high-dimensional images, latent dynamics
models can abstract observations to predict forward in compact state spaces
(Watter et al., 2015; Oh et al., 2017; Gregor et al., 2019). Compared to
predictions in image space, latent states have a small memory footprint and
enable imagining thousands of trajectories in parallel. Learning effective
latent dynamics models is becoming feasible through advances in deep
learning and latent variable models (Krishnan et al., 2015; Karl et al., 2016;
Doerr et al., 2018; Buesing et al., 2018).
Behaviors can be derived from learned dynamics models in many ways.
Often, imagined rewards are maximized by learning a parametric policy
(Sutton, 1991; Ha and Schmidhuber, 2018; Zhang et al., 2019) or by online
planning (Chua et al., 2018; Hafner et al., 2019). However, considering only
rewards within a fixed imagination horizon results in shortsighted behaviors.
Moreover, prior work commonly resorts to derivative-free optimization for
robustness to model errors (Ebert et al., 2017; Chua et al., 2018; Parmas
et al., 2019), rather than leveraging the analytic gradients offered by neural
network dynamics models (Henaff et al., 2018; Srinivas et al., 2018).
We present Dreamer, an agent that learns long-horizon behaviors from
images purely by latent imagination. A novel actor critic algorithm accounts
for rewards beyond the planning horizon while making efficient use of the
neural network dynamics. For this, we predict state values and actions in
the learned latent space as summarized in Figure 1. The values optimize
Bellman consistency for imagined rewards and the policy maximizes the
values by propagating their analytic gradients back through the dynamics.
In comparison to actor critic algorithms that learn online or by experience
replay (Lillicrap et al., 2015; Mnih et al., 2016; Schulman et al., 2017;
Haarnoja et al., 2018; Lee et al., 2019), world models enable interpolating
between past experience and offer analytic gradients of multi-step returns
for efficient policy optimization.

1



Under review as a conference paper at ICLR 2020

(a) Cup (b) Acrobot (c) Hopper (d) Walker (e) Quadruped

Figure 2: Agent observations for 5 of the 20 control tasks used in our experiments. These pose a
variety of challenges including contact dynamics, sparse rewards, many degrees of freedom, and 3D
environments that exceed the difficult to tasks previously solved through world models. The agent
observes the images as 64× 64× 3 pixel arrays.

The key contributions of this paper are summarized as follows:

• Learning long-horizon behaviors in imagination Purely model-based agents can be short-
sighted due to finite imagination horizons. We approach this limitation in latenby predicting both
actions and state values. Training purely by latent imagination lets us efficiently learn the policy
by propagating analytic gradients of the value function back through latent state transitions.

• Empirical performance for visual control We pair Dreamer with three representation learn-
ing objectives to evaluate it on the DeepMind Control Suite with image inputs, shown in Figure 2.
Using the same hyper parameters for all tasks, Dreamer exceeds existing model-based and
model-free agents in terms of data-efficiency, computation time, and final performance.

2 CONTROL WITH WORLD MODELS

Reinforcement learning We formulate visual control as a partially observable Markov decision
process (POMDP) with discrete time step t ∈ [1;T ], continuous vector-valued actions at ∼ p(at |
o≤t, a<t) generated by the agent, and high-dimensional observations and scalar rewards ot, rt ∼
p(ot, rt | o<t, a<t) generated by the unknown environment. The goal is to develop an agent that
maximizes the expected sum of rewards Ep

(∑T
t=1 rt

)
. Figure 2 shows a selection of our tasks.

Agent components The classical components of agents that learn in imagination are dynamics
learning, behavior learning, and environment interaction (Sutton, 1991). In the case of Dreamer,
the behavior is learned by predicting hypothetical trajectories in the compact latent space of the
world model. As outlined in Figure 3 and detailed in Algorithm 1, Dreamer performs the following
operations throughout the agent’s life time, either sequentially interleaved or in parallel:

• Learn the latent dynamics model from the dataset of past experience to predict future rewards from
actions and past observations. Any learning objective for the world model can be incorporated
with Dreamer. We review existing methods for learning latent dynamics in Section 4.
• Learn action and value models from predicted latent trajectories, as described in Section 3. The

value model optimizes Bellman consistency for imagined rewards and the action model is updated
by propagating gradients of value estimates back through the neural network dynamics.

• Execute the learned action model in the world to collect new experience for growing the dataset.

Latent dynamics Dreamer uses a latent dynamics model that consists of three components. The
representation model encodes observations and actions to create continuous vector-valued model
states st with Markovian transitions (Watter et al., 2015; Zhang et al., 2019; Hafner et al., 2019). The
transition model predicts future model states without seeing the corresponding observations that will
cause them. The reward model predicts the rewards given the model states,

Representation model: p(st | st−1, at−1, ot)
Transition model: q(st | st−1, at−1)
Reward model: q(rt | st).

(1)

The model mimics a non-linear Kalman filter (Kalman, 1960), latent state space model, or HMM
with real-valued states. However, it is conditioned on actions and predicts rewards, allowing the agent
to imagine the outcomes of potential action sequences without executing them in the environment.

2



Under review as a conference paper at ICLR 2020

o1

r1 a1 r2 a2 r3
 ̂  ̂  ̂

o1
 ̂ o2o2

 ̂ o3o3
 ̂

(a) Learning dynamics from dataset

o1

r1 a1v1 r2 a2v2 r3 a3v3
 ̂  ̂ ̂  ̂  ̂ ̂  ̂  ̂ ̂

(b) Learning behavior in imagination

o1 o2 o3

a1 a2 a3
 ̂

(c) Environment interaction

Figure 3: Components of Dreamer. (a) From the dataset of past experience, the agent learns to encode
observations and actions into compact latent states ( ), for example via reconstruction, and predicts
environment rewards ( ). (b) In the compact latent space, Dreamer predicts state values ( ) and
actions ( ) that maximize future value predictions by propagating gradients back through imagined
trajectories. (c) The agent encodes the history of the episode to compute the current model state and
predict the next action to execute in the environment. See Algorithm 1 for pseudo code of the agent.

3 LEARNING BEHAVIORS BY LATENT IMAGINATION

Dreamer learns long-horizon behaviors in the compact latent space of a learned world model. For this,
we propagate stochastic gradients of multi-step returns through neural network predictions of actions,
states, rewards, and values using reparameterization. This section describes our core contribution.

Imagination environment The latent dynamics define a Markov decision process (MDP; Sutton,
1991) that is fully observed since the compact model states st are Markovian. We denote imagined
quantities with τ as the time index. Imagined trajectories start at the true model states st of observation
sequences drawn from the agent’s past experience. They follow predictions of the transition model
sτ ∼ q(sτ | sτ−1, aτ−1), reward model rτ ∼ q(rτ | sτ ), and a policy aτ ∼ q(aτ | sτ ). The
objective is to maximize expected imagined rewards Eq

(∑∞
τ=t γ

τ−trτ
)

with respect to the policy.

Action and value models Consider imagined trajectories with a finite horizon H . Dreamer uses
an actor critic approach to learn behaviors that consider rewards beyond the horizon. We learn an
action model and a value model in the latent space of the world model. The action model implements
the policy and aims to predict actions that solve the imagination environment. The value model
estimates the state values V(sτ ) , Eq(·|sτ )

(∑t+H
τ=t γ

τ−trτ
)

for the action model, the expected sum
of imagined rewards that it achieves in each state sτ ,

Action model: aτ ∼ qφ(aτ | sτ )
Value model: vξ(sτ ) ≈ V(sτ ).

(2)

The action and value models are trained cooperatively as typical in policy iteration: the action model
aims to maximize an estimate of the value, while the value model aims to match an estimate of the
value that changes as the action model changes.

We use dense neural networks for the action and the value model with parameters φ and ξ, respectively.
The action model outputs a tanh-transformed Gaussian (Haarnoja et al., 2018) with sufficient statistics
predicted by the neural network. This allows for reparameterized sampling (Kingma and Welling,
2013; Rezende et al., 2014) that lets sampled actions depend deterministically on the neural network
output, allowing to backpropagate analytic gradients through the sampling operation,

aτ = tanh
(
µφ(sτ ) + σφ(sτ ) ε

)
, ε ∼ Normal(0, I). (3)

Value estimation To learn the action and value models, we need to estimate the state values
of imagined trajectories {sτ , aτ , rτ}t+Hτ=t . These trajectories branch off of the model states st of
sequence batches drawn from the agent’s dataset of experience and predict forward for the imagination
horizon H using actions sampled from the action model. State values can be estimated in multiple

3



Under review as a conference paper at ICLR 2020

10 20 30 40
Imagination Horizon

0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Cartpole Swingup

10 20 30 40
Imagination Horizon

0

200

400

600

800

1000
Cheetah Run

10 20 30 40
Imagination Horizon

0

200

400

600

800

1000
Quadruped Walk

10 20 30 40
Imagination Horizon

0

200

400

600

800

1000
Walker Walk

Dreamer  ( )
No value ( R)
PlaNet     ( R)

Figure 4: Imagination horizons. We compare the final performance of Dreamer to learning an action
model without value prediction and to online planning using PlaNet. Learning a state value model to
estimate rewards beyond the imagination horizon makes Dreamer more robust to the horizon length.
The agents use reconstruction for representation learning and an action repeat of R = 2.

ways that trade off bias and variance (Sutton and Barto, 2018),

VR(sτ ) , Eq(·|sτ )

( t+H∑
n=τ

rn

)
, (4)

VkN(sτ ) , Eq(·|sτ )

( h−1∑
n=τ

γn−τrn + γh−τvξ(sh)

)
with h = min(τ + k, t+H), (5)

Vλ(sτ ) , (1− λ)
H−1∑
n=1

λnVnN(sτ ) + λHVHN (sτ ), (6)

where the expectations are estimated with the imagined trajectories. VR simply sums the rewards
from τ until the horizon and ignores rewards beyond it. This allows learning the action model
without value model, an ablation we compare to in our experiments. VkN estimates rewards beyond k
steps with the learned value model. Dreamer uses Vλ, which computes an exponentially-weighted
average of the estimates for different k to balance bias and variance. Figure 4 shows that learning a
value function in imagination enables Dreamer to solve long-horizon tasks while being robust to the
imagination horizon. The experimental details and results on all tasks are described in Section 5.

Learning objective To update the action and value models, we first compute the value estimates
Vλ(sτ ) for states sτ along the imagined trajectories. The objective for the action model qφ(aτ | sτ )
is to output actions that result in state trajectories with high value estimates. The objective for the
value model vξ(sτ ), in turn, is to regress the value estimates,

max
φ

Eqφ,qθ

( t+H∑
τ=t

Vλ(sτ )
)
, (7) min

ξ
Eqφ,qθ

( t+H∑
τ=t

1

2

∥∥∥vξ(sτ )− Vλ(sτ ))∥∥∥2). (8)

The value model is simply updated to regress the targets, around which we stop the gradient as
typical in temporal difference learning (Sutton and Barto, 2018). The action model uses analytic
gradients through the learned dynamics to maximize the value estimates. To understand this, we note
that the value estimates depend on the reward and value predictions, which depend on the imagined
states, which in turn depend on the imagined actions. Since these steps are all implemented as neural
networks with reparameterized sampling, we analytically compute ∇φEqφ,qθ

(∑t+H
τ=t Vλ(sτ )

)
by

stochastic backpropagation (Kingma and Welling, 2013; Rezende et al., 2014). The world model is
fixed while learning the action and value models.

Comparison to actor critic methods Agents using Reinforce gradients (Williams, 1992) employ a
value baseline to reduce gradient variance, such as A3C (Mnih et al., 2016) and PPO (Schulman et al.,
2017), while Dreamer backpropagates through the value model. This is similar to analytic actor critics
(Silver et al., 2014), such as DDPG (Lillicrap et al., 2015) and SAC (Haarnoja et al., 2018). However,
these do not leverage gradients through the state transitions and only maximize immediate Q-values.
MVE and STEVE (Feinberg et al., 2018; Buckman et al., 2018) extend these to multi-step Q-learning
using learned dynamics to help rewards propagate faster into the value estimates. We simply predict
state values, which is sufficient for policy optimization since we backpropagate through the dynamics.

We empirically compare learning action and value models from Vλ, learning the action model from
VR which does not require a value model, and online planning in our experiments in Figure 7.

4



Under review as a conference paper at ICLR 2020

Tr
ue

Context 6 10 15 20 25 30 35 40 45 50

M
od

el
Tr

ue
M

od
el

Figure 5: Reconstructions of long-term predictions. We apply the representation model to the first 5
images of two hold-out trajectories and predict forward for 45 steps using the latent dynamics, given
only the actions. The recurrent state space model (RSSM; Hafner et al., 2019) performs accurate
long-term predictions, enabling Dreamer to learn successful behaviors in its latent space.

4 LEARNING LATENT DYNAMICS

Learning behaviors in imagination requires a world model that generalizes well. We focus on latent
dynamics models that predict forward in a compact latent space, facilitating long-term predictions
and allowing to imagine thousands of trajectories in parallel. Several objectives for learning represen-
tations for control have been proposed (Watter et al., 2015; Jaderberg et al., 2016; Oord et al., 2018;
Eslami et al., 2018). We review three approaches for learning representations to use with Dreamer:
image reconstruction, contrastive estimation, and reward prediction.
Reward prediction Latent imagination requires a representation model p(st | st−1, at−1, ot),
transition model q(st | st−1, at−1, ), and reward model q(rt | st), as described in Section 2. In
principle, this could be achieved by simply learning to predict future rewards given actions and
past observations (Oh et al., 2017; Gelada et al., 2019). Given a large and diverse dataset, such
representations should be sufficient for solving a given control problem. However, while the agent
is still exploring and especially when the reward signal is limited, additionally learning about
observations is likely to improve the world model (Jaderberg et al., 2016; Gregor et al., 2019).
Representation learning The world model is learned from sequences {(ot, at, rt)}Tt=1 drawn from
the agent’s dataset of experience. To learn representations that generalize, the model states s1:T should
be predictive of observations o1:T and rewards r1:T while not overfitting to individual examples in
the dataset. At a high level, this is formalized by an information bottleneck (Tishby et al., 2000),

max
θ
JINFO, JINFO , I(s1:T ; (o1:T , r1:T ) | a1:T )− β I(s1:T ; i1:T | a1:T ). (9)

The first terms encourages mutual information between the model states and the observations and
rewards. The second term penalizes information between model states and dataset indices i1:T by an
amount 0 ≤ β ≤ 1. The dataset indices relate to the images by a Dirac delta p(ot | it) as in Alemi
et al. (2016). The information bottleneck poses the representation learning problem in a generic
way and provides a common view on pixel reconstruction and contrastive estimation. While the two
information terms are difficult to estimate, they are easy to bound an optimize (Poole et al., 2019).
Reconstruction We first describe the world model used by PlaNet (Hafner et al., 2019), shown in
Figure 3a. It bounds the objective by predicting observations and rewards from the model states,

JINFO ≥ Ep

(∑
t

(
J tREC + J tR + J tKL

))
+ const J tREC , ln q(ot | st)

J tR , ln q(rt | st) J tKL , −βKL
(
p(st | st−1, at−1, ot)

∥∥ q(st | st−1, at−1)), (10)

where the expectation samples sequences from the dataset and states from the representation model.
The bound includes a reconstruction term, a reward prediction term, and a KL regularizer. We refer
to Appendix C for the derivation. The bound uses four distributions that we implement as neural
networks and optimize jointly to increase the bound,

Representation model: st ∼ pθ(st | st−1, at−1, ot)
Observation model: qθ(ot | st)
Reward model: qθ(rt | st)
Transition model: qθ(st | st−1, at−1).

(11)

5



Under review as a conference paper at ICLR 2020

Ca
rtp

ol
e

 B
ala

nc
e

W
alk

er
 S

tan
d

W
alk

er
 W

alk
Ca

rtp
ol

e
Ba

l. 
Sp

ar
se

Re
ac

he
r

 E
as

y
Cu

p
 C

atc
h

Qu
ad

ru
pe

d
 W

alk
Ho

pp
er

 S
tan

d
Qu

ad
ru

pe
d

 R
un

Ca
rtp

ol
e

 S
wi

ng
up

Pe
nd

ul
um

 S
wi

ng
up

Fi
ng

er
 S

pi
n

Ch
ee

tah  R
un

Ca
rtp

ol
e

Sw
i. 

Sp
ar

se
W

alk
er

 R
un

Fi
ng

er
 T

ur
n 

 E
as

y
Fi

ng
er

 T
ur

n 
 H

ar
d

Re
ac

he
r

 H
ar

d
Ho

pp
er

 H
op

Ac
ro

bo
t

 S
wi

ng
up

0
200
400
600
800

1000
Ep

iso
de

 R
etu

rn

n/
a

n/
a

n/
a

n/
a

Dreamer (2e6) PlaNet (2e6) D4PG (1e9 steps) A3C (1e9 steps, proprio)

Figure 6: Performance comparison to existing methods. Dreamer exhibits the data-efficiency of
PlaNet while exceeding the asymptotic performance of the best model-free agents. After 2 ∗ 106
environment steps, Dreamer reaches an average performance of 802 across tasks, compared to PlaNet
at 312 and the top model-free D4PG agent at 786 after 109 steps. Results are averages over 3 seeds.

We implement the transition model as recurrent state space model (RSSM; Hafner et al., 2019), the
representation model by combining the RSSM with a convolutional neural network (CNN; LeCun
et al., 1989) applied to the image observation, the observation model as a transposed CNN, and the
reward model as dense network. The combined parameter vector θ is updated by reparameterization
gradients (Kingma and Welling, 2013; Rezende et al., 2014). Figure 5 shows video predictions of
this model. We refer to Appendix B and Hafner et al. (2019) model details.
Contrastive estimation Accurately predicting pixels in visually complex environments can be a
challenging task. We can avoid reconstruction by instead predicting model states (Guo et al., 2018).
While the observation marginal above was a constant, we now face the state marginal. Using the
InfoNCE bound (Gutmann and Hyvärinen, 2010; Oord et al., 2018) as described in Appendix C,

JINFO ≥ E

(∑
t

(
J tNCE + J tR + J tKL

))
J tNCE , ln q(st | ot)− ln

(∑
o′

q(st | o′)
)
, (12)

where
∑
o′ q(st | o′) estimates the marginal by summing over observations o′ of the current sequence

batch. Intuitively, q(st | ot) makes the state predictable from the current image and ln
∑
o′ q(st | o′)

keeps it diverse to prevent collapse. Instead of the observation model, the bound uses a state model,
State model: qθ(st | ot). (13)

We implement the state model as a CNN and again optimize the bound with respect to the combined
parameter vector θ using reparameterization gradients. While avoiding pixel prediction, the amount of
information this bound can extract efficiently is limited (McAllester and Statos, 2018). We empirically
compare reconstruction, contrastive, and reward objectives in our experiments in Figure 8.

5 EXPERIMENTS

Visual control tasks We evaluate Dreamer on 20 continuous control tasks with image observations
of the DeepMind Control Suite (Tassa et al., 2018), illustrated in Figure 2. These tasks pose a variety
of challenges, including partial observability, sparse rewards, contact dynamics, and 3D environments.
We selected the tasks on which Tassa et al. (2018) report non-zero performance from image inputs.
Agent observations are images of shape 64× 64× 3, actions range from 1 to 12 dimensions, rewards
are between 0 and 1, episodes contain 1000 steps, and initial states are randomized. Visualizations of
our agent are available at https://dreamrl.github.io.
Implementation All experiments used a single Nvidia V100 GPU and 10 CPU cores per training
run. Our implementation uses TensorFlow Probability (Dillon et al., 2017) and will be open sourced.
The training time for our implementation of Dreamer is 10 hours per 106 environment steps without
parallelization, compared to 17 hours for online planning using PlaNet, and 24 hours for D4PG. We
use the same hyper parameters across all tasks including a fixed action repeat of R = 2, as detailed in
Appendix B. The world models are learned by reconstruction unless noted otherwise.
Baseline methods We compare Dreamer to several baselines: The current best reported perfor-
mance on the considered tasks is by D4PG (Barth-Maron et al., 2018), an improved variant of DDPG
(Lillicrap et al., 2015) that uses distributed experience collection, distributional Q-learning, multi-step
returns, and prioritized experience replay. PlaNet (Hafner et al., 2019) learns the same world model
as Dreamer and selects actions using online planning instead of learning an action model. We include
the numbers for D4PG from Tassa et al. (2018) and re-run PlaNet with R = 2 for a fair comparison.

6

https://dreamrl.github.io


Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
0

100
200
300
400
500

Ep
iso

de
 R

etu
rn

Acrobot Swingup

0.0 0.2 0.4 0.6 0.8 1.0

0
200
400
600
800

1000
Cartpole Swingup Sparse

0.0 0.2 0.4 0.6 0.8 1.0
0

100
200
300
400
500

Hopper Hop

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

250

500

750

1000

Ep
iso

de
 R

etu
rn

Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

250

500

750

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

250

500

750

1000

Walker Walk

Dreamer No value PlaNet D4PG (1e9 steps) A3C (1e9 steps, proprio)

Figure 7: Dreamer succeeds at visual control tasks that require long-horizon credit assignment, such
as the acrobot and hopper tasks. Optimizing only imagined rewards by learning an action model or
by online planning yields shortsighted behaviors that only succeed in reactive tasks, such as in the
walker domain. The performance on all 20 tasks is summarized in Figure 6 and training curves are
shown in Appendix D. See Tassa et al. (2018) for performance curves of D4PG and A3C.

Performance comparison To evaluate the performance of Dreamer, we compare with state-of-the-
art reinforcement learning agents. The results are summarized in Figure 6. With an average score
of 802 across tasks after 2 ∗ 106 environment steps, Dreamer exceeds the performance of the strong
model-free D4PG agent that achieves an average of 786 within 109 environment steps. At the same
time, Dreamer inherits the data-efficiency of PlaNet, confirming that the learned world model can
help to generalize from small amounts of experience. The empirical success of Dreamer shows that
learning behaviors by latent imagination can outperform top methods based on experience replay.
Long-horizon behavior To investigate its ability to learn long-horizon behaviors, we compare
Dreamer to alternatives for deriving behaviors from the world model at various horizon lengths. For
this, we learn an action model to maximize imagined rewards without value model and compare
to online planning using PlaNet. Figure 4 shows the final performance for different imagination
horizons, confirming that the value model makes Dreamer more robust to the horizon and results in
high performance even for short horizons. Performance curves for all 20 tasks with horizon of 20 are
shown in Appendix D, where Dreamer outperforms the alternatives on 15 of 20 tasks and 3 ties.
Representation learning Dreamer can be used with any dynamics model that predicts future re-
wards given actions and past observations. Since the representation learning objective is orthogonal
to our algorithm, we compare three natural choices described in Section 4: pixel reconstruction, con-
trastive estimation, and pure reward prediction. Figure 8 shows clear differences in task performance
for different representation learning approaches, with pixel reconstruction outperforming contrastive
estimation on most tasks. This suggests that future improvements in representation learning are likely
to transfer over to task performance with Dreamer. Reward prediction along was not sufficient to
solve any of the tasks in our experiments. Further ablations are included in the appendix of the paper.

6 RELATED WORK

Prior work learns latent dynamics for visual control by derivative-free policy learning or online
planning, augments model-free agents with multi-step predictions, or uses analytic gradients of Q-
values or multi-step rewards, often for low-dimensional tasks. In comparison, Dreamer uses analytic
gradients to efficiently learn long-horizon behaviors for visual control purely by latent imagination.
Control with latent dynamics E2C (Watter et al., 2015) and RCE (Banijamali et al., 2017) embed
images to predict forward in a compact space to solve simple tasks. World Models (Ha and Schmid-
huber, 2018) learn latent dynamics in a two-stage process to evolve linear controllers in imagination.
PlaNet (Hafner et al., 2019) learns them jointly and solves visual locomotion tasks by latent online
planning. Similarly, SOLAR (Zhang et al., 2019) solves robotic tasks via guided policy search in

7



Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

Ep
iso

de
 R

etu
rn

Acrobot Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

Cup Catch

0.0 0.2 0.4 0.6 0.8 1.0

0

250

500

750

1000

Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0
200
400
600
800

1000

Ep
iso

de
 R

etu
rn

Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

250

500

750

1000
Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0
200
400
600
800

1000
Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

200
400
600
800

1000
1200

Walker Stand

Dreamer + Reconstruction Dreamer + Constrastive Dreamer + Reward D4PG (1e9 steps) A3C (1e9 steps, proprio)

Figure 8: Comparison of representation learning objectives to be used with Dreamer. Pixel recon-
struction performs best for the majority of tasks. The contrastive objective solves about half of the
tasks, while predicting rewards alone was not sufficient in our experiments. The results suggest that
future developments in learning representations are likely to translate into improved task performance
when using Dreamer. The performance curves for all tasks are included in Appendix E.

latent space. I2A (Weber et al., 2017) hands imagined trajectories to a model-free policy, while (Lee
et al., 2019) and Gregor et al. (2019) learn belief representations to accelerate model-free agents.
Imagined multi-step returns VPN (Oh et al., 2017), MVE (Feinberg et al., 2018), and STEVE
(Buckman et al., 2018) learn dynamics for multi-step Q-learning from a replay buffer. AlphaGo
(Silver et al., 2017) combines predictions of actions and state values with planning, assuming access
to the true dynamics. Also assuming access to the dynamics, POLO (Lowrey et al., 2018) plans to
explore by learning a value ensemble. PETS (Chua et al., 2018), VisualMPC (Ebert et al., 2017), and
PlaNet (Hafner et al., 2019) plan online using derivative-free optimization, and POPLIN (Wang and
Ba, 2019) improves online planning by self-imitation. Planning with neural network gradients was
shown on small problems (Henaff et al., 2018) but has been challenging to scale (Parmas et al., 2019).
Analytic value gradients DPG (Silver et al., 2014), DDPG (Lillicrap et al., 2015), and SAC
(Haarnoja et al., 2018) leverage gradients of learned immediate action values to learn a policy by
experience replay. SVG (Heess et al., 2015) reduces the variance of model-free on-policy algorithms
by analytic value gradients of one-step model predictions. ME-TRPO (Kurutach et al., 2018)
accelerates learning of a model-free agent via gradients of predicted rewards for proprioceptive inputs.
DistGBP (Henaff et al., 2017) directly uses model gradients for online planning in simple tasks.

7 CONCLUSION

We present Dreamer, an agent that learns long-horizon behaviors purely by latent imagination. For
this, we propose a novel actor critic method that optimizes a parametric policy by propagating analytic
gradients of multi-step values back through latent neural network dynamics. Dreamer outperforms
previous approaches in data-efficiency, computation time, and final performance on a variety of
challenging continuous control tasks from image inputs. While our approach compares favourably on
these tasks, future research on learning representations is likely needed to scale latent imagination to
visually more complex environments.

8



Under review as a conference paper at ICLR 2020

REFERENCES

A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottleneck. arXiv
preprint arXiv:1612.00410, 2016.

E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi. Robust locally-linear controllable
embedding. arXiv preprint arXiv:1710.05373, 2017.

G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Muldal, N. Heess, and T. Lil-
licrap. Distributed distributional deterministic policy gradients. arXiv preprint arXiv:1804.08617,
2018.

J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement learning
with stochastic ensemble value expansion. In Advances in Neural Information Processing Systems,
pages 8224–8234, 2018.

L. Buesing, T. Weber, S. Racaniere, S. Eslami, D. Rezende, D. P. Reichert, F. Viola, F. Besse,
K. Gregor, D. Hassabis, et al. Learning and querying fast generative models for reinforcement
learning. arXiv preprint arXiv:1802.03006, 2018.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems,
pages 4754–4765, 2018.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman, and R. A. Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604, 2017.

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint, and S. Trimpe.
Probabilistic recurrent state-space models. arXiv preprint arXiv:1801.10395, 2018.

F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised visual planning with temporal skip
connections. arXiv preprint arXiv:1710.05268, 2017.

S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu,
I. Danihelka, K. Gregor, et al. Neural scene representation and rendering. Science, 360(6394):
1204–1210, 2018.

V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101, 2018.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning continuous
latent space models for representation learning. arXiv preprint arXiv:1906.02736, 2019.

K. Gregor, D. J. Rezende, F. Besse, Y. Wu, H. Merzic, and A. v. d. Oord. Shaping belief states with
generative environment models for rl. arXiv preprint arXiv:1906.09237, 2019.

Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, T. Pohlen, and R. Munos. Neural predictive belief
representations. arXiv preprint arXiv:1811.06407, 2018.

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 297–304, 2010.

D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International Conference on Machine Learning, pages
2555–2565, 2019.

9



Under review as a conference paper at ICLR 2020

N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. Learning continuous control
policies by stochastic value gradients. In Advances in Neural Information Processing Systems,
pages 2944–2952, 2015.

M. Henaff, W. F. Whitney, and Y. LeCun. Model-based planning in discrete action spaces. CoRR,
abs/1705.07177, 2017. URL http://arxiv.org/abs/1705.07177.

M. Henaff, W. F. Whitney, and Y. LeCun. Model-based planning with discrete and continuous actions.
arXiv preprint arXiv:1705.07177, 2018.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35–45, 1960.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015.

T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy
optimization. arXiv preprint arXiv:1802.10592, 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online, learn offline:
Efficient learning and exploration via model-based control. arXiv preprint arXiv:1811.01848,
2018.

D. McAllester and K. Statos. Formal limitations on the measurement of mutual information. arXiv
preprint arXiv:1811.04251, 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on Machine
Learning, pages 1928–1937, 2016.

J. Oh, S. Singh, and H. Lee. Value prediction network. In Advances in Neural Information Processing
Systems, pages 6118–6128, 2017.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

P. Parmas, C. E. Rasmussen, J. Peters, and K. Doya. Pipps: Flexible model-based policy search
robust to the curse of chaos. arXiv preprint arXiv:1902.01240, 2019.

B. Poole, S. Ozair, A. v. d. Oord, A. A. Alemi, and G. Tucker. On variational bounds of mutual
information. arXiv preprint arXiv:1905.06922, 2019.

10

http://arxiv.org/abs/1705.07177


Under review as a conference paper at ICLR 2020

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning,
2014.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550(7676):
354, 2017.

A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn. Universal planning networks. arXiv preprint
arXiv:1804.00645, 2018.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163, 1991.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

T. Wang and J. Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally linear
latent dynamics model for control from raw images. In Advances in neural information processing
systems, pages 2746–2754, 2015.

T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia, O. Vinyals,
N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv
preprint arXiv:1707.06203, 2017.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. Solar: deep structured
representations for model-based reinforcement learning. In International Conference on Machine
Learning, 2019.

11



Under review as a conference paper at ICLR 2020

A DETAILED ALGORITHM

Algorithm 1: Dreamer

Hyper parameters:
S Seed episodes
C Collect interval
B Batch size
L Sequence length
H Imagination horizon

Neural network models:
pθ(st | st−1, at−1, ot) Representation model
qθ(st | st−1, at−1) Transition model
qθ(rt | st) Reward model
qφ(at | st) Action model
vξ(st) Value model

1 Initialize dataset D with S random seed episodes.
2 Initialize neural network parameters θ, φ, ξ randomly.
3 while not converged do
4 for update step s = 1..C do

// Dynamics learning

5 Draw B sequences {(at, ot, rt)}k+Lt=k ∼ D from the dataset.
6 Compute model states st ∼ pθ(st | st−1, at−1, ot).
7 Update θ to predict rewards using representation learning.

// Behavior learning

8 Imagine trajectories {(sτ , aτ )}t+Hτ=t from each st using action model.
9 Predict rewards E

(
qθ(rτ | sτ )

)
and values vξ(sτ ).

10 Compute value estimates Vλ(sτ ) via Equation 6.
11 Update φ according to maximize

∑t+H
τ=t Vλ(sτ ) by gradient ascent.

12 Update ξ to minimize
∑t+H
τ=t

1
2

∥∥vξ(sτ )− Vλ(sτ )∥∥2 by gradient descent.

// Environment interaction
13 o1 ← env.reset()
14 for time step t = 1..T do
15 Compute model state st ∼ pθ(st | st−1, at−1, ot) from history.
16 Compute action at ∼ qφ(at | st) with the action model.
17 Add exploration noise to action.
18 rt, ot+1 ← env.step(at).
19 Add experience to dataset D ← D ∪ {(ot, at, rt)Tt=1}.

B HYPER PARAMETERS

Model components We use the convolutional encoder and decoder networks from Ha and Schmid-
huber (2018), the RSSM of Hafner et al. (2019), and implement all other functions as three dense
layers of size 300 with ELU activations (Clevert et al., 2015). Distributions in latent space are
30-dimensional diagonal Gaussians. The action model outputs an unconstrained mean and softplus
standard deviation for the Normal distribution that is then transformed using tanh.
Learning updates We draw batches of 50 sequences of length 50 to train the world model, value
model, and action model models using Adam (Kingma and Ba, 2014) with learning rates 10−3,
3 ∗ 10−4, 3 ∗ 10−4, respectively. We do not scale the KL regularizers (β = 1) but clip them below
3 free nats as in PlaNet. The imagination horizon is H = 20 and the same trajectories are used to
update both action and value models. We use a slow moving value network that is updated every 100
gradient steps to compute the Vλ value estimates with γ = 0.99 and λ = 0.95.
Environment interaction The dataset is initialized with C = 5 episodes collected using random
actions. We iterate between 100 training steps and collecting 1 episode by executing the predicted
mode action with Normal(0, 0.3) exploration noise. Instead of manually selecting the action repeat
for each environment as in Hafner et al. (2019) and Lee et al. (2019), we fix it to 2 for all environments.
See Figure 11 for an assessment of the robustness to different action repeat values.

12



Under review as a conference paper at ICLR 2020

C DERIVATIONS

The information bottleneck objective defined in Equation 9 for latent dynamics models is,

JINFO , I(s1:T | (o1:T , r1:T ) | a1:T )− β I(s1:T , i1:T |a1:T ) (14)

For the generative objective, we lower bound the first term using the non-negativity of the KL
divergence and drop the marginal data probability as it does not depend on the representation model,

I(s1:T ; (o1:T , r1:T ) | a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T )

(∑
t

ln p(o1:T , r1:T | s1:T , a1:T )− ln p(o1:T , r1:T | a1:T )
const

)
+
= E

(∑
t

ln p(o1:T , r1:T | s1:T , a1:T )
)

≥ E
(∑

t

ln p(o1:T , r1:T | s1:T , a1:T )
)
−KL

(
p(o1:T , r1:T | s1:T , a1:T )

∥∥∥ ∏
t

q(ot | st)q(rt | st)
)

= E
(∑

t

ln q(ot | st) + ln q(rt | st)
)
.

(15)
For the contrastive objective, we subtract the constant marginal probability of the data under the
variational encoder, apply Bayes rule, and use the InfoNCE mini-batch bound (Poole et al., 2019),

E
(
ln q(ot | st) + ln q(rt | st)

)
+
= E

(
ln q(ot | st)− ln q(ot) + ln q(rt | st)

)
= E

(
ln q(st | ot)− ln q(st) + ln q(rt | st)

)
≥ E

(
ln q(st | ot)− ln

∑
o′

q(st | o′) + ln q(rt | st)
)
.

(16)

For the second term, we use the non-negativity of the KL divergence to obtain an upper bound,

I(s1:T ; i1:T | a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T ,i1:T )

(∑
t

ln p(st | st−1, at−1, it)− ln p(st | st−1, at−1)
)

= E
(∑

t

ln p(st | st−1, at−1, ot)− ln p(st | st−1, at−1)
)

≤ E
(∑

t

ln p(st | st−1, at−1, ot)− ln q(st | st−1, at−1)
)

= E
(∑

t

KL
(
p(st | st−1, at−1, ot)

∥∥ q(st | st−1, at−1))).
(17)

This lower bounds the objective.

13



Under review as a conference paper at ICLR 2020

D BEHAVIOR LEARNING

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Acrobot Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Balance

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Balance Sparse

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Cartpole Swingup Sparse

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cheetah Run

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cup Catch

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Finger Spin

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Finger Turn Easy

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Finger Turn Hard

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Hopper Hop

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Hopper Stand

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Pendulum Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Quadruped Run

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Quadruped Walk

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Reacher Easy

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Reacher Hard

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Run

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Stand

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Walk

Dreamer Actor Online planning D4PG (1e9 steps) A3C (1e9 steps, proprio) SLAC (3e6 steps)

Figure 9: Comparison of action selection schemes on the continuous control tasks of the DeepMind
Control Suite from pixel inputs. The lines show mean scores over environment steps and the shaded
areas show the standard deviation across 3 seeds. We compare Dreamer that learns both actions and
values in imagination, to only learning actions in imagination, and to online planning using CEM
without policy learning. The baselines include the top model-free algorithm D4PG, the common A3C
agent, and the hybrid SLAC agent.

14



Under review as a conference paper at ICLR 2020

E REPRESENTATION LEARNING

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Acrobot Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Balance

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Balance Sparse

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cartpole Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Cartpole Swingup Sparse

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cheetah Run

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Cup Catch

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Finger Spin

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Finger Turn Easy

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Finger Turn Hard

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Hopper Hop

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Hopper Stand

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Pendulum Swingup

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Quadruped Run

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Quadruped Walk

0.0 0.5 1.0 1.5 2.0
0

200

400

600

800

1000
Reacher Easy

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Reacher Hard

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Run

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Stand

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Walk

Generative Contrastive Reward only D4PG (1e9 steps) A3C (1e9 steps, proprio) SLAC (3e6 steps)

Figure 10: Comparison of representation learning methods for Dreamer. The lines show mean scores
and the shaded areas show the standard deviation across 3 seeds. We compare generating both images
and rewards, generating rewards and using a contrastive loss to learn about the images, and only
predicting rewards. Image reconstruction provides the best learning signal across most of the tasks.

15



Under review as a conference paper at ICLR 2020

F ACTION REPEAT

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Acrobot Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cartpole Balance

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cartpole Balance Sparse

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cartpole Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Cartpole Swingup Sparse

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cup Catch

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Finger Turn Easy

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Finger Turn Hard

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Hopper Hop

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

etu
rn

Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

200

400

600

800

1000
Walker Walk

Repeat 1 Repeat 2 Repeat 4 A3C (1e9 steps, proprio) D4PG (1e9 steps) PlaNet (1e6 steps) SLAC (3e6 steps)

Figure 11: Robustness of Dreamer to different control frequencies. Reinforcement learning methods
can be sensitive to this hyper parameter, which could be amplified when learning dynamics models
at the control frequency of the environment. For this experiment, we train Dreamer with different
amounts of action repeat. The areas show one standard deviation across 2 seeds. We find that a value
of R = 2 works well across the majority of tasks.

16


	Introduction
	Control with World Models
	Learning Behaviors by Latent Imagination
	Learning Latent Dynamics
	Experiments
	Related Work
	Conclusion
	Detailed Algorithm
	Hyper Parameters
	Derivations
	Behavior Learning
	Representation Learning
	Action Repeat

