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ABSTRACT

The validation curve is widely used for model selection and hyper-parameter
search with the curve usually summarized over all the training tasks. However,
this summarization tends to lose the intricacies of the per-task curves and it isn’t
able to reflect if all the tasks are at their validation optimum even if the summa-
rized curve might be. In this work, we explore this loss of information, how it
affects the model at testing and how to detect it using interval plots. We propose
two techniques as a proof-of-concept of the potential gain in the test performance
when per-task validation curves are accounted for. Our experiments on three large
datasets show up to a 2.5% increase (averaged over multiple trials) in the test ac-
curacy rate when model selection uses the per-task validation maximums instead
of the summarized validation maximum. This potential increase is not a result
of any modification to the model but rather at what point of training the weights
were selected from. This presents an exciting direction for new training and model
selection techniques that rely on more than just averaged metrics.

1 INTRODUCTION

A validation set, separate from the test set, is the de facto standard for training deep learning models
through early stopping. This non-convergent approach (Finnoff et al., 1993) identifies the best model
in multi-task/label settings based on an expected error across all tasks. Calculating metrics on the
validation (or valid) set can estimate the model’s generalization capability at every stage of training
and monitoring the summarized validation curve over time aids the detection of overfitting. It is
common to see the use of validation metrics as a way to stop training and/or load the best model
for testing, as opposed to training a model to N epochs and then testing. While current works have
always cautioned about the representativeness of validation data being used, the curves themselves
haven’t been addressed much. In particular, there hasn’t been much attention on the summarized
nature of the curves and their ability to represent the generalization of the constituent tasks.

Tasks can vary in difficulty and even have a dependence on each other (Graves, 2016; Alain &
Bengio, 2016). An example by Lee et al. (2016) is to suppose some task a is to predict whether
a visual instance ‘has wheels’ or not, and task b is to predict if a given visual object ‘is fast’; not
only is one easier, but there is also a dependence between them. So there is a possibility that easier
tasks reach their best validation metric before the rest and may start overfitting if training were to
be continued. This isn’t reflected very clearly with the use of a validation metric that is averaged
over all tasks. As a larger number of underfit tasks would skew the average, the overall optimal
validation point gets shifted to a later time-step (epoch) when the model could be worse at the easier
tasks. Vice versa, the optimal epoch gets shifted earlier due to a larger, easier subset that are overfit
when the harder tasks reach their individual optimal epochs. We term this mismatch in the overall
and task optimal epochs as a ‘temporal discrepancy’.

In this work, we explore and try to mitigate this discrepancy between tasks. We present in this paper
that early stopping on only the expected error over tasks leaves us blind to the performance they are
sacrificing per task. The work is organized in the following manner: in §2, we explore existing work
that deals with methods for incorporating task difficulty (which could be causing this discrepancy)
into training. The rest of the sections along with our contributions can be summarized as:
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1. We present a method to easily visualize and detect the discrepancy through interval plots
in §3

2. We formulate techniques that could address this discrepancy by also considering the per-
task validation metrics in model selection in §4.

3. We explore the presence of the temporal discrepancy on three image datasets and test the
aforementioned techniques to assess the change in performance in §5

4. To the best of our knowledge, there has not been a study like this into the potential of
per-task validation metrics to select an ensemble of models.

2 RELATED WORK

It is acknowledged that some tasks are easier to learn than the others and plenty of works have
tried to solve this issue through approaches that slow down the training of easier tasks. In other
words, tasks are assigned a priority in the learning phase based on their difficulty determined through
some metric. This assignment of priority implicitly tries to solve the temporal discrepancy without
formally addressing its presence. Task prioritization can take the form of gradient magnitudes,
parameter count, or update frequencies (Guo et al., 2018). We can group existing solutions into task
prioritization as a hyperparameter or task prioritization during training (aka self-paced learning).
The post-training brute force and clustering methods we propose do not fit into these categories as
we believe they have not been done before. Instead of adjusting training or retraining, these methods
operate on a model which has already been trained.

Task prioritization as a hyperparameter is a way to handle per task overfitting that is almost
the subconscious approach for most practitioners. This would include data-augmentation and
over/undersampling. An example case is in Kokkinos (2017) where they use manually tuned task
weights in order to improve performance.

Task prioritization during training covers approaches where tasks dynamically change priority
or are regularized in some way. For example Guo et al. (2018) takes an approach to change task
weights during training based on multiple metrics such as error, perceived difficulty, and learnable
parameters. The idea is that some tasks need to have a high weight at the start and a low weight
later in training. In a similar direction Gradnorm (Chen et al., 2018) aims to set balance task weights
based on normalizing the gradients across tasks.

Using relationships between tasks during training is another direction. Ruder (2017) discussed
negative transfer where sharing information with unrelated tasks might actually hurt performance.
Work by Lee et al. (2016) incorporated a directed graph of relationships between tasks in order to
enforce sharing between related tasks when reweighting tasks. Task clustering has been performed
outside of neural networks by Evgeniou et al. (2005); Evgeniou & Pontil (2004) where they regular-
ize per-task SVMs so that the parameters between related tasks are similar.

3 STUDYING TEMPORAL DISCREPANCY BETWEEN TASKS

In this section, we first define the term temporal discrepancy and display an example of it on CI-
FAR100. Then, we introduce a simple method of visualizing it on datasets with a large number of
tasks that would make it difficult to analyze the per-task curves together.

3.1 TEMPORAL DISCREPANCY

A temporal discrepancy in the validation performance refers to the phenomenon where the model
isn’t optimal for all of its tasks1 simultaneously. This occurs when there is a difference between
the overall optimal epoch determined by the summarized valid metric and the epoch in which task
achieves its best valid metric is higher than some arbitrary threshold, i.e., |ts − ti| > δ where ts is
the optimal epoch of the summarized validation curve and ti is the optimal epoch for task i.

1To disambiguate from the common usage of the term “task” in multi-task learning, we define a task as
predicting a single output out of many (regardless of the training paradigm being multi-class or multi-label or
other). However, our motivation and findings can also be applied in the broader multi-task learning context
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Figure 1 displays an example of this discrepancy in CIFAR100 (only five curves plotted for clarity).
It is most evident for the labels Sea and Lamp which undergo a drop of 7.5% and 5.7% respectively
in their valid accuracy from their peak epoch to ts. Similarly, Snake also starts degrading till ts but
strangely starts improving after. Conversely, Rose and Streetcar are underfit at ts as they continue
to improve after.

The most noteworthy observation is that the averaged valid curve (in dotted black) completely
plateaus out after the 150th epoch. There is significant variation occurring in the per-label curves
but the averaged curve is unable to represent these dynamics in the training. Selecting an optimal
model off the averaged curve can be quite misleading as it represents the entire [151, 300] interval
as optimal despite the labels’ valid accuracies fluctuating significantly in this interval. The test per-
formance of individual labels can wildly differ depending on which epoch is used for loading the
weights for testing and/or deployment.

Figure 1: Visualizing the presence of a temporal discrepancy in five of CIFAR100 labels (training
is detailed in Section 5). The vertical black line is the best overall epoch ts. The dotted and solid
curves represent the averaged validation curve and the label specific validation curves respectively.
All curves have been smoothed by averaging over a sliding window of size 10.

3.2 INTERVAL PLOTS

It is easy to examine the per-label curves in Figure 1 as only 5% of the labels have been plotted.
But when the number of tasks is high and all of them need to be plotted together to get a clearer
global picture, decomposing the summarized validation curve can get very messy. Quasi-optimal
validation interval plots, or interval plots for short, are a way of assessing the optimal temporality
of the per-task validation performance relative to ts. It is a simple visualization method that aids
in determining when and/or for how long the tasks are within the acceptable limits of the best
validation performance and also which and/or how many tasks aren’t within these limits near the
overall optimal epoch ts.

Creating an interval plot involves finding a ‘quasi-optimal’ region for each task, i.e., a consecutive
temporal interval in which a validation metric of the task fluctuates near its maximum with a set
tolerance. The task validation curves are first smoothed out to reduce noise and the time-step (epoch)
at which the task achieved its optimal valid metric is determined. Then, the number of epochs before
and after this task-optimal epoch in which the task metric is greater than a threshold is calculated.
This duration of epochs is the interval for the task.

Given a vector of validation metrics Ai for a task i, its interval τi is given by:

τi = [ti −m, . . . ti − 1, ti, . . . ti + n] ∀ aij ≥ aiti − ε
where ti = argmax Ai, j ∈ τi and aij ∈ Ai
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Figure 2 plots the decomposed curves and the equivalent intervals for CIFAR100. The overall op-
timal epoch ts doesn’t fall in the intervals of almost half the labels; these labels aren’t at their
potentially best valid performance at the early stopping point. Some intervals are notably small in
duration, meaning those labels have a very sharp peak. This could imply that the validation per-
formance is randomly high at that epoch and it’d be more suitable to shift the quasi-optimal region
of these labels to a longer and/or later interval, that doesn’t necessarily contain ti, as long as the
validation accuracy stays within the tolerance in that interval.

Figure 2: Smoothed decomposed validation curves (left) and the equivalent interval plot (right) for
CIFAR100 with ε = 2%. For both plots, the straight black line is the best overall epoch ts. On the
interval plot, the blue lines indicate the interval τi, the blue dots are the centers of the interval, and
the red dots are the task-optimal epoch ti. The intervals have been sorted by their centers

4 ALTERNATIVE MODEL SELECTION TECHNIQUES

In this section, we present two alternative techniques that consider the per-task valid metrics for
selecting the best model for testing. Two aspects common to these techniques is their hand-crafted &
engineered nature and their inefficiency in terms of deployment, training time and/or inference time.
We’d like to stress that these techniques serve as a proof-of-concept of the increase in the testing
performance, if any, when the per-task valid metrics are taken into account. They are intended as a
baseline and also a stimulus for increasing research into the effect of the subtleties of the validation
curves on model performance and selection.

4.1 BRUTE FORCE

This involves loading the model with the weights from a given task i’s optimal valid epoch ti and
evaluating on only the samples that belong to that task. We call this particular model that has
been loaded with the weights from ti as the valid-optimal model for task i. It is essentially using
a “separate model” for each task during evaluation and/or deployment making this the most naive
approach. It is also the most inefficient because it would (i) require storing up to N models, where N
is the total number of tasks (ii) require a way to combine predictions from all N models that wouldn’t
be misleading during inference (iii) increase latency significantly due to overhead caused by loading
and reloading the model weights (iv) scale up the inference time by a factor up to N.

4.2 CLUSTERING

Instead of having separate weights for each task, we try to cluster the set of the task-optimal valid
epochs into K clusters so that only K models are required as opposed to N. In this approach, the
interval plots can also be utilized to cluster tasks that have similar interval positions and/or lengths
in addition to the ti’s. Similar to brute force, this technique also involves multiple models loaded
with weights from different epochs, but trades off any gain in performance for a lower number of
models.
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5 EXPERIMENTS

This section elaborates our experiments: firstly the details on the datasets, models and the training.
Then, each subsequent section provides results and a discussion on the brute force and clustering
techniques.

We train variations of DenseNets (Huang et al., 2017) on three image datasets: CIFAR100, Tiny
ImageNet and PadChest. All models were trained with three random seeds for model initialization
and splits of the training set into training and valid sets.

CIFAR100 CIFAR100 (Krizhevsky & Hinton, 2009) is a dataset of natural images containing 100
classes with 500 training images and 100 testing images per class. We trained a “DenseNet-BC (k =
12)” as described in Huang et al. (2017): it has three dense blocks, a total of 100 layers and a growth
rate of 12. It was trained in the exact manner as the original work, i.e. 300 epochs with dropout,
weight decay of 10−4, SGD with Nesterov momentum of 0.9 and an initial learning rate of 0.1 that
is divided by 10 at the 150th and 225th epochs. As we had carved out 20% of the training set as
valid and didn’t use data augmentation, we achieved an average test accuracy of 72.14%. In our
analysis, we only use the valid curves after the 150th epoch because the training is very noisy and
brittle up to that epoch due to the use of a learning rate of 0.1 (Figures 1 and 2).

Tiny ImageNet ImageNet (Deng et al., 2009) is a dataset with 1.5 million images and 1000
classes. Tiny ImageNet2 is a subset of ImageNet with images resized to 64x64 and only 200 classes.
We utilized the same architecture as CIFAR100 but with a total of 190 layers and a growth rate of
40. In addition, we used a stride of 2 for the first convolution. This modified DenseNet was also
trained in the same manner as above but with the hyperparameters used for ImageNet in the original
work: 100 epochs, no dropout and dividing the learning rate at the 30th and 60th epochs instead.
Rest of the hyperparameters remained the same. 10% of the training set was used as valid and we
achieved an average test accuracy of 63.09%. Similar to CIFAR100, we only use the valid curves
after the 30th epoch. The interval plot from one run of training is given in Figure 3a

PadChest PadChest (Bustos et al., 2019) is a medical imaging dataset of 160,000 chest X-rays
of 67,000 patients with multiple visits and views available. We used the publicly available code
provided by Bertrand et al. (2019) to recreate their cohort of around 31,000 samples. We trained
a multilabel DenseNet-121 (Huang et al., 2017; Rajpurkar et al., 2017) on the frontal views and
only those labels which have more than 50 samples (total 64 labels). With a 60-20-20 split between
training, validation, and test sets, we trained for 100 epochs with Adam and an initial learning rate
of 0.0001 that is halved every 20 epochs.

(a) Tiny ImageNet (200 classes) (b) PadChest (64 labels)

Figure 3: Interval plots for Tiny ImageNet and PadChest with ε = 0.02. The black horizontal line
is the best overall epoch ts. The blue lines indicate the interval τi, the blue dots are the centers of
the interval, and the red dots are the task-optimal epoch ti. The intervals have been sorted by their
centers

2https://tiny-imagenet.herokuapp.com/
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5.1 QUANTIFYING LOST PERFORMANCE

By brute forcing the best model selection, we wanted to assess how much performance is lost when
the summarized validation curve is used. This involves evaluating each task with its own set of opti-
mal weights determined from its specific optimal epoch. This would require N models in theory but
the number of valid-optimal models is actually lower as many tasks have inter-dependent learning
profiles. These correlated tasks may reach their optimal validation performance at the same epoch,
thus requiring only a single common set of weights for all of them. N also decreases with the total
number of training epochs as that increases the probability of tasks having the same optimal epoch.
On analyzing the task validation curves for the three datasets, we do find that the number of models
required is much lower than N. CIFAR100 and Tiny ImageNet both required less than 60 models
for brute forcing the evaluation, despite the latter having twice as many labels. Also since Tiny
ImageNet was trained for one-third of the epochs, the number of models reduced drastically. The
number of models for PadChest was around 35.

The results of using a single model for each task are tabulated for the three datasets in Table 1. On
using each label’s valid-optimal model for evaluating on the test, the test metric always increases in
comparison to using the baseline model that uses the summarized validation curve for CIFAR100
and Tiny ImageNet. The top-1 accuracy for CIFAR100 undergoes an average and maximum increase
of approximately 2.5% & 3.2% respectively. For Tiny ImageNet, an average and maximum increase
of 1.72% & 1.95% is observed.

However, the average increase in PadChest is not only meagre but also within the standard deviation.
This could be because the temporal discrepancy isn’t very pronounced in PadChest: the overall
optimal epoch does happen to be in the intervals of a very large portion of the labels (Figure 3b).
As PadChest has fewer number of outputs compared to the other two (64 vs. 100/200), there could
also be a relationship between the number of outputs and the magnitude of the discrepancy’s effect.
These results show that accounting for the per-task validation metrics can mitigate a significant
temporal discrepancy and increase the testing performance.

Table 1: Accuracy/AUC on the test set for the baseline and brute forced models, averaged over 3
seeds

Dataset Metric Baseline Brute-force

CIFAR100 Top-1 72.14 ± 0.51 74.62 ± 0.43
Top-5 92.23 ± 0.33 93.07 ± 0.26

Tiny ImageNet Top-1 63.09 ± 0.27 64.82 ± 0.39
Top-5 83.79 ± 0.26 84.91 ± 0.47

PadChest AUC 0.7807 ± 0.001 0.7826 ± 0.002

5.2 COMPUTATION-PERFORMANCE TRADEOFF

We can further reduce the number of valid-optimal models required by merging the ti’s that are
close to each other. We use K-means to cluster the set of task-optimal epochs into K clusters. We
vary K from 2 to N to gain an insight into how much performance is lost as we reduce the number
of valid-optimal models required down to one where using only one model is the same as using
the summarized. For any given cluster k, we use its center as the epoch for loading the weights to
evaluate the set of the tasks in k. We round off the center to the nearest integer for our analysis but
the fractional part can be used to select weights after a specific batch iteration in that epoch.

The results for the three datasets are plotted in Figure 4. There is an interesting observation that the
accuracy doesn’t always increase with the number of task-optimal models which is very noticeable
in Tiny ImageNet Seed 2. This could be due to the noisy nature of training with SGD where the
validation metric can oscillate a lot between epochs and even a shift of one epoch can cause a
decrease in performance.
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(a) CIFAR100 (b) Tiny ImageNet

(c) PadChest

Figure 4: Reducing the number of models needed to represent all per-task optimal validation points.
K is the number of clusters

6 CONCLUSION

In this work, we examine the decomposition of a model’s average validation curve into its per-task
curves to assess the presence of a temporal discrepancy on three image datasets. We provide a
visualization method to detect if there is a disparity between the task curves and the summarized
valid curve. We propose and test two techniques that incorporate the per-task metrics into model
evaluation and we find that that using multiple models increases test performance for datasets that
have a significant temporal discrepancy. We leave more advanced ways of reducing the number of
models, including methods to combine weights from different epochs, for future work.

With these experiments, we aim to create more awareness of how summarized validation metrics
cannot represent a model that is truly optimal for all its tasks all the time. Using averaged curves
could mean that models are currently being trained oblivious of the performance being sacrificed on
individual tasks. We wish to draw attention to the need of both theoretical and engineered approaches
that would take the per-task validation metrics into account while training. Our experiments demon-
strate that there is a potential that current state-of-the-art models could possibly be made even more
optimal by ensuring all of its prediction tasks are at their validation optimums.
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