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ABSTRACT

To accelerate the training of machine learning models, distributed stochastic gra-
dient descent (SGD) and its variants have been widely adopted, which apply mul-
tiple workers in parallel to speed up training. Among them, Local SGD has gained
much attention due to its lower communication cost. Nevertheless, when the data
distribution on workers is non-identical, Local SGD requires O(T

3
4N

3
4 ) commu-

nications to maintain its linear iteration speedup property, where T is the total
number of iterations and N is the number of workers. In this paper, we propose
Variance Reduced Local SGD (VRL-SGD) to further reduce the communication
complexity. Benefiting from eliminating the dependency on the gradient variance
among workers, we theoretically prove that VRL-SGD achieves a linear iteration
speedup with a lower communication complexity O(T

1
2N

3
2 ) even if workers ac-

cess non-identical datasets. We conduct experiments on three machine learning
tasks, and the experimental results demonstrate that VRL-SGD performs impres-
sively better than Local SGD when the data among workers are quite diverse.

1 INTRODUCTION

With the expansion of data and model scale, the training of machine learning models, especially
deep learning models has become increasingly time-consuming. To accelerate the training process,
distributed parallel optimization has attracted widespread interests recently, which encourages mul-
tiple workers to cooperatively optimize the model.

For large-scale machine learning problems, stochastic gradient descent (SGD) is a fundamental tool.
It can be easily parallelized by collecting stochastic gradient from different workers and hence it is
widely adopted. Previous studies (Dekel et al., 2012; Ghadimi & Lan, 2013) justify that synchronous
stochastic gradient descent (S-SGD) has a linear iteration speedup for both general convex and non-
convex objectives, which means that the total number of iterations is reduced by N times with N
workers. However, S-SGD suffers from a major drawback: the communication cost among workers
is expensive when the number of workers is large, which prevents S-SGD from achieving a linear
time speedup. Therefore, it is crucial to overcome the communication bottleneck.

To reduce communication cost, several studies (Wang & Joshi, 2018; Zhou & Cong, 2018; Stich,
2019; Yu et al., 2019b; Shen et al., 2019) have managed to lower the communication frequency.
Among them, Local SGD (Stich, 2019) is a representative distributed algorithm, where workers can
conduct SGD locally and average model with each other every k iterations. Compared with S-SGD,
the algorithms based on Local SGD reduce the communication rounds from O(T ) to O(T/k). To
deal with the gradient variance among workers, previous studies require at least one of the follow-
ing extra assumptions: (1) the bounded gradient variance among workers; (2) an upper bound for
gradients; (3) identical data on all workers. When the data distribution on workers is identical,
which is the so-called identical case, the algorithms based on Local SGD can exhibit superior per-
formance. Nevertheless, the identical data assumption is not always valid in real cases. When the
data distribution on workers is non-identical, which is the so-called non-identical case, these algo-
rithms would encounter a significant degradation in the convergence rate due to the gradient variance
among workers. We seek to eliminate the gradient variance among workers, which may make the
algorithm converge much faster than the vanilla Local SGD.

In this paper, we propose Variance Reduced Local SGD (VRL-SGD), a novel distributed optimiza-
tion algorithm to further reduce the communication complexity. Benefiting from an additional vari-
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ance reduction component, VRL-SGD eliminates the extra assumption about bounded gradient vari-
ance among workers in previous studies based on Local SGD (Yu et al., 2019a;b; Shen et al., 2019).
Thus the communication complexity can be reduced from O(T

3
4N

3
4 ) to O(T

1
2N

3
2 ) in VRL-SGD

for the non-identical case, which is crucial for achieving a better time speedup. Therefore, VRL-
SGD is more suitable than Local SGD for the scenarios, such as federated learning (Konečnỳ et al.,
2016), where the gradient variance across workers might be large.

Contributions of this paper are summarized as follows:

• We propose VRL-SGD, a novel distributed optimization algorithm with a state-of-the-art
communication complexity. Specifically, the communication complexity is reduced from
O(T

3
4N

3
4 ) to O(T

1
2N

3
2 ) for the non-identical case. To the best of our knowledge, this

is the first time that an algorithm based on Local SGD possesses such a communication
complexity for the non-identical case. Meanwhile, VRL-SGD also achieves the optimal
communication complexity for the identical case.

• We provide a theoretical analysis and prove that VRL-SGD has a linear iteration speedup
with respect to the number of workers. Our method does not require the extra assumptions,
e.g. the gradient variance across workers is bounded.

• We validate the effectiveness of VRL-SGD on three standard machine learning tasks. And
experimental results show that the proposed algorithm performs significantly better than
Local SGD if data distribution in workers is different, while maintains the same conver-
gence rate as Local SGD if all workers access identical datasets.

2 RELATED WORK

Synchronous stochastic gradient descent (S-SGD) is a parallelized version of mini-batch SGD and
is theoretically proved to achieve a linear iteration speedup with respect to the number of work-
ers (Dekel et al., 2012; Ghadimi & Lan, 2013). Nevertheless, due to the communication bottleneck,
it is difficult to obtain the property of linear time speedup. To eliminate communication bottlenecks,
many distributed SGD-based methods are proposed, such as lossy compression methods (Alistarh
et al., 2017; Aji & Heafield, 2017; Bernstein et al., 2019; Lin et al., 2018b; Karimireddy et al., 2019;
Tang et al., 2019), which use inexact approximations or partial data to represent the gradients, and
methods (Stich, 2019; Yu et al., 2019b) based on the lower communication frequency.

Among them, Local SGD (Stich, 2019), a representative method to lower the communication fre-
quency, has been widely used in the training of large-scale machine learning models, and its superior
performance is verified in several tasks (Povey et al., 2014; Su & Chen, 2015; Lin et al., 2018a). In
Local SGD, each worker conducts SGD updates locally and averages its model with others period-
ically. Previous studies have proven that Local SGD can attain a linear iteration speedup for both
strongly convex (Stich, 2019) and non-convex (Yu et al., 2019b) problems. To fully utilize hardware
resources, a variant of Local SGD, called CoCoD-SGD (Shen et al., 2019), is proposed with the de-
coupling of computation and communication. Furthermore, Yu et al. (2019a) provide a clear linear
speedup analysis for Local SGD with momentum. However, most of the above algorithms assume
that the gradient variance among workers is bounded, and some of them even depend on a stronger
assumption, e.g., the data distribution on workers is identical. Dependence on these assumptions
may lead to a slow convergence rate for the non-identical case, which limits the further reduction
of communication frequency and avoids a better time speedup. Haddadpour et al. (2019) verify that
the use of redundant data can lead to lower communication complexity and hence faster conver-
gence. The redundant data can help reduce the gradient variance among workers, thus it avoids the
slow convergence rate. Nevertheless, this method may be constrained in some cases. For instance, it
could not be widely applied in federated learning (Konečnỳ et al., 2016) as data cannot be exchanged
between workers for privacy-preserving.

Although there are many studies proposed to reduce the variance in SGD, e.g., SVRG (Johnson
& Zhang, 2013), SAGA (Defazio et al., 2014), and SARAH (Nguyen et al., 2017), they could not
directly deal with the gradient variance among workers in distributed optimization. In recent years,
several studies (Shi et al., 2015; Mokhtari & Ribeiro, 2016; Tang et al., 2018) have proposed to
eliminate the gradient variance among workers in the decentralized setting. Among them, Shi et al.
(2015) propose a novel decentralized algorithm, EXTRA, which provides an ergodic convergence
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Table 1: Comparisons of the communication complexity for different algorithms. The second col-
umn and the third column show communication complexity for identical and non-identical datasets
respectively. Here, we regard the following assumptions as extra assumptions: (1) an upper bound
for gradients; (2) the bounded gradient variance among workers.

REFERENCE IDENTICAL DATA NON-IDENTICAL DATA EXTRA ASSUMPTIONS

GHADIMI & LAN (2013) T T NO
YU ET AL. (2019B) O(N

3
4 T

3
4 ) O(N

3
4 T

3
4 ) (1)

SHEN ET AL. (2019) O(N
3
2 T

1
2 ) O(N

3
4 T

3
4 ) (2)

THIS PAPER O(N
3
2 T

1
2 ) O(N

3
2 T

1
2 ) NO

rate for convex problems and a linear convergence rate for strongly convex problems benefiting from
eliminating the variance among workers. The D2 (Tang et al., 2018) algorithm further applies the
variance reduction on non-convex stochastic decentralized optimization problems and removes the
impact of the gradient variance among workers on the convergence rate.

To eliminate the gradient variance among workers and accelerate the training, we incorporate the
variance reduction technique into Local SGD, and hence reduce the extra assumptions in the theoret-
ical analysis. For a better comparison with related algorithms in terms of communication complexity
and assumptions, we summarize the results in Table 1. It presents that our algorithm achieves better
communication complexity compared with the previous algorithms for the non-identical case and
does not need extra assumptions.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

We focus on data-parallel distributed training, where N workers collaboratively train a machine
learning model, and each worker may have its data with different distributions, which is the non-
identical case. We use Di to denote the local data distribution in the i-th worker. Specifically, we
consider the following finite-sum optimization:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x), (1)

where fi(x) := Eξi∼Di
[fi(x, ξi)] is the local loss function of the i-th worker.

3.2 NOTATIONS

First of all, we summarize the key notations of this paper as follows.

• ‖ · ‖ denotes the `2 norm of a vector.

• f∗ is the optimal value of equation (1).

• E denotes that the expectation is taken with respect to all random indexes sampled to cal-
culate stochastic gradients in all iterations.

• xti denotes the local model of the i-th worker at the t-th iteration.

• x̂t denotes the average of local models over all N workers, and that is x̂t = 1
N

∑N
i=1 x

t
i.

• ∇fi(xti, ξti) is a stochastic gradient of the i-th worker at the t-th iteration.

• t′ represents the iteration of the last communication, and that is t′ = b tk ck.

• t′′ represents the iteration of the penultimate communication, and that is t′′ = (b tk c − 1)k.
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3.3 ASSUMPTIONS

Throughout this paper, we make the following assumptions, which are commonly used in the theo-
retical analysis of distributed algorithms (Stich, 2019; Yu et al., 2019a; Shen et al., 2019).

Assumption 1

(1) Lipschitz gradient: All local functions fi’s have L-Lipschitz gradients

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀i,∀x,y ∈ Rd. (2)

(2) Bounded variance within each worker: There exists a constant σ such that

Eξ∼Di‖∇fi(x, ξ)−∇fi(x)‖2 ≤ σ2, ∀x ∈ Rd,∀i. (3)

(3) Dependence of random variables: ξti ’s are independent random variables, where t ∈
{0, 1, · · · , T − 1} and i ∈ {1, 2, · · · , N}.

Previous studies based on Local SGD assume that the gradient variance among workers is bounded,
or even depend on a stronger assumption, e.g., an upper bound for gradients or identical data distri-
bution on workers, while we do not require these assumptions.

4 ALGORITHM

In this section, we first introduce the proposed algorithm and then give an intuitive explanation.

4.1 VARIANCE REDUCED LOCAL SGD

We propose VRL-SGD, a variant of Local SGD. VRL-SGD allows locally updating in each worker
to reduce the communication cost. But there are a few more steps in VRL-SGD to eliminate the
gradient variance among workers. And in VRL-SGD, a worker:

1. Communicates with other workers to get the average of all local models x̂t = 1
N

∑N
i=1 x

t
i.

2. Calculates ∆t′

i , which denotes the average deviation of gradient between the local gradients
and the global gradients in the previous period. And it is defined as

∆t′

i = ∆t′′

i +
1

kγ
(x̂t − xti), (4)

where k is the communication period and γ is the learning rate.
3. Updates local model k times with a stochastic approximation gradient vti in the form of

xt+1
i = xti − γvti . (5)

The essential part of equation (5) is the gradient approximation vti , which is formed by

vti = ∇fi(xti, ξti)−∆t′

i . (6)

The complete procedure of VRL-SGD is summarized in Algorithm 1. VRL-SGD allows each
worker to maintain its local model xti and gets the average of all local models every k steps. Note
that VRL-SGD with k = 1 is equivalent to S-SGD. While VRL-SGD with k > 1 reduces the num-
ber of communication rounds by k times compared with S-SGD. And VRL-SGD is equivalent to
Local SGD if we set ∆i be 0 in line 5 of Algorithm 1 all the time.

To achieve a linear iteration speedup, Local SGD requires that T is more than O(N3k4). In
other words, the communication period k in Local SGD is bounded by O(T

1
4 /N

3
4 ), which re-

duces the communication complexity to O(N
3
4T

3
4 ). Notice that a better communication period

bound O(T
1
2 /N

3
2 ) can be attained in the identical case in the previous studies (Shen et al., 2019;

Yu et al., 2019a). Nevertheless, the proposed algorithm can attain the communication period bound
O(T

1
2 /N

3
2 ) in both the identical case and the non-identical case.
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Algorithm 1 Variance Reduced Local SGD (VRL-SGD)

1: Input: Initialize x0
i = x̂0 ∈ Rd,∆0

i = 0 ∈ Rd,∀i and t = 0. Set learning rate γ > 0 and
communication period k > 0.

2: while t < T do
3: Worker Wi does:
4: Communicate with other workers to get the average of all local models: x̂t = 1

N

∑N
i=1 x

t
i.

5: ∆t′

i = ∆t′′

i + 1
kγ (x̂t − xti) .

6: Update local model xti = x̂t.
7: for τ = t to t+ k − 1 do
8: Calculate a stochastic gradient∇fi(xτi , ξτi ).
9: vi

τ = ∇fi(xτi , ξτi )−∆t′

i .
10: Each worker updates its local model:

xτ+1
i = xτi − γvτi .

11: end for
12: t = t+ k.
13: end while

One might wonder why VRL-SGD can improve the convergence rate of Local SGD. VRL-SGD uses
an inexact variance reduction technique to reduce the variance among workers. To better understand
the intuition of VRL-SGD, let us see the update of ∆i in equation (4). By summing up all ∆i from
0 to t′ and using the fact that ∆0

i = 0, we have

∆t′
i =

1

kγ

b t
k
c∑

s=0

(
x̂ks − xksi

)
. (7)

By summing up the above equality over i = 1, · · · , N , we obtain

N∑
i=1

∆t′
i =

1

kγ

N∑
i=1

b t
k
c∑

s=0

(
x̂ks − xksi

)
=

1

kγ

N b t
k
c∑

s=0

x̂ks −
N∑
i=1

b t
k
c∑

s=0

xksi

 = 0.

It shows that the expectation of ∆t′

i over i is zero, thus we can obtain the new update form with
respect to x̂t.

x̂t = x̂t−1 − γ 1

N

N∑
i=1

vt−1
i = x̂t−1 − γ 1

N

N∑
i=1

(
∇fi(xti, ξti)−∆t′

i

)
= x̂t−1 − γ 1

N

N∑
i=1

∇fi(xti, ξti). (8)

It can be noticed that the update of x̂t in equation (8) is in the form of the generalized stochastic
gradient descent. In addition, we can obtain a new representation of ∆t′

i as below:

∆t′
i = ∆t′′

i +
1

kγ

x̂t
′′
− γ

t′−1∑
τ=t′′

1

N

N∑
j=1

vτj − x̂t
′′

+ γ

t′−1∑
τ=t′′

vτi


= ∆t′′

i +
1

kγ

γ t′−1∑
τ=t′′

(
∇fi(xτi , ξτi )−∆t′′

i

)
− γ

t′−1∑
τ=t′′

1

N

N∑
j=1

(
∇fj(xτj , ξτj )−∆t′′

j

)
=

1

k

t′−1∑
τ=t′′

(
∇fi(xτi , ξτi )− 1

N

N∑
j=1

∇fj(xτj , ξτj )

)
. (9)

Substituting equation (9) into equation (6), we have

vti = ∇fi(xti, ξti)−
1

k

t′−1∑
τ=t′′

∇fi(xτi , ξτi ) +
1

Nk

t′−1∑
τ=t′′

N∑
j=1

∇fj(xτj , ξτj ). (10)

The representation of vti in equation (10) can be regarded as the form of the generalized variance
reduction, which is similar to SVRG (Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014).
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To observe that the variance among workers is reduced, we assume that the gradient variance within
each worker is zero, which means that we calculate ∇fi(xti) in line 8 of Algorithm 1. When all
local model xti,x

τ
i and the average model x̂t converge to the local minimum x∗, it holds that

vti = ∇fi(xti)−
1

k

t′−1∑
τ=t′′

∇fi(xτi ) +
1

Nk

t′−1∑
τ=t′′

N∑
j=1

∇fj(xτj )

→ ∇fi(x∗)−
1

k

t′−1∑
τ=t′′

∇fi(x∗) +
1

Nk

t′−1∑
τ=t′′

N∑
j=1

∇fj(x∗)

→ 1

Nk

t′−1∑
τ=t′′

N∑
j=1

∇fj(x∗)→ ∇f(x∗)→ 0. (11)

Therefore, vti can converge to zero when the variance within each worker is zero, which helps VRL-
SGD converge faster. On the other hand, the gradient∇fi(xti, ξti) in Local SGD cannot converge to
zero, which prevents the local model xτi from converging to the local minimum x∗, so it is hard to
converge for Local SGD. In summary, that is why VRL-SGD performs better than Local SGD for
the non-identical case, where the gradient variance among workers is not zero.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of VRL-SGD. We bound the expected squared
gradient norm of the average model, which is the commonly used metric to prove the convergence
rate for non-convex problems (Ghadimi & Lan, 2013; Tang et al., 2018; Yu et al., 2019a).

Theorem 5.1 Under Assumption 1, if the learning rate satisfies γ ≤ 1
2L and 60k2γ2L2 ≤ 1, we

have the following convergence result for VRL-SGD in Algorithm 1:

1

T

T−1∑
t=0

E‖∇f(x̂t)‖2 ≤ 3(f(x̂0)− f∗)
Tγ

+
3γLσ2

2N
+ 55kγ2σ2L2.

The proof of Theorem 5.1 is given in Appendix C. By setting a suitable learning rate γ, we have the
following corollary.

Corollary 5.2 Under Assumption 1, when the learning rate is set as γ =
√
N

σ
√
T

and the total number

of iterations satisfies T ≥ 64N3L2k2

σ2 , we have the following convergence result for Algorithm 1:

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥ ≤ 3σ(f(x̂0)− f∗ + 3L)√
NT

.

The detailed proof of Corollary 5.2 is given in Appendix D.

Remark 5.3 Linear Speedup. For non-convex optimization, if there are N workers training a
model collaboratively, according to Corollary 5.2, VRL-SGD converges at the rate O(1/

√
NT ),

which is consistent with S-SGD and Local SGD. To achieve ε-optimal solutuioin, O( 1
Nε2 ) iterations

are needed. Thus, VRL-SGD has a linear iteration speedup with respect to the number of workers.

Remark 5.4 Communication Complexity. By Corollary 5.2, to achieve the convergence rate
O(1/

√
NT ), the number of iterations T needs to satisfy T ≥ O(N3k2), which requires the commu-

nication period k ≤ O(T
1
2 /N

3
2 ). Consequently, VRL-SGD can reduce communication complexity

by a factor O(T
1
2 /N

3
2 ). However, for the non-identical case, previous algorithms based on Local

SGD can only reduce communication complexity by a factor O(T
1
4 /N

3
4 ).

Remark 5.5 Mini-batch VRL-SGD. Although we consider only a single stochastic gradient in
each worker so far, VRL-SGD can calculate mini-batch gradients with size b in line 8 of Algorithm
1. It reduces the variance σ2 within each worker by a factor b, thus VRL-SGD can converge at the
rate O(1/

√
bNT ) by setting the learning rate γ =

√
bN

σ
√
T

.
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6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Experimental Environment We implement algorithms with Pytorch 1.1 (Paszke et al., 2017).
And we use a machine with 8 Nvidia Geforce GTX 1080Ti GPUs, 2 Xeon(R) E5-2620 cores and
256 GB RAM Memory. Each GPU is regarded as one worker in experiments.

Baselines We compare the proposed algorithm VRL-SGD with Local SGD (Stich, 2019) and S-
SGD (Ghadimi & Lan, 2013).

Data Partitioning To validate the effectiveness of VRL-SGD in various scenarios, we consider
two cases: the non-identical case and the identical case. In the non-identical case, each worker can
only access a subset of data. For example, when 5 workers are used to train a model on 10 classes
of data, each worker can only access to two classes of data. In the identical case, we allow each
worker to access all data.

Datasets and Models We consider three typical tasks: (1) LeNet (El-Sawy et al., 2016) on MNIST
(LeCun, 1998); (2) TextCNN (Kim, 2014) on DBPedia (Lehmann et al., 2015); (3) transfer learning
on tiny ImageNet 1, which is a subset of the ImageNet dataset (Deng et al., 2009). When training
TextCNN on DBPedia, we retain the first 50 words and use a GloVe (Pennington et al., 2014) pre-
trained model to extract 50 features for word representation. In transfer learning, we use an Inception
V3 (Szegedy et al., 2016) pre-trained model as the feature extractor to extract 2,048 features for each
image. Then we train a multilayer perceptron with one fully-connected hidden layer of 1,024 nodes,
200 output nodes, and relu activation. All datasets are summarized in Table 2. A lot of deep learning
models use batch normalization (Ioffe & Szegedy, 2015), which assumes that the mini-batches are
sampled from the same distribution. Applying batch normalization directly to the non-identical case
may lead to some other issues, which is beyond the scope of this paper.

Table 2: Parameters used in experiments and a summary of datasets. N denotes the number of
workers, b denotes batch size on each worker, γ is the learning rate, k is the communication period,
n represents the number of data samples and m represents the number of data categories.

Model N b γ k Dataset n m
LeNet 8 32 0.005 20 MNIST 60,000 10

TextCNN 8 64 0.01 50 DBPedia 560,000 14
Transfer Learning 8 32 0.025 20 Tiny ImageNet 100,000 200

Hyper-parameters For the above three different tasks, we set the weight decay to be 10−4. And
we initialize model weights by performing 2 epoch SGD iterations in all experiments. Other detailed
hyper-parameters can be found in Table 2.

Metrics In this paper, we mainly focus on the convergence rate of different algorithms. Local SGD
has a more superior training speed performance than S-SGD, which has been empirically observed
in various machine learning tasks (Povey et al., 2014; Su & Chen, 2015). Besides, VRL-SGD has
only a minor change over Local SGD. So VRL-SGD and Local SGD have the same training time
in one epoch and both of them have a faster training speed compared with S-SGD. Therefore, we
compare only the convergence rate (the training loss with regard to epochs) of different algorithms.

6.2 NON-IDENTICAL CASE

This paper seeks to address the problem of poor convergence for Local SGD when the variance
among workers is high. Therefore, we focus on comparing the convergence rate of all algorithms in
the non-identical case, where the data variance among workers is maximized.

We choose three classical tasks: image classification, text classification, and transfer learning. Fig-
ure 1 shows the training loss with regard to epochs on the three tasks. We can see that Local SGD

1The tiny ImageNet dataset can be downloaded from https://tiny-imagenet.herokuapp.com.
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Figure 1: Epoch loss for the non-identical case. VRL-SGD converges as fast as S-SGD, and Local
SGD converges slowly or even cannot converge.
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Figure 2: Epoch loss for the identical case. All of the algorithms have a similar convergence rate.

converges slowly compared with S-SGD when the communication period k is relatively large, while
VRL-SGD enjoys the same convergence rate as that of S-SGD. When the variance among work-
ers is not zero, Local SGD requires that T is greater than O(N3k4) to achieve a linear iteration
speedup. Thus Local SGD losses this property if k is larger than O(T

1
4 /N

3
4 ). However, benefiting

from eliminating the dependency on the gradient variance among workers, VRL-SGD can attain a
better communication period bound O(T

1
2 /N

3
2 ) than Local SGD as shown in Corollary 5.2. There-

fore, under the same communication period, VRL-SGD can achieve a linear iteration speedup and
converges much faster than Local SGD. To maintain the same convergence rate, Local SGD needs
to set a smaller communication period, which will result in higher communication cost.

6.3 IDENTICAL CASE

In addition to the above extreme case, we also validate the effectiveness of VRL-SGD in the identical
case. As shown in Figure 2, all algorithms have a similar convergence rate. VRL-SGD and Local
SGD converge as fast as S-SGD when workers can observe unbiased stochastic gradients.

7 CONCLUSION & FUTURE WORK

In this paper, we propose a novel distributed algorithm VRL-SGD for accelerating the training of
machine learning models. VRL-SGD incorporates the variance reduction technique into Local SGD
to further reduce the communication complexity. We theoretically prove that VRL-SGD can achieve
a linear iteration speedup for nonconvex functions with the optimal communication complexity
O(T

1
2N

3
2 ) whether each worker accesses identical data or not. Experimental results verify the

effectiveness of VRL-SGD, where VRL-SGD is significantly better than traditional Local SGD for
the non-identical case and enjoys the same convergence rate as that of Local SGD.

In the future, we will consider the deep learning models with batch normalization layers, which may
lead to an unstable convergence in the non-identical case.

8
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A PROOF OF LEMMA 1

In this section, we present Lemma 1 to bound the partially accumulated local gradients, which are
defined as

vti = ∇f(xti, ξ
t
i) +

1

k

t′−1∑
τ=t′′

(
1

N

N∑
j=1

∇fj(xτj , ξτj )−∇fi(xτi , ξτi )), ∀i ∈ {1, 2, · · · , N}. (12)

Lemma 1 Under Assumption 1, we have the following inequality

1

N

N∑
i=1

E‖
t−1∑
τ=t′

vτi ‖2 ≤
10L2

N

N∑
i=1

t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
E‖xτi − x̂τ‖2 + E‖x̂τ − x̂τ

′
‖2 + 2E‖x̂τ

′
− xτ

′
i ‖2

)

+10k

t′−1∑
τ ′=t′′

‖∇f(x̂τ
′
)‖2 + 18kσ2. (13)

Proof. By the definition of vti in (12), we have

1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

vτi

∥∥∥∥∥
2

=
1

N

N∑
i=1

E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xτi , ξτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

∇fj(xτ
′
j , ξ

τ ′
j )−∇fi(xτ

′
i , ξ

τ ′
i )

)∥∥∥∥∥∥
2

=
1

N

N∑
i=1

E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xiτ , ξτi )−∇fi(xτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)

+∇fi(xτ
′
i )−∇fi(xτ

′
i , ξ

τ ′
i )
)

+∇fi(xτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

∇fj(xτ
′
j )−∇fi(xτ

′
i )

)∥∥∥∥∥∥
2

≤ 2

N

N∑
i=1

E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xτi , ξτi )−∇fi(xτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)

+ ∇fi(xτ
′
i )−∇fi(xτ

′
i , ξ

τ ′
i )
))∥∥∥2︸ ︷︷ ︸

T1

+
2

N

N∑
i=1

E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

∇fj(xτ
′
j )−∇fi(xτ

′
i )

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
T2

,

(14)

where the inequality follows from Cauchy’s inequality. We next bound T1 as

T1 ≤ 3E

∥∥∥∥∥
t−1∑
τ=t′

(∇fi(xτi , ξτi )−∇fi(xτi ))

∥∥∥∥∥
2

︸ ︷︷ ︸
T3

+3E

∥∥∥∥∥∥ (t− t′)
k

t′−1∑
τ ′=t′′

(
∇fi(xτ

′
i )−∇fi(xτ

′
i , ξ

τ ′
i )
)∥∥∥∥∥∥

2

︸ ︷︷ ︸
T4

+3E

∥∥∥∥∥∥ (t− t′)
k

t′−1∑
τ ′=t′′

1

N

N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)∥∥∥∥∥∥

2

︸ ︷︷ ︸
T5

. (15)
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Because ξti ’s are independent at different time and workers, and the variance of stochastic gradient
in each worker is bounded by σ2, we can bound T3, T4 and T5 as

T3 =

t−1∑
τ=t′

E ‖∇fi(xiτ , ξτi )−∇fi(xτi )‖2

+2
∑

t′≤τ1<τ2≤t−1

E 〈∇fi(xiτ1 , ξτ1i )−∇fi(xτ1i ),∇fi(xiτ2 , ξτ2i )−∇fi(xτ2i )〉

=

t−1∑
τ=t′

E ‖∇fi(xiτ , ξτi )−∇fi(xτi )‖2

≤ (t− t′)σ2

≤ kσ2, (16)

T4 =
(t− t′)2

k2

 t′−1∑
τ ′=t′′

E
∥∥∥∇fi(xτ ′i )−∇fi(xτ

′
i , ξ

τ ′
i )
∥∥∥2

+2
∑

t′′≤τ ′1<τ
′
2≤t′−1

E
〈
∇fi(xτ

′
1
i )−∇fi(xτ

′
1
i , ξ

τ ′1
i ),∇fi(xτ

′
2
i )−∇fi(xτ

′
2
i , ξ

τ ′2
i )
〉

=
(t− t′)2

k2

t′−1∑
τ ′=t′′

E
∥∥∥∇fi(xτ ′i )−∇fi(xτ

′
i , ξ

τ ′
i )
∥∥∥2

≤ kσ2, (17)

T5 =
(t− t′)2

N2k2
E

∥∥∥∥∥∥
t′−1∑
τ ′=t′′

N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)∥∥∥∥∥∥

2

=
(t− t′)2

N2k2

 t′−1∑
τ ′=t′′

E

∥∥∥∥∥
N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)∥∥∥∥∥

2

+ 2
∑

t′′≤τ ′1<τ
′
2≤t′−1

E

〈
N∑
j=1

(
∇fj(xτ

′
1
j , ξ

τ ′1
j )−∇fj(xτ

′
1
j )
)
,

N∑
j=1

(
∇fj(xτ

′
2
j , ξ

τ ′2
j )−∇fj(xτ

′
2
j )
)〉

=
(t− t′)2

N2k2

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
N∑
j=1

(
∇fj(xτ

′
j , ξ

τ ′
j )−∇fj(xτ

′
j )
)∥∥∥∥∥

2

=
(t− t′)2

N2k2

t′−1∑
τ ′=t′′

(
N∑
j=1

E
∥∥∥∇fj(xτ ′j , ξτ ′j )−∇fj(xτ

′
j )
∥∥∥2

+2
∑

1≤j1<j2≤N

〈
∇fj1(xτ

′
j1 , ξ

τ ′
j1 )−∇fj1(xτ

′
j1),∇fj2(xτ

′
j2 , ξ

τ ′
j2 )−∇fj2(xτ

′
j2)
〉

=
(t− t′)2

N2k2

t′−1∑
τ ′=t′′

N∑
j=1

E
∥∥∥∇fj(xτ ′j , ξτ ′j )−∇fj(xτ

′
j )
∥∥∥2

≤ kσ2

N
. (18)

Substituting (16), (17) and (18) into (15), we have

T1 ≤ 3(T3 + T4 + T5) ≤ 9kσ2. (19)
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We next bound T2 as

T2 = E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xτi ) +
1

k

t′−1∑
τ ′=t′′

(
1

N

N∑
j=1

∇fj(xτ
′
j )−∇fi(xτ

′
i )

)∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(xτi )−∇fi(x̂τ ) +∇fi(x̂τ )− 1

k

t′−1∑
τ ′=t′′

∇fi(x̂τ
′
)

+
1

k

t′−1∑
τ ′=t′′

(
∇fi(x̂τ

′
)−∇fi(xτ

′
i )
)

+
1

Nk

t′−1∑
τ ′=t′′

N∑
j=1

(
∇fj(xτ

′
j )−∇fj(x̂τ

′
)
)

+
1

k

t′−1∑
τ ′=t′′

∇f(x̂τ
′
)

∥∥∥∥∥∥
2

≤ 5

E

∥∥∥∥∥
t−1∑
τ=t′

(∇fi(xτi )−∇fi(x̂τ ))

∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
t−1∑
τ=t′

∇fi(x̂τ )− 1

k

t′−1∑
τ ′=t′′

∇fi(x̂τ
′
)

∥∥∥∥∥∥
2

+E

∥∥∥∥∥∥ 1

k

t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
∇fi(x̂τ

′
)−∇fi(xτ

′
i )
)∥∥∥∥∥∥

2

+ E

∥∥∥∥∥∥ 1

Nk

t−1∑
τ=t′

t′−1∑
τ ′=t′′

N∑
j=1

(
∇fj(xτ

′
j )−∇fj(x̂τ

′
)
)∥∥∥∥∥∥

2

+E

∥∥∥∥∥∥ 1

k

t−1∑
τ=t′

t′−1∑
τ ′=t′′

∇f(x̂τ
′
)

∥∥∥∥∥∥
2

≤ 5(t− t′)
t−1∑
τ=t′

E ‖∇fi(xτi )−∇fi(x̂τ )‖2 + E

∥∥∥∥∥∥∇fi(x̂τ )− 1

k

t′−1∑
τ ′=t′′

∇fi(x̂τ
′
)

∥∥∥∥∥∥
2

+E

∥∥∥∥∥∥ 1

k

t′−1∑
τ ′=t′′

(
∇fi(x̂τ

′
)−∇fi(xτ

′
i )
)∥∥∥∥∥∥

2

+ E

∥∥∥∥∥∥ 1

Nk

t′−1∑
τ ′=t′′

N∑
j=1

(
∇fj(xτ

′
j )−∇fj(x̂τ

′
)
)∥∥∥∥∥∥

2

+E

∥∥∥∥∥∥ 1

k

t′−1∑
τ ′=t′′

∇f(x̂τ
′
)

∥∥∥∥∥∥
2

≤ 5(t− t′)
t−1∑
τ=t′

E ‖∇fi(xτi )−∇fi(x̂τ )‖2 +
1

k

t′−1∑
τ ′=t′′

E
∥∥∥∇fi(x̂τ )−∇fi(x̂τ

′
)
∥∥∥2

+
1

k

t′−1∑
τ ′=t′′

E
∥∥∥∇fi(x̂τ ′)−∇fi(xτ ′i )

∥∥∥2 +
1

Nk

t′−1∑
τ ′=t′′

N∑
j=1

E
∥∥∥∇fj(xτ ′j )−∇fj(x̂τ

′
)
∥∥∥2

+
1

k

t′−1∑
τ ′=t′′

E
∥∥∥∇f(x̂τ

′
)
∥∥∥2


≤ 5(t− t′)L2
t−1∑
τ=t′

E ‖xτi − x̂τ‖2 +
1

k

t′−1∑
τ ′=t′′

E
∥∥∥x̂τ − x̂τ

′
∥∥∥2 +

1

k

t′−1∑
τ ′=t′′

E
∥∥∥x̂τ ′ − xτ

′
i

∥∥∥2

+
1

Nk

t′−1∑
τ ′=t′′

N∑
j=1

E
∥∥∥xτ ′j − x̂τ

′
∥∥∥2
+

5(t− t′)2

k

t′−1∑
τ=t′′

E
∥∥∥∇f(x̂τ

′
)
∥∥∥2

≤ 5L2
t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
E ‖xτi − x̂τ‖2 + E

∥∥∥x̂τ − x̂τ
′
∥∥∥2 + E

∥∥∥x̂τ ′ − xτ
′
i

∥∥∥2 +
1

N

N∑
j=1

E
∥∥∥xτ ′j − x̂τ

′
∥∥∥2)

+5k

t′−1∑
τ=t′′

E
∥∥∥∇f(x̂τ

′
)
∥∥∥2 , (20)
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where the first three inequalities follow from Cauchy’s inequality, and the fourth inequality follows
from the Lipschitz gradient assumption. According to (20), we have

2

N

N∑
i=1

T2 ≤ 10L2

N

N∑
i=1

t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
E ‖xτi − x̂τ‖2 + E

∥∥∥x̂τ − x̂τ
′
∥∥∥2 + 2E

∥∥∥x̂τ ′ − xτ
′
i

∥∥∥2)

+10k

t′−1∑
τ=t′′

E
∥∥∥∇f(x̂τ

′
)
∥∥∥2 , (21)

Substituting (19 ), (21) into (14), we obtain Lemma 1.

B PROOF OF LEMMA 2

In this section, we introduce Lemma 2, which bounds the difference between the local model xti and
the average model x̂t.

Lemma 2 Under Lemma 1, when the learning rate γ and the communication period k satisfy that
60γ2k2L2 ≤ 1, we have the following inequality

1

N

T−1∑
t=0

N∑
i=1

E‖xti − x̂t‖2 ≤ 10k2γ2

1− 30k2γ2L2

T−1∑
t=0

‖∇f(x̂t)‖2 +
10kγ2L2

1− 30k2γ2L2

T−1∑
t=0

t′−1∑
τ ′=t′′

E
∥∥∥x̂t − x̂τ

′
∥∥∥2

+
18kγ2σ2T

1− 30k2γ2L2
. (22)

Proof. According to the updating scheme in Algorithms 1, xti can be represented as

xti = x̂t
′
− γ

t−1∑
τ=t′

vτi , (23)

On the other hand, by the definition of x̂t, we can represent it as

x̂t = x̂t
′
− γ

N

N∑
i=1

t−1∑
τ=t′

vτi (24)

Substituting (23) and (24) into the left hand side of (22) , we have

1

N

N∑
i=1

E
∥∥x̂t − xti

∥∥2
=

1

N

N∑
i=1

E

∥∥∥∥∥
(
x̂t

′
− γ

N

t−1∑
τ=t′

N∑
j=1

vτj

)
−

(
x̂t

′
−

t−1∑
τ=t′

γvi
τ

)∥∥∥∥∥
2

=
1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

γvi
τ − γ

N

t−1∑
τ=t′

N∑
j=1

vτj

∥∥∥∥∥
2

=
1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

γvi
τ

∥∥∥∥∥
2

+
1

N

N∑
i=1

E

∥∥∥∥∥ γN
t−1∑
τ=t′

N∑
j=1

vτj

∥∥∥∥∥
2

− 2
N∑
i=1

1

N
E

〈
t−1∑
τ=t′

γvi
τ ,
γ

N

t−1∑
τ=t′

N∑
j=1

vτj

〉

=
1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

γvi
τ

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t−1∑
τ=t′

γ

N∑
j=1

1

N
vτj

∥∥∥∥∥
2

− 2E

∥∥∥∥∥
t−1∑
τ=t′

γ

N∑
j=1

1

N
vτj

∥∥∥∥∥
2

=
1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

γvi
τ

∥∥∥∥∥
2

− E

∥∥∥∥∥ γN
t−1∑
τ=t′

N∑
j=1

∇fj(xτi , ξτj )

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

E

∥∥∥∥∥
t−1∑
τ=t′

γvi
τ

∥∥∥∥∥
2

. (25)
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According to the result in Lemma 1, we have

1

N

N∑
i=1

E
∥∥x̂t − xti

∥∥2 ≤ 10γ2L2

N

N∑
i=1

t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
E‖xτi − x̂τ‖2 + E‖x̂τ − x̂τ

′
‖2 + 2E‖x̂τ

′
− xτ

′
i ‖2

)

+10γ2k

t′−1∑
τ=t′′

‖∇f(x̂τ )‖2 + 18γ2kσ2. (26)

Summing up this inequality from t = 0 to T -1, we obtain

1

N

T−1∑
t=0

N∑
i=1

E
∥∥x̂t − xti

∥∥2 (27)

≤ 10γ2L2

N

T−1∑
t=0

N∑
i=1

t−1∑
τ=t′

t′−1∑
τ ′=t′′

(
E‖xτi − x̂τ‖2 + E‖x̂τ − x̂τ

′
‖2 + 2E‖x̂τ

′
− xτ

′
i ‖2

)

+10kγ2
T−1∑
t=0

t′−1∑
τ ′=t′′

‖∇f(x̂τ
′
)‖2 + 18kγ2σ2T

≤ 10γ2L2

N

T−1∑
t=0

N∑
i=1

3k2E‖xti − x̂t‖2 + 10γ2L2
T−1∑
t=0

t−1∑
τ=t′

t′−1∑
τ ′=t′′

E‖x̂τ − x̂τ
′
‖2

+10k2γ2
T−1∑
t=0

‖∇f(x̂t)‖2 + 18kγ2σ2T

≤ 30γ2k2L2

N

T−1∑
t=0

N∑
i=1

E‖xti − x̂t‖2 + 10kγ2L2
T−1∑
t=0

t′−1∑
τ ′=t′′

E‖x̂t − x̂τ
′
‖2

+10k2γ2
T−1∑
t=0

‖∇f(x̂t)‖2 + 18kγ2σ2T, (28)

where the second and the third inequalities can be obtained by using a simple counting argument.
Rerrangeing the inequality, we obtain

(1− 30k2γ2L2)
1

N

T−1∑
t=0

N∑
i=1

E‖xti − x̂t‖2 ≤ 10k2γ2
T−1∑
t=0

‖∇f(x̂t)‖2 + 10kγ2L2
T−1∑
t=0

t′−1∑
τ ′=t′′

E‖x̂t − x̂τ
′
‖2

+18kγ2σ2T. (29)

Dividing 1− 30k2γ2L2 on both sides completes the proof.

C PROOF OF THEOREM 5.1

In this section, we give the proof of Theorem 5.1.

Theorem 5.1 Under Assumption 1, if the learning rate satisfies γ ≤ 1
2L and 60k2γ2L2 ≤ 1, we

have the following convergence result for Algorithm 1:

1

T

T−1∑
t=0

E‖∇f(x̂t)‖2 ≤ 3(f(x̂0)− f∗)
Tγ

+
3γLσ2

2N
+ 55kγ2σ2L2. (30)

Proof. Since fi(·), i = 1, 2, · · · , N are L-smooth, it is easy to verify that f(·) is L-smooth. We
have

f(x̂t+1) ≤ f(x̂t) +
〈
∇f(x̂t), x̂t+1 − x̂t

〉
+
L

2

∥∥x̂t+1 − x̂t
∥∥2

= f(x̂t)− γ

〈
∇f(x̂t),

1

N

N∑
i=1

vti

〉
+
Lγ2

2

∥∥∥∥∥ 1

N

N∑
i=1

vti

∥∥∥∥∥
2

= f(x̂t)− γ

〈
∇f(x̂t),

1

N

N∑
i=1

∇fi(xti, ξti)

〉
+
Lγ2

2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)

∥∥∥∥∥
2

. (31)
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By applying expectation with respect to all the random variables at step t and conditional on the past
(denote by Et|·), we have

Et|·f(x̂t+1)

≤ f(x̂t)− γ

〈
∇f(x̂t),

1

N

N∑
i=1

∇fi(xti)

〉
+
Lγ2

2
Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)

∥∥∥∥∥
2

= f(x̂t)− γ

2

∥∥∇f(x̂t)
∥∥2 +

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

−

∥∥∥∥∥∇f(x̂t)− 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


+
Lγ2

2
Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)

∥∥∥∥∥
2

. (32)

Note that

Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)

∥∥∥∥∥
2

= Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)−
1

N

N∑
i=1

∇fi(xti) +
1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

= Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)−
1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+2Et|·

〈
1

N

N∑
i=1

∇fi(xti, ξti)−
1

N

N∑
i=1

∇fi(xti),
1

N

N∑
i=1

∇fi(xti)

〉

= Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)−
1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

, (33)

where the last equality holds because Et|·
(

1
N

∑N
i=1∇fi(xti, ξti)−

1
N

∑N
i=1∇fi(xti)

)
= 0, and

Et|·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti, ξti)−
1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

= Et|·
1

N2

N∑
i=1

∥∥∇fi(xti, ξti)−∇fi(xti)∥∥2
+

2

N2

∑
1≤i1<i2≤N

Et|·
〈
∇fi1(xti1 , ξ

t
i1)−∇fi1(xti1),∇fi2(xti2 , ξ

t
i2)−∇fi2(xti2)

〉
= Et|·

1

N2

N∑
i=1

∥∥∇fi(xti, ξti)−∇fi(xti)∥∥2
≤ σ2

N
, (34)

where the second equality holds because the random variables on different workers are independent.
Substituting (33) into (32) and applying expectation with respect to all the random variables, we
obtain

Ef(x̂t+1) ≤ Ef(x̂t)− γ

2
E‖∇f(x̂t)‖2 − γ

2
(1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+
γ

2
E

∥∥∥∥∥∇f(x̂t)− 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+
γ2Lσ2

2N
. (35)
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We then bound the difference of∇f(x̂t) and 1
N

∑N
i=1∇fi(xti) as

E

∥∥∥∥∥∇f(x̂t)− 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

N

N∑
i=1

(
∇fi(x̂t)−∇fi(xti)

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

E
∥∥(∇fi(x̂t)−∇fi(xti))∥∥2

≤ L2

N

N∑
i=1

E
∥∥x̂t − xti

∥∥2 , (36)

where the two inequalities follow from Cauchy’s inequality and Lipschitz gradient assumption, re-
spectively. Substituting (36) into (35) yields

Ef(x̂t+1) ≤ Ef(x̂t)− γ

2
E‖∇f(x̂t)‖2 − γ

2
(1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+
γL2

2N

N∑
i=1

E‖x̂t − xti‖2 +
γ2Lσ2

2N
. (37)

Rearranging the inequality and summing up both sides from t = 0 to T − 1, we have

T−1∑
t=0

γ
2
E‖∇f(x̂t)‖2 +

γ

2
(1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ f(x̂0)− f∗ +
γL2

2N

N∑
i=1

T−1∑
t=0

E‖x̂t − xti‖2 +
Tγ2Lσ2

2N
. (38)

Substituting Lemma 2 into (38) and combing 60k2γ2L2 ≤ 1, we obtain

T−1∑
t=0

γ
2
E‖∇f(x̂t)‖2 +

γ

2
(1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ f(x̂0)− f∗ +
Tγ2Lσ2

2N
+

5k2γ3L2

1− 30k2γ2L2

T−1∑
t=0

‖∇f(x̂t)‖2 +
9γ3kσ2L2T

1− 30k2L2γ2

+
5kγ3L4

1− 30k2γ2L2

T−1∑
t=0

t′−1∑
τ ′=t′′

E
∥∥∥x̂t − x̂τ

′
∥∥∥2

≤ f(x̂0)− f∗ +
Tγ2Lσ2

2N
+ 10k2γ3L2

T−1∑
t=0

‖∇f(x̂t)‖2 + 18γ3kσ2L2T

+10kγ3L4
T−1∑
t=0

t′−1∑
τ ′=t′′

E
∥∥∥x̂t − x̂τ

′
∥∥∥2︸ ︷︷ ︸

T6

. (39)
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Next, we bound T6.

T6 =

T−1∑
t=0

t′−1∑
τ ′=t′′

E
∥∥∥x̂t − x̂τ

′
∥∥∥2

=

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

γ

N

N∑
i=1

vsi

∥∥∥∥∥
2

=
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi )) +

t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

=
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi ))

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

+2E

〈
t−1∑
s=τ ′

N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi )) ,
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

〉)

=
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi ))

∥∥∥∥∥
2

︸ ︷︷ ︸
T7

+
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

.

(40)

Since ξti ’s are independent, we have

T7 =

t−1∑
s=τ ′

E

∥∥∥∥∥
N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi ))

∥∥∥∥∥
2

+ 2
∑

τ ′≤s1<s2≤t−1

E

〈
N∑
i=1

(∇fi(xs1i , ξ
s1
i )−∇fi(xs1i )) ,

N∑
i=1

(∇fi(xs2i , ξ
s2
i )−∇fi(xs2i ))

〉
=

t−1∑
s=τ ′

E

∥∥∥∥∥
N∑
i=1

(∇fi(xsi , ξsi )−∇fi(xsi ))

∥∥∥∥∥
2

=

t−1∑
s=τ ′

(
N∑
i=1

E ‖∇fi(xsi , ξsi )−∇fi(xsi )‖2

+ 2
∑

1≤i1<i2≤N

E 〈∇fi1(xsi1 , ξ
s
i1)−∇fi1(xsi1),∇fi2(xsi2 , ξ

s
i2)−∇fi2(xsi2)〉


=

t−1∑
s=τ ′

N∑
i=1

E ‖∇fi(xsi , ξsi )−∇fi(xsi )‖2 . (41)

Substituting (41) into (40), we have

T6 =
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

t−1∑
s=τ ′

N∑
i=1

E ‖∇fi(xsi , ξsi )−∇fi(xsi )‖2 +
γ2

N2

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

≤ 2k2γ2σ2T

N
+

T−1∑
t=0

t′−1∑
τ ′=t′′

E

∥∥∥∥∥ γN
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

, (42)
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where the inequality holds since t− τ ′ ≤ t− t′′ ≤ 2k. Substituting (42) into (39), we obtain

T−1∑
t=0

γ
2
E‖∇f(x̂t)‖2 +

γ

2
(1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ f(x̂0)− f∗ +
Tγ2Lσ2

2N
+ 10k2γ3L2

T−1∑
t=0

‖∇f(x̂t)‖2 + 18kγ3σ2L2T

+10kγ3L4
T−1∑
t=0

t′−1∑
τ ′=t′′

E
∥∥∥x̂t − x̂τ

′
∥∥∥2

≤ f(x̂0)− f∗ +
Tγ2Lσ2

2N
+ 10k2γ3L2

T−1∑
t=0

‖∇f(x̂t)‖2 + 18kγ3σ2L2T

+
20k3γ5σ2L4T

N
+ 10kγ3L4

T−1∑
t=0

t′−1∑
τ ′=t′′

∥∥∥∥∥ γN
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

. (43)

Rearranging this inequality and dividing both sides by Tγ
2 , we get

1

T

T−1∑
t=0

(
1− 20k2γ2L2)E‖∇f(x̂t)‖2

≤ 2(f(x̂0)− f∗)
Tγ

+
γLσ2

N
+ 36kγ2σ2L2 +

40k3γ4σ2L4

N

+
1

T

T−1∑
t=0

20kγ2L4
t′−1∑
τ ′=t′′

∥∥∥∥∥ γN
t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

− (1− Lγ)E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


︸ ︷︷ ︸
T8

. (44)

Then we prove T8 ≤ 0. If the learnign rate γ satisfies γ ≤ 1
2L , then we have (1− Lγ) ≥ 1

2 .

T8 ≤ 1

2T

T−1∑
t=0

40kγ4L4
t′−1∑
τ ′=t′′

∥∥∥∥∥ 1

N

t−1∑
s=τ ′

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

− E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ 1

2T

T−1∑
t=0

80k2γ4L4
t′−1∑
τ ′=t′′

t−1∑
s=τ ′

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xsi )

∥∥∥∥∥
2

− E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ 1

2T

T−1∑
t=0

160k4γ4L4

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

− E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2


≤ 160k4γ4L4 − 1

2T

T−1∑
t=0

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xti)

∥∥∥∥∥
2

. (45)

Since 60k2γ2L2 ≤ 1, then we have 160k4γ4L4 ≤ 1, and thus T8 ≤ 0. Rearranging (44) and
dividing both sides by

(
1− 20k2γ2L2

)
, we get

1

T

T−1∑
t=0

E‖∇f(x̂t)‖2 ≤ 2(f(x̂0)− f∗)
Tγ(1− 20k2γ2L2)

+
γLσ2

N(1− 20k2γ2L2)
+

36kγ2σ2L2

1− 20k2γ2L2

+
40k3γ4σ2L4

N(1− 20k2γ2L2)

≤ 3(f(x̂0)− f∗)
Tγ

+
3γLσ2

2N
+ 54kγ2σ2L2 +

kγ2σ2L2

N

≤ 3(f(x̂0)− f∗)
Tγ

+
3γLσ2

2N
+ 55kγ2σ2L2, (46)

where the inequalities hold because k2γ2L2 ≤ 1
60 and 1

1−20k2γ2L2 ≤ 3
2 .
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D PROOF OF COROLLARY 5.2

In this section, we give the proof of Corollary 5.2.

Corollary 5.2 Under Assumption 1, when the learning rate is set as γ =
√
N

σ
√
T

and the total number

satisfies T ≥ 64N3L2k2

σ2 , we have the following convergence result for Algorithm 1:

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥ ≤ 3σ(f(x̂0)− f∗ + 3L)√
NT

. (47)

Proof. Since γ =
√
N

σ
√
T

, T ≥ 64N3L2k2

σ2 ≥ 60Nk2L2

σ2 , we have 60γ2k2L2 ≤ 1 and γ ≤ 1
2L . Then

we can have the result in (30) and get

1

T

T−1∑
t=0

E‖∇f(x̂t)‖2 ≤ 3(f(x̂0)− f∗)
Tγ

+
3γLσ2

2N
+ 55kγ2σ2L2. (48)

Combing γ =
√
N

σ
√
T

, k2γ2L2 ≤ 1
60 and T ≥ 64N3L2k2

σ2 , we have

55kγ2σ2L2 ≤ 55k
N

σ2T
σ2L2 =

55kNL2

√
T

1√
T
≤ 7σL√

NT
, (49)

3γLσ2

2N
=

3σL

2
√
NT

, (50)

3(f(x̂0)− f∗)
Tγ

=
3σ(f(x̂0)− f∗)√

NT
. (51)

We can get the final result

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥ ≤ 3σ(f(x̂0)− f∗ + 3L)√
NT

, (52)

which completes the proof.

20


	Introduction
	Related Work
	Preliminary
	Problem definition
	Notations
	Assumptions

	Algorithm
	Variance Reduced Local SGD

	Theoretical Analysis
	Experiments
	Experimental Settings
	Non-identical case
	Identical case

	Conclusion & Future Work
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 5.1
	Proof of Corollary 5.2

