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ABSTRACT

Off-policy estimation for long-horizon problems is important in many real-life
applications such as healthcare and robotics, where high-fidelity simulators may
not be available and on-policy evaluation is expensive or impossible. Recently,
Liu et al. (2018) proposed an approach that avoids the curse of horizon suffered
by typical importance-sampling-based methods. While showing promising results,
this approach is limited in practice as it requires data be drawn from the stationary
distribution of a known behavior policy. In this work, we propose a novel approach
that eliminates such limitations. In particular, we formulate the problem as solving
for the fixed point of a certain operator, and develop a new estimator that computes
importance ratios of stationary distributions, without knowledge of how the off-
policy data are collected. We analyze its asymptotic consistency and finite-sample
generalization. Experiments on benchmarks verify the effectiveness of the proposed
approach.

1 INTRODUCTION

As reinforcement learning (RL) is increasingly applied to crucial real-life problems like robotics,
recommendation and conversation systems, off-policy estimation becomes even more critical. The
task here is to estimate the average long-term reward of a target policy, given historical data collected
by (possibly unknown) behavior policies. Since the reward and next state depend on what action
the policy chooses, simply averaging rewards in off-policy data does not estimate the target policy’s
long-term reward. Instead, proper correction must be made to remove the bias in data distribution.

One approach is to build a simulator that mimics the reward and next-state transitions in the real
world, and then evaluate the target policy against the simulator (e.g., Fonteneau et al., 2013; Ie et al.,
2019). While the idea is natural, building a high-fidelity simulator could be extensively challenging
in numerous domains, such as those that involve human interactions. Another approach is to use
propensity scores as importance weights, so that we could use the weighted average of rewards in
off-policy data as a suitable estimate of the average reward of the target policy. The latter approach
is more robust, as it does not require modeling assumptions about the real world’s dynamics. It
often finds more success in short-horizon problems like contextual bandits, but its variance grows
exponentially in the horizon, a phenomenon known as “the curse of horizon” (Liu et al., 2018).

To address this challenge, Liu et al. (2018) proposed to solve an optimization problem of a minimax
nature, whose solution directly estimates the desired propensity score of states under the stationary
distribution, avoiding an explicit dependence on horizon. While their method is shown to give more
accurate predictions than previous algorithms, it is limited in several important ways:

• The method requires that data be collected by a known behavior policy. In practice, however,
such data are often collected over an extended period of time by multiple, unknown behavior
policies. For example, observational healthcare data typically contain patient records,
whose treatments were provided by different doctors in multiple hospitals, each following
potentially different procedures that are not always possible to specify explicitly.

• The method requires that the off-policy data reach the stationary distribution of the behavior
policy. In reality, it may take a very long time for a trajectory to reach the stationary
distribution, which may be impractical due to various reasons like costs and missing data.
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In this paper, we introduce a novel approach for the off-policy estimation problem that overcome
these drawbacks. The main contributions of our work are three-fold:

• We formulate the off-policy estimation problem into one of solving for the fixed point of an
operator. Different from the related, and similar, Bellman operator that goes forward in time,
this operator is backward in time.

• We develop a new algorithm, which does not have the aforementioned limitations of Liu
et al. (2018), and analyze its generalization bounds. Specifically, the algorithm does not
require that the off-policy data come from the stationary distribution, or that the behavior
policy be known.

• We empirically demonstrate the effectiveness of our method on several classic control
benchmarks. In particular, we show that, unlike Liu et al. (2018), our method is effective
even if the off-policy data has not reached the stationary distribution.

In the next section, we give a brief overview of recent and related works. We then move to describing
the problem setting that we have used in the course of the paper and our off-policy estimation
approach. Finally, we present several experimental results to show the effectiveness of our method.

Notation. In the following, we use ∆(X) to denote the set of distributions over a set X . ‖x‖ is the
`2 norm of vector x. We denote by [n] the set {1, 2, . . . , n}, and 1{A} the indicator function.

2 RELATED WORKS

Our work focuses on estimating a scalar (average long-term reward) that summarizes the quality
of a policy and has extensive applications in practice. This is different from value function or
policy learning from off-policy data (e.g., Precup et al., 2001; Maei et al., 2010; Sutton et al., 2016;
Munos et al., 2016; Metelli et al., 2018), where the major goal is to ensure stability and convergence.
Yet, these two problems share numerous core techniques, such as importance reweighting and
doubly robustness. Off-policy estimation and evaluation can also be used as a component for policy
optimization (e.g., Jiang & Li, 2016; Gelada & Bellemare, 2019; Liu et al., 2019; Zhang et al., 2019).

Importance reweighting, or inverse propensity scoring, has been used for off-policy RL (e.g., Precup
et al., 2001; Murphy et al., 2001; Munos et al., 2016; Hanna et al., 2017; Xie et al., 2019). Its
accuracy can be improved by various techniques (Jiang & Li, 2016; Thomas & Brunskill, 2016;
Guo et al., 2017; Farajtabar et al., 2018). However, these methods typically have a variance that
grows exponentially with the horizon, limiting their application to mostly short-horizon problems
like contextual bandits (Dudík et al., 2011; Bottou et al., 2013).

There have been recent efforts to avoid the exponential blow-up of variance in basic inverse propensity
scoring. A few authors explored the alternative to estimate the propensity score of a state’s stationary
distribution (Liu et al., 2018; Gelada & Bellemare, 2019), when behavior policies are known. Later,
Nachum et al. (2019) extended this idea to situations with unknown behavior policies. However, their
approach only works for the discounted reward criterion. In contrast, our work considers the more
general and challenging undiscounted criterion. In the next section, we briefly mention the setting
under which we study this problem and then present our black-box off-policy estimator.

Our black-box estimator is inspired by previous work for black-box importance sampling (Liu & Lee,
2017). Interestingly, the authors show that it is beneficial to estimate propensity scores from data
without using knowledge of the behavior distribution (called proposal distribution in that paper), even
if it is available. Similar benefits may exist for our black-box off-policy estimator developed here,
which is outside of the scope of this paper.

3 PROBLEM SETTING

Consider a Markov decision process (MDP) (Puterman, 1994) M = 〈S,A, P,R, p0, γ〉, where S and
A are the state and action spaces, P is the transition probability function, R is the reward function,
p0 ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1] is the discount factor. A policy π maps
states to a distribution over actions: π : S 7→ ∆(A), and π(a|s) is the probability of choosing action
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a in state s by policy π. With a fixed π, a trajectory τ = (s0, a0, r0, s1, a1, r1, . . .) is generated as
follows:1

s0 ∼ p0(·), at ∼ π(·|st), rt = R(st, at), st+1 ∼ P (·|st, at), ∀t ≥ 0 .

Given a target policy π, we consider two reward criteria, undiscounted (γ = 1) and discounted
(γ < 1), where Eπ[·] indicates the trajectory τ is controlled by policy π:

(undiscounted) ρπ := lim
T→∞

Eπ

[
1

T

T∑
t=1

rt

]
= E(s,a)∼dπ [r] , (1)

(discounted) ρπ,λ := (1− γ)Eπ

[ ∞∑
t=0

γtrt

]
. (2)

In the above, dπ is the stationary distribution over S ×A, which exists and is unique under certain
assumptions (Levin & Peres, 2017).

The γ < 1 case can be reduced to the undiscounted case of γ = 1, but not vice versa. Indeed, one can
show that the discounted reward in equation 2 can be interpreted as the stationary distribution of an
induced Markov process, whose transition function is a mixture of P and the initial-state distribution
p0. We refer interested readers to Appendix A for more details. Accordingly, in the following and
without the loss of generality, we will merely focus on the more general undiscounted criterion in
equation 1, and suppress the unnecessary dependency on p0 and γ.

In the off-policy estimation problem, we are interested in estimating ρπ for a given target policy
π. However, instead of having access to on-policy trajectories generated by π, we have a set of n
transitions collected by some unknown (i.e., “black-box” or behavior-agnostic (Nachum et al., 2019))
behavior mechanism πBEH:

D := {(si, ai, ri, s′i)}1≤i≤n .
Therefore, the goal of off-policy estimation is to estimate ρπ based on D, for a given target policy π.

The setting we described above is quite general, covering a number of situations. For example, πBEH

might be a single policy and D might consist of one or multiple trajectories collected by πBEH. In
this special case, s′i = si+1 for 1 < i < n; this is the off-policy RL scenario widely studied (e.g.,
Precup et al., 2001; Sutton et al., 2016; Munos et al., 2016; Liu et al., 2018; Gelada & Bellemare,
2019). Furthermore, if πBEH = π, we recover the on-policy setting. On the other hand, πBEH and
D can consist of multiple policies and their corresponding trajectories. In this situation, unlike the
single policy case s′i and si+1 might originate from two distinct policies. In general, one can consider
πBEH as a distribution over S × A where (si, ai) in D are sampled from. Having introduced the
general setting of the problem, we will describe our estimation approach in the next section.

4 BLACK-BOX ESTIMATION

Our estimator is based on the following operator defined on functions over S × A. For discrete
state-action spaces, given any d ∈ RS×A,

Bπd(s, a) := π(a|s)
∑

ξ∈S,α∈A

P (s|ξ, α)d(ξ, α) . (3)

While we will develop the rest of the paper using the discrete version above for simplicity, the
continuous version can be similarly obtained without affecting the estimator and results:

Bπd(s, a) = π(a|s)
∫
ξ,α

dP (s|ξ, α)d(ξ, α) , (4)

where P is now interpreted as the transition kernel.

We should note that Bπ is indeed different from the Bellman operator (Puterman, 1994); although
they have some similarities. In particular, given some state-action pair (s, a), the Bellman operator

1For simplicity in exposition, we assume rewards are deterministic. However, everything in this work
generalizes directly to the case of stochastic rewards.
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is defined using next state s′ of (s, a), while Bπ is defined using previous state-actions (ξ, α) that
transition to s. It is in this sense that Bπ is backward (in time). Furthermore, as we will show later,
d has the interpretation of a distribution over S ×A. Therefore, Bπ describes how visitation flows
from (ξ, α) to (s, a) and hence, we call it the backward flow operator. Note that similar forms of Bπ
have appeared in the literature, usually used to encode constraints in a dual linear program for an
MDP (e.g., Wang et al., 2007; Wang, 2017; Dai et al., 2018). However, the application of Bπ for the
off-policy estimation problem as considered here appears new to the best of our knowledge.

An important property of Bπ is that, under certain assumptions, the stationary distribution dπ is the
unique fixed point that lies in ∆(S ×A) (Levin & Peres, 2017):

dπ = Bπdπ and dπ ∈ ∆(S ×A) . (5)

This property is the key element we use to derive our estimator as we describe in the following.

4.1 BLACK-BOX ESTIMATOR

In most cases, off-policy estimation involves a weighted average of observed rewards ri in D. We
therefore aim to directly estimate these (non-negative) weights which we denote by w = {wi} ∈
∆([n]); that is, wi ≥ 0 for i ∈ [n] and

∑n
i=1 wi = 1. Note that the normalization of w may be

ensured by techniques such as self-normalized importance sampling (Liu, 2001). Once such a w is
obtained, the estimated reward is given by:

ρ̂π =

n∑
i=1

wiri . (6)

Effectively, any w ∈ ∆([n]) defines an empirical distribution which we denote by dw over S ×A:

dw(s, a) :=

n∑
i=1

wi1{si = s, ai = a} . (7)

Equation 6 is equivalent to ρ̂π = E(s,a)∼dw [r]. Comparing it to equation 1, we naturally want
to optimize w so that dw is close to dπ. Therefore, inspired by the fixed-point property of dπ in
equation 5, the problem naturally becomes one of minimizing the discrepancy between dw and Bπdw.
In practice, w is often represented in a parametric way:

wi = w̃i/
∑
l

w̃l , w̃i := W (si, ai;ω) ≥ 0 , (8)

where W (.) is a parametric model, such as neural networks, with parameters ω ∈ Ω. We have now
reached the following optimization problem solved by the black-box estimator:

min
ω∈Ω

D(dw ‖ Bπdw) , (9)

where D(· ‖ ·) is some discrepancy function between distributions.

4.2 BLACK-BOX ESTIMATOR WITH MMD

There are different choices for D(· ‖ ·) in equation 9, and multiple approaches to solve it with Bπ
approximated by empirical data (e.g., Nguyen et al., 2010; Dai et al., 2017). Here, we describe one
such algorithm based on Maximum Mean Discrepancy (MMD) (Muandet et al., 2017).

Let k be a strictly integrally positive definite kernel function defined on (S ×A)2, that is

k [f ; f ] :=
∑

(s,a)∈S×A,(s̄,ā)∈S×A

f(s, a)k((s, a), (s̄, ā))f(s̄, ā) > 0,

for any f 6≡ 0 and ‖f‖2 :=
∑
s,a f(s, a)2 < ∞. Moreover, denote by H the corresponding

reproducing kernel Hilbert space (RKHS). Then, we have

D(dw ‖ Bπdw) = sup
f∈H
{Edw [f ]− EBπdw [f ] s.t. ‖f‖H ≤ 1}

= k [dw; dw]− 2k [dw; Bπdw] + k [Bπdw; Bπdw] .
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With some calculations, we can show that

k [dw; dw] =
∑
i,j

wiwj k((si, ai), (sj , aj))︸ ︷︷ ︸
K

(0)
i,j

k [dw; Bπdw] =
∑
i,j

wiwj
∑
a′

π(a′|s′j)k((si, ai), (s
′
j , a
′))︸ ︷︷ ︸

K
(1)
i,j

k [Bπdw; Bπdw] =
∑
i,j

wiwj
∑
a′i,a

′
j

π(a′i|s′i)π(a′j |s′j)k((s′i, a
′
i), (s

′
j , a
′
j))︸ ︷︷ ︸

K
(2)
i,j

.

Defining Ki,j := K
(0)
i,j − 2K

(1)
i,j + K

(2)
i,j , we can express the objective as a function of ω (c.f.,

equation 8):
`(ω) =

∑
i,j

W (si, ai;ω)W (sj , aj ;ω)Ki,j . (10)

Remark 4.1. Mini-batch training is an effective approach to solve large-scale problems. However,
the objective `(ω) is not in a form that is ready for mini-batch training, as wi requires normalization
(equation 8) that involves all data in D. Instead, we may equivalently minimize L(ω) := log `(ω),
which can be turned into a form that allow mini-batch training, using a trick that is also useful in
other machine learning contexts (e.g., Jean et al., 2015). See Appendix D for more details.

We next present theoretical analysis of our approach. In particular, we show the consistency of our
result and provide a sample complexity bound.

4.3 THEORETICAL ANALYSIS

Consistency. The following theorem shows that the exact minimizer of equation 9 coincides with
the fixed point of Bπ , and the objective function measures the norm of the estimation error (d− dπ)
in an induced RKHS. To simplify exposition, we use the shorthand x = (s, a) and x̄ = (s̄, ā), and
similarly for x′ and x̄′.

Theorem 4.1. Suppose k is strictly integrally positive definite, and dπ is the unique fixed point of Bπ
in equation 5. Then, for any d ∈ ∆(S ×A),

Dk(d || Bπd) = 0 ⇐⇒ d = dπ .

Furthermore, Dk(d || Bπd) equals an MMD between d and dπ , with a transformed kernel:
Dk(d || Bπd) = Dk̃(d || dπ) ,

where k̃(x, x′) is a positive definite kernel, defined by

k̃(x, x′) = Eπ[k(x, x̄)− k(x, x̄′)− k(x′, x̄) + k(x′, x̄′) | (x, x̄)],

where the expectation is under the transition probability Pπ(x′|x) and Pπ(x̄′|x̄), with x′ and x̄′
drawn independently.

Generalization. We next give a sample complexity analysis. In practice, the estimated weight ŵ
is based on minimizing the empirical loss Dk(dw || B̂πdw), where Bπ is replaced by the empirical
approximation B̂π . The following theorem compares the empirical weights ŵ with the oracle weight
w∗ obtained by minimizing the expected loss Dk(dw || Bπdw), with the exact transition operator Bπ .

Theorem 4.2. Assume the weight function is decided by wi = W (si, ai; ω)/n. Denote byW =

{W̃ (·; ω) : ω ∈ Ω} the model class of W (·;ω). Assume ŵ is the minimizer of the empirical loss
Dk(dw || B̂πdw) and w∗ the minimizer of expected loss Dk(dw || Bπdw). Assume {xi}ni=1 are i.i.d.
samples. Then, with probability 1− δ we have

Dk(dŵ || Bπdŵ)− Dk(dw∗ || Bπdw∗) ≤ 16rmaxRn(W) +
16r2

max + r2
max

√
8 log(1/δ)√

n
,
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Figure 1: (a) ModelWin MDP from Thomas & Brunskill (2016). (b) The RMSE of different methods
as we change the length of horizon w.r.t the target policy reward. IPS depends on the horizon length
while our method is independent of the horizon length.

where Rn(W) denotes the expected Rademacher complexity ofW with data size n, and rmax =

max(‖W‖∞ , supx
√

k(x, x)) with ‖W‖∞ := sup{‖W‖∞ : W ∈ W}. This suggests that we have
a generalization error of O(1/

√
n) ifRn(W) = O(1/

√
n), which is typical for parametric families

of functions.

5 EXPERIMENTS

In this section, we present experiments to compare the performance of our proposed method with
other baselines on the off-policy evaluation problem. In general and for each experiment, we use a
behavior policy πBEH to generate trajectories of length TBEH. We then use these generated samples
from a behavior policy to estimate the expected reward of a given target policy π. To compare
our approach with other baselines, we use the root mean squared error (RMSE) with respect to the
average long-term reward of the target policy π. The latter is estimated using a trajectory of length
TTAR � 1. In particular, we compare our proposed black-box approach with the following baselines:

• naive averaging baseline in which we simply estimate the expected reward of a target policy
by averaging the rewards over the trajectories generated by the behavior policy.

• model-based baseline where we use the kernel regression technique with a standard Gaussian
RBF kernel. We set the bandwidth of the kernel to the median (or 25th or 75th percentiles)
of the pairwise euclidean distances between the observed data points.

• inverse propensity score (IPS) baseline introduced by Liu et al. (2018).

We will first use a simple MDP from Thomas & Brunskill (2016) to highlight the IPS drawback we
previously mentioned in Section 1. We then move to classical control benchmarks.

5.1 TOY EXAMPLE

The ModelWin domain first introduced in Thomas & Brunskill (2016) is a fully observable MDP with
three states and two actions as denoted in Figure 1(a). The agent always begins in s1 and should
choose between two actions a1 and a2. If the agent chooses a1, then with probability of p and 1− p it
makes a transition to s2 and s3 and receives a reward of r = 1 and r = −1, respectively. On the other
hand, if the agent chooses a2, then with probability of p and 1− p it makes a transition to s3 with the
reward of r = −1 and s2 with the reward of r = 1, respectively. Once the agent is in either s2 or s3,
it goes back to the s1 in the next step without any reward. In our experiments, we set p = 0.4.

We define the behavior and target policies as the following. In the target policy, once the agent is
in s1, it chooses a1 and a2 with the probability of 0.9 and 0.1, respectively. On the other hand and
for the behavior policy, once the agent is in s1, it chooses a1 and a2 with the probability of 0.7
and 0.3, respectively. We calculate the average on-policy reward from samples based on running a
trajectory of length TTAR = 50, 000 collected by the target policy. We estimate this on-policy reward
using trajectories of length TBEH ∈ {4, 8, 16, 32, 64, 128} collected by the behavior policy. In each
case, we set the number of trajectories such that the total number of transitions (i.e., TBEH times the
number of trajectories) is kept constant. For example, for TBEH = 4 and TBEH = 8 we use 50,000
and 25,000 trajectories, respectively. Since the problem has finitely many state-actions, we use the
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Figure 2: The RMSE of different methods w.r.t the target policy reward as we change the number of
trajectories. Our black-box approach outperforms other methods on three problems.

Figure 3: The median and error bars at 25th and 75th percentiles of different methods w.r.t the target
policy reward as we change the number of trajectories. The trend of results is similar to Figure 2.

tabular method and hence, equation 10 turns into a quadratic programming. We then report the result
of each setting based on 10 Monte-Carlo samples.

As we can see in Figure 1(b), the naive averaging method performs poorly consistently and indepen-
dent of the length of trajectories collected by the behavior policies. On the other hand, IPS performs
poorly when the collected trajectories have short-horizon and gets better as the horizon length of
trajectories get larger. This is expected for IPS — as mentioned in Section 1, it requires data be
drawn from the stationary distribution. In contrast, as shown in Figure 1(b), our black-box approach
performance is independent of the horizon length, and substantially better.

5.2 CLASSIC CONTROL

We now focus on four classic control problems. We begin by briefly describing each problem and
then compare the performance of our method with other approaches on these problems. Note that for
these problems are episodic, we convert them into infinite-horizon problems by resetting the state to
a random start state once the episode terminates.

Pendulum. The goal in this environment is to control a pendulum in a vertical position. It has a
state space of R2 (the pole angle and velocity) and five possible actions (torques applied to the base
in the range of [−2, 2]). In each transition, we set the reward to −(θ2 + 0.1θ̇2 + 0.001a2) where θ is
the pole angle and a denotes the action.

Mountain Car. In this environment, a car is located in a valley between two hills and the goal is to
use potential energy to drive up the car to top of the right hill. Mountain Car has a state space of R2

(the position and speed of the car) and three possible actions (negative, positive, or zero acceleration).
We set the reward to +100 when the car reaches the goal and -1 otherwise.

Cartpole. In this environment, a pole is attached to a cart that moves along a track. At the beginning,
the pole’s position is upright and the goal is to prevent it from falling by changing the cart’s velocity.
Cartpole has a state space of R4 (cart position and velocity and pole angle and velocity) and two
possible actions (moving left or right). We set the reward to -100 when the pole falls and +1 otherwise.

Acrobot. In Acrobot, we have a 2-link pendulum that can swing freely while only the second joint
is actuated. At the beginning, both links point downward. The goal is to swing both links above the
base by at least the length of one link. Acrobot has a state space of R6 (sin(.) and cos(.) of both
angles and angular velocities) and three possible actions (applying +1, 0 or -1 torque on the joint
between the links). We set the reward to +100 when we reach the goal and -1 otherwise.
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Figure 4: The RMSE of different methods w.r.t the target policy reward as we change the behavior
policy. Our method outperform other approaches on different behavior policies.

For each environment, we train a near-optimal policy π+ using the Neural Fitted Q Iteration algorithm
(Riedmiller, 2005). We then set the behavior and target policies as πBEH = α1π+ + (1− α1)π− and
π = α2π+ + (1− α2)π−, where π− denotes a random policy, and 0 ≤ α1, α2 ≤ 1 are two constant
values making the behavior policy distinct from the target policy. In our experiments, we set α1 = 0.7
and α2 = 0.9. In order to calculate the on-policy reward, we use a single trajectory collected by
π with TTAR = 50, 000. For off-policy data, we use multiple trajectories collected by πBEH with
TBEH = 200. In all the cases, we use a 3-layer (having 30, 20, and 10 hidden neurons) feed-forward
neural network with the sigmoid activation function as our parametric model in equation 8. For each
setting, we report results based on 20 Monte-Carlo samples.

Figure 2 shows the log of RMSE w.r.t. the target policy reward as we change the number of trajectories
collected by the behavior policy. We should note that all methods except the naive averaging method
have hyperparameters to be tuned. For each method, the optimal set of parameters might depend on
the number of trajectories (i.e., size of the training data). However, in order to avoid excessive tuning
and to show how much each method is robust to a change in the number of trajectories, we only tune
different methods based on 50 trajectories and use the same set of parameters for other settings. As
we can see, the naive averaging performance is almost independent of the number of trajectories. Our
method outperforms other approaches on three environments and it is only the Acrobot in which IPS
performs better than our black-box approach. In order to have a robust evaluation against outliers, we
have plotted the median and error bars at 25th and 75th percentiles in Figure 3. If we compare the
Figures 2 and 3, we notice that the trend of results is almost the same in both.

Finally, in Figure 4 we measure how robust our approach is to changing the behavior policy compared
to other methods. In particular, we vary α1 that corresponds to the behavior policy to measure how the
RMSE is affected. While α2 is fixed to 0.9, in each experiment we choose α1 from {0.7, 0.5, 0.3, 0.1}.
For each experiment, we use data from 50 trajectories (with TBEH = 200) collected by the behavior
policy and report results based on 20 Monte-Carlo samples. According to Figure 4, as α1 diverges
more from α2, the performance of all the methods degrade while our method is the least affected. It
is worth mentioning that for the Mountain Car problem and α1 = 0.1, the behavior policy is close to
a random policy and hence the car has not been able to drive up to top of the hill. This means that all
the methods have constantly received a reward of −1 during all the steps and hence the estimated
on-policy reward has been -1 for all the methods as well. Therefore, the RMSE of all four methods
are equal in this case.

6 CONCLUSIONS

In this paper, we presented a novel approach for solving the off-policy estimation problem in the long-
horizon setting. In particular, the method we presented here formulates the problem as solving for
the fixed point of a “backward flow” operator. We showed that unlike previous works, our approach
does not require the knowledge of the behavior policy or stationary off-policy data. We presented
experimental results to show the effectiveness of our approach compared to previous baselines.

For the future work, we plan to focus on two scenarios that we did not cover in this paper. First,
causal RL in which structural domain knowledge can be used to improve the estimator. Second, it is
interesting to consider a random time horizon (i.e., in episodic RL), which find many applications
but where our approach does not immediately apply, since we do not have the notion of a stationary
distribution any more.
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A REDUCTION FROM DISCOUNTED TO UNDISCOUNTED REWARD

The same reduction is used in Liu et al. (2018). For completeness, we give the derivation details here,
for the case of finite state/actions. The derivation can be extended to general state-action spaces, with
proper adjustments in notation.

Let τ = (s0, a0, r0, s1, a1, . . .) be a trajectory generated by π, and dt ∈ ∆(S×A) be the distribution
of (st, at). Clearly,

d0(s, a) = p0(s)π(a|s)
dt+1(s, a) =

∑
ξ,α

dt(ξ, α)P (s|ξ, α)π(a|s), ∀t > 0 .

Using a matrix form, the recursion above can be written equivalently as dt+1 = PT
π dt, where Pπ is

given by
Pπ(s, a|ξ, α) = P (s|ξ, α)π(a|s) .

The discounted reward of policy π is

ρπ,γ = (1− γ)Eπ

[ ∞∑
t=0

γtrt

]
= E(s,a)∼dπ,γ [R(s, a)] ,

with
dπ,γ := (1− γ)

(
d0 + γd1 + γ2d2 + · · ·

)
.

Multiplying both sides of above by γPT
π , we have

γPT
π dπ,γ = (1− γ)

(
γPT

π d0 + γ2PT
π d1 + γ3PT

π d2 + · · ·
)

= (1− γ)
(
γd1 + γ2d2 + γ3d3 + · · ·

)
= dπ,γ − (1− γ)d0 .

Therefore,

dπ,γ = γPT
π dπ,γ + (1− γ)d0

= (γPπ + (1− γ)d01
T)Tdπ,γ .

Accordingly, dπ,γ is the fixed point of an induced transition matrix given by Pπ,λ := γPπ + (1−
γ)d01

T. This completes the reduction from the discounted to the undiscounted case.

B PROOF OF THEOREM 4.1

Note that

D(d ‖ Bπd) = k [(d− Bπd); (d− Bπd)] .

Following the definition of the strictly integrally positive definite kernels, we have that D(d ‖ Bπd) =
0 implies d− Bπd = 0, which in turn implies d = dπ by the assumption.

For the second claim, define δw = d− dπ . Since dπ − Bπdπ = 0, we have

D(d ‖ Bπd) = k [(d− Bπd); (d− Bπd)]

= k [(d− Bπd− (dπ − Bπdπ)); (d− Bπd− (dπ − Bπdπ))]

= k [(δw − Bπδw); (δw − Bπδw)] .

Recall that Bπd(x) =
∑
x0
Pπ(x|x0)d(x0). We have

D(d ‖ Bπd) = k [(δw − Bπδw); (δw − Bπδw)]

=
∑
x,x̄

k(x, x̄)(δw(x)− Bπδw(x))(δw(x̄)− Bπδw(x̄))

=
∑
x,x̄

k(x, x̄)

(
δw(x)−

∑
x0

Pπ(x|x0)δw(x0)

)(
δw(x̄)−

∑
x̄0

Pπ(x̄|x̄0)δw(x̄0)

)
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Define the adjoint operator of Bπ ,

Pπf(x) :=
∑
x′

Pπ(x′|x)f(x′).

And denote by Pxπ the operator applied on k(x, x̄) in terms of variable x, that is, Pxπk(x, x̄) :=∑
x′ Pπ(x′|x)k(x′, x̄). This gives

D(d ‖ Bπd) =
∑
x,x′

k(x, x′)

(
δw(x)−

∑
x0

Pπ(x|x0)δw(x0)

)(
δw(x̄)−

∑
x̄0

Pπ(x̄|x̄0)δw(x̄0)

)
=
∑
x,x̄

δw(x)
(
k(x, x̄)− Pxπk(x, x̄)− P x̄πk(x, x̄) + PxπP x̄πk(x, x̄)

)
δ(x̄)

=
∑
x,x̄

δw(x)k̃π(x, x̄)δw(x̄).

C PROOF OF THEOREM 4.2

First, note that the error can be decomposed in the following way.

Dk(dŵ || Bπdŵ) ≤ Dk(dŵ || B̂πdŵ) + Dk(B̂πdŵ || Bπdŵ)

≤ Dk(dw∗ || B̂πdw∗) + Dk(B̂πdŵ || Bπdŵ)

≤ Dk(dw∗ || Bπdw∗) + Dk(B̂πdw∗ || Bπdw∗) + Dk(B̂πdŵ || Bπdŵ)

≤ Dk(dw∗ || Bπdw∗) + 2 sup
w∈W

Dk(B̂πdw || Bπdw)

= Dk(dw∗ || Bπdw∗) + 2Z,

where we define

Z := Dk(B̂πdw || Bπdw).

Therefore, we just need to bound Z.

Denote by Bk := {f : f ∈ Hk, ‖f‖Hk
≤ 1} the unit ball of RKHS. Define ‖Bk‖ := supf∈Bk

and
Rn(Bk) the expected Rademacher complexity of Bk of data size n. From classical RKHS theory
(see Lemma C.2 below), we know that ‖Bk‖∞ ≤ rk andRn(Bk) ≤ rk√

n
.

We have by the definition of Dk

Z = sup
w∈W

Dk(B̂πdw || Bπdw)

= sup
w∈W,f∈Bk

1

n

n∑
i=1

w(xi)
(
f(x′i)− Ex′i [f(x̄′i)|xi]

)
.

Note that Z is a random variable, and E[Z] denotes its expectation w.r.t. random data {xi, x′i}ni=1.
We assume different (xi, x

′
i) are independent with each other. First, by McDiarmid inequality, we

have

P (Z ≥ E[Z] + ε) ≤ exp

(
− nε2

2 ‖W‖2∞ ‖Bk‖
2
∞

)
.

This is because when changing each data point (xi, x
′
i), the maximum change on Z is at most

2 ‖W‖∞ ‖Bk‖∞ /n. Therefore, we have Z ≤ E[Z] +

√
2 log(1/δ)‖W‖2∞‖Bk‖2∞

n with probability at
least 1− δ.

Accordingly, we now just need to bound E[Z].
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E[Z] = EX

[
sup

w∈W,f∈Bk

1

n

n∑
i=1

w(xi) (f(x′i)− EX̄ [f(x̄′i)|xi])

]

≤ EX,X̄

[
sup

w∈W,f∈Bk

1

n

n∑
i=1

w(xi)(f(x′i)− f(x̄′i)

]

= EX,X̄,σ

[
sup

w∈W,f∈Bk

1

n

n∑
i=1

σiw(xi)(f(x′i)− f(x̄′i)

]
(because {σi} are i.i.d. Rademacher random variables)

≤ 2E

[
sup

w∈W,f∈Bk

1

n

n∑
i=1

σiw(xi)f(x′i)

]
= 2Rn(W ⊗Bk),

where
W ⊗Bk = {f(x)g(x′) : f ∈ W, g ∈ Bk}.

By Lemma C.1 below, we have
E[Z] ≤ 2Rn(W ⊗Bk) ≤ 4 (‖W‖∞ + ‖Bk‖∞) (Rn(W) +Rn(Bk)) .

Combining the bounds, we have with probability 1− δ,

2Z ≤ 4Rn(W ⊗Bk) +

√
8 log(1/δ) ‖W‖2∞ ‖Bk‖

2
∞

n

≤ 8 (‖W‖∞ + ‖Bk‖∞) (Rn(W) +Rn(Bk)) +

√
8 log(1/δ) ‖W‖2∞ ‖Bk‖

2
∞

n
.

Plugging Lemma C.2, we have

2Z ≤ 8 (‖W‖∞ + rk)Rn(W) +
8rk

(
‖W‖∞ + rk + ‖W‖∞

√
log(1/δ)/8

)
√
n

.

Assume rmax = max(‖W‖∞ , rk). We have

2Z ≤ 16 rmaxRn(W) +
16r2

max + r2
max

√
8 log(1/δ)√

n
.

Lemma C.1. Denote by ‖W‖∞ = sup{‖f‖∞ : f ∈ W} the super norm of a function setW . We
have

Rn(W ⊗Bk) ≤ 2 (‖W‖∞ + ‖Bk‖∞) (Rn(W) +Rn(Bk))

Proof. Note that

f(x)g(x′) =
1

4
(f(x) + g(x′))2 − 1

4
(f(x)− g(x′))2.

Note that x2 is 2(‖W‖∞ + ‖Bk‖∞)-Lipschitz on interval [−‖W‖∞ − ‖Bk‖∞ , ‖W‖∞ + ‖Bk‖∞].
Applying Lemma C.1 of Liu & Wang (2018), we have

Rn(WBk) ≤ 2(‖W‖∞ + ‖Bk‖∞)(Rn(W ⊕Bk),

whereW ⊕Bk = {f(x) + g(x′) : f ∈ W, g ∈ Bk}, and

Rn(W ⊕Bk) = Evz[ sup
f∈W,g∈Bk

∑
i

zi(f(xi) + g(x′i))]

≤ Evz[ sup
f∈W

∑
i

zif(xi)] + Evz[ sup
g∈Bk

∑
i

zig(x′i)]

= Rn(W) +Rn(Bk).
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Remark The same result holds true when w is defined as a function of the whole transition pair
(x, x′), that is, wi = w(xi, x

′
i).

Lemma C.2. Let Hk be the RKHS with a positive definite kernel k(x, x′) on domain X . Assume
Bk = {f ∈ Hk : ‖f‖Hk

≤ 1} to be the unit ball ofHk. Define rk =
√

supx∈X k(x, x′). We have

‖Bk‖∞ ≤ rk, Rn(Bk) ≤ rk√
n
.

Proof. These are standard results in RKHS. For ‖Bk‖∞, we just note that for any f ∈ Bk and x ∈ X ,

f(x) = 〈f, k(x, ·)〉Hk
≤ ‖f‖Hk

‖k(x, ·)‖Hk
≤ ‖k(x, ·)‖Hk

=
√

k(x, x) ≤ rk.
The inequality for Rademacher complexity of Bk is also a classical result, derived as follows.

Rn(Bk) = EX,σ

[
sup
f∈Bk

1

n

∑
i

σif(xi)

]

≤ EX,σ

 sup
f∈Bk

〈
f,

1

n

n∑
i=1

σik(xi, ·)

〉
Hk


= EX,σ

∥∥∥∥∥ 1

n

n∑
i=1

σik(xi, ·)

∥∥∥∥∥
Hk


≤ EX,σ

∥∥∥∥∥ 1

n

n∑
i=1

σik(xi, ·)

∥∥∥∥∥
2

Hk

1/2

= EX,σ

 1

n2

n∑
i,j=1

σiσjk(xi, xj)

1/2

= EX

[
1

n2

n∑
i=1

k(xi, xi)

]1/2

≤ rk√
n
.

D MINI-BATCH TRAINING

The objective `(ω) is not in a form that is ready for mini-batch training. It is possible to yield better
scalability with a trick that has been found useful in other machine learning contexts (e.g., Jean et al.,
2015). We start with a transformed objective:

L(ω) := log `(ω)

= log
∑
i,j

w̃iw̃jKij − 2 log
∑
l

w̃l .

Then,

∇L =

∑
i,j ∇(w̃iw̃j)Kij∑
uv w̃uw̃vKuv

−
2
∑
i∇w̃i∑
l w̃l

=

∑
i,j w̃iw̃jKij∇ log(w̃iw̃j)∑

uv w̃uw̃vKuv
−

2
∑
i w̃i∇ log w̃i∑

l w̃l

= Êij [∇ log(w̃iw̃j)]− Êi[∇ log w̃i] ,

where Êij [·] and Êi[·] correspond to two properly defined discrete distributions defined on D2 and D,
respectively. Clearly, ∇L can now be approximated by mini-batches by drawing random samples
from D2 or D to approximate Êij and Êi.
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