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ABSTRACT

We present Random Partition Relaxation (RPR), a method for strong quantization
of the parameters of convolutional neural networks to binary (+1/–1) and ternary
(+1/0/–1) values. Starting from a pretrained model, we first quantize the weights
and then relax random partitions of them to their continuous values for retraining
before quantizing them again and switching to another weight partition for further
adaptation. We empirically evaluate the performance of RPR with ResNet-18,
ResNet-50 and GoogLeNet on the ImageNet classification task for binary and
ternary weight networks. We show accuracies beyond the state-of-the-art for bi-
nary and ternary weight GoogLeNet and competitive performance for ResNet-18
and ResNet-50 using a SGD-based training method that can easily be integrated
into existing frameworks.

1 INTRODUCTION

Deep neural networks (DNNs) have become the preferred approach for many computer vision, audio
analysis and general signal processing tasks. However, they are also known for their associated
high computation workload and large model size. These are great hurdles to their wide-spread
adoption due to the consequential cost, which is often prohibitive for low-power, mobile and always-
on applications.

This concern has driven a lot of research into various DNN topologies and their basic building blocks
in order to reduce the required compute cost at a small accuracy penalty. Furthermore, efforts have
been made towards compressing the models from often hundreds of megabytes to a size that is
suitable for over-the-air updates and does not negatively impact the user experience by taking up
lots of storage on consumer devices and long loading times.

Recent research into specialized hardware accelerators has shown that improvements by 10–100×
in energy efficiency over optimized software are achievable (Sze et al., 2017). These accelerators
can be integrated into a system-on-chip like those used in smartphones and highly integrated devices
for the internet-of-things market. These devices still spend most energy on I/O for streaming data
in and out of the hardware unit repeatedly as only a limited number of weights can be stored in
working memory—and if the weights fit on chip, local memories and the costly multiplications
start dominating the energy cost. This allows devices such as (Andri et al., 2018) achieve an energy
efficiency of 60 TOp/s/W for BWN inference even in the mature 65 nm technology. For comparison,
Google’s Edge TPU achieves 2 TOp/s/W for 8 bit operations.

Quantizing neural networks is crucial to allow more weights to be stored in on-chip working memory
or to be loaded more efficiently from external memory, thereby reducing the number of repeated
memory accesses to load and store partial results. Complex network compression schemes cannot
be applied at this point as decompression is often a lengthy process requiring a lot of energy by itself.
Furthermore, by strongly quantizing the network’s parameters, the multiplications in the convolution
and linear layers can be simplified, replaced with lightweight bit-shift operations, or even completely
eliminated in case of binary and ternary weight networks (BWNs, TWNs) (Zhou et al., 2017).
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2 RELATED WORK

Extreme network quantization has started with BinaryConnect (Courbariaux et al., 2015) propos-
ing deterministic or stochastic rounding during the forward pass and updating the underlying
continuous-valued parameters based on the so-obtained gradients which would naturally be zero
almost everywhere.

Then, XNOR-net (Rastegari et al., 2016) successfully trained both binary neural networks (BNNs),
where the weight and the activations are binarized, as well as BWNs, with a clear jump in accuracy
over BinaryConnect by means of dynamic (input-dependent) normalization and for the first time
reporting results for a deeper and more modern ResNet topology.

Shortly after, (Li et al., 2016) presented ternary weight networks (TWNs), where they introduced
learning the quantization thresholds while keeping the quantization levels fixed and showing a mas-
sive improvement over previous work and a top-1 accuracy drop of only 3.6% on ImageNet, making
TWNs a viable approach for practical inference.

Thereafter, (Zhu et al., 2017) introduced trained ternary quantization (TTQ), relaxing the constraint
of the weights being scaled values of {−1, 0, 1} to {α1, 0, α2}.
A method called incremental network quantization (INQ) was developed in (Zhou et al., 2017), mak-
ing clear improvements by neither working with inaccurate gradients or stochastic forward passes.
Instead, the network parameters were quantized step-by-step, allowing the remaining parameters to
adapt to the already quantized weights. This further improved the accuracy for TWNs and fully
matched the accuracy of the baseline networks with 5 bit and above.

Last year, (Leng et al., 2018) presented a different approach to training quantized neural networks by
relying on the alternating direction method of multipliers (ADMM) more commonly used in chemi-
cal process engineering. They reformulated the optimization problem for quantized neural networks
with the object function being a sum of two separable objectives and a linear constraint. ADMM
alternatingly optimizes each of these objectives and their dual to enforce the linear constraint. In the
context of quantized DNNs, the separable objectives are the optimization of the loss function and the
enforcement of the quantization constraint, which results in projecting the continuous values to their
closest quantization levels. While ADMM achieves state-of-the-art results to this day, it requires
optimization using the extragradient method, thereby becoming incompatible with standard DNN
toolkits and hindering widespread adoption.

A few months ago, quantization networks (QNs) was introduced in (Yang et al., 2019). They pursue
a very different approach, annealing a smoothed multi-step function the hard steps quantization
function while using L2-norm gradient clipping to handle numerical instabilities during training.
They follow the approach of TTQ and learn the values of the quantization levels.

3 RPR: RANDOM PARTITION RELAXATION TRAINING

In this section, we describe the intuition behind RPR, its key components and their implementation.

When training DNNs, we optimize the network’s parameters w ∈ Rd to minimize a non-convex
function f ,

min
w∈Rd

f(w). (1)

This has been widely and successfully approached with stochastic gradient descent-based methods
for DNNs in the hope of finding a good local optimum close to the global one of this non-convex
function.

As we further constrain this optimization problem by restricting a subset of the parameters to take
value in a finite set of quantization levels L, we end up with a mixed-integer non-linear program
(MINLP):

min
wq,wc

f(wq,wc) s.t. wq ∈ Ldq , wc ∈ Rdc , (2)

where wq are the quantized (e.g., filter weights) and wc the continuous parameters (e.g., biases,
batch norm factors) of the network. Common sets of quantization levels L are symmetric uniform
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with or without zero ({0}∪{±i}i or {±i}i) and symmetric exponential ({0}∪{±2i}i) due to their
hardware suitability (multiplications can be implemented as bit-shifts). Less common but also used
are trained symmetric or arbitrary quantization levels ({±αi}i or {αi}i). Typically, the weights of
the convolutional and linear layers are quantized except for the first and last layers in the network,
since quantizing these has been shown to have a much stronger impact on the final accuracy than that
of the other layers . As in most networks the convolutional and linear layers are followed by batch
normalization layers, any linear scaling of the quantization levels has no impact on the optimization
problem.

Mixed-integer non-linear programs such as (2) are NP-hard and practical optimization algorithms
trying to solve it are only approximate. Most previous works approach this problem by means of
annealing a smoothed multi-step function applied to underlying non-quantized weights (and clip-
ping the gradients) or by quantizing the weights in the SGD’s forward pass and introducing proxy
gradients in the backward pass (e.g., the straight-through estimator (STE)) to allow the optimization
to progress despite the gradients being zero almost everywhere. Recently, (Leng et al., 2018) pro-
posed to use the alternating direction method of multipliers (ADMM) to address this optimization
problem with promising results. However, their method requires a non-standard gradient descent op-
timizer, thus preventing simple integration into commonly used deep learning toolkits and thereby
wide-spread adoption.

3.1 RANDOM PARTITION RELAXATION ALGORITHM

For RPR, we propose to approach the MINLP through alternating optimization. Starting from con-
tinuous values for the parameters in Wq , we randomly partition Wq into Wconstr

q and Wrelaxed
q for

some specified freezing fraction (FF), e.g. FF =
#Wconstr

q

#Wq
= 90%. The parameters in Wconstr

q are
quantized to their closest value in L while those in Wrelaxed

q keep their continuous value, which is
updated according to

ŵrelaxed
q , ŵc = argmin

wrelaxed
q ,wc

f(wconstr
q ,wrelaxed

q ,wc). (3)

This allows the relaxed parameters to co-adapt to the constrained/quantized ones. This step is re-
peated, alternating between optimizing other randomly relaxed partitions of the quantized parame-
ters (cf. Figure 1. As the accuracy converges, FF is increased until it reaches 1, at which point all
the constrained parameters are quantized.

The non-linear program (3) can be optimized using standard SGD or its derivatives like Adam,
RMSprop, . . . . We have experimentally found performing gradient descent on (3) for one full epoch
before advancing to the next random partition of Wq to converge faster than other configurations.
Note that wconstr

q is always constructed from the underlying continuous representation of wq . We
also initialize wrelaxed

q to the corresponding continuous-valued representation as well, thus providing
a warm-start for optimizing (3) using gradient descent.

3.2 INITIALIZATION

Starting with the standard initialization method for the corresponding network has worked well
for training VGG-style networks on CIFAR-10 and ResNet-18 on ImageNet. We experimentally
observed that smaller freezing fractions FF can be used for faster convergence at the expense of less
reliable convergence to a good local optimum.

However, a network can be quantized much faster and tends to reach a better local optimum when
starting from a pre-trained network. When convolution and linear layers are followed by a batch
normalization layer, their weights become scale-invariant as the variance and mean are immedi-
ately normalized, hence we can define our quantization levels over the range [−1, 1] without adding
any restrictions. However, the continuous-valued parameters of a pretrained model might not be
scaled suitably. We thus re-scale each filter of each layer i to minimize the `2 distance between the
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Figure 1: Overview of the Random Partition Relaxation (RPR) algorithm (white: initial parameters
in wq , yellow: quantized/constraint-enforced partition wconstr

q , red: the optimized values of the
relaxed partition ŵrelaxed

q ).

continuous-valued and the quantized parameters, i.e.

w̃(i) =
1

ŝ(i)
w(i) with ŝ(i) = argmin

s≥0
‖w(i) − sw(i)

quant‖2 and w
(i)
quant = argmin

`∈L
|w(i) − `|.

(4)

Practically, we implemented (4) using a brute force search over 1000 points spread uniformly over
[0,maxi |wi|] before locally fine-tuning the best result using the downhill simplex method. The
time for this optimization is negligible relative to the overall compute time and in the range of a few
minutes for all the weights to be quantized within ResNet-50.

4 EXPERIMENTAL RESULTS

We conducted experiments on ImageNet with ResNet-18, ResNet-50, and GoogLeNet in order to
show the performance of RPR by training them as binary weight and ternary weight networks. We
refrain from reporting results on CIFAR-10 and with AlexNet on Imagenet as these networks are
known to be overparametrized and thus rely on additional regularization techniques not to overfit—
this is an irrelevant scenario for resource-efficient deployment of DNNs as a smaller DNN would
be selected anyway. Following common practice, we do not quantize the first and last layers of the
network. If not stated otherwise, we start from the corresponding pretrained model available through
the torchvision v0.4.0 library.

4.1 PREPROCESSING

The preprocessing and data augmentation methods used in related work vary wildly and from simple
image rescaling and croping with horizontal flips and mean/variance normalization to methods with
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Figure 2: Evolution of the top-1 training and test accuracy together with the schedules for the freez-
ing fraction (FF) and the learning rate (LR) while training GoogLeNet as a ternary weight network.

randomized rescaling, cropping to different aspect ratios, and brightness/contrast/saturation/lighting
variations. Consistent with literature, we have found that a quite minimal preprocessing by rescaling
the image such that the shorter edge has 256 pixels followed by random crops of 224×224 pixels and
random horizontal flips showed best results. During testing, the same resizing and a 224×224 center
crop were applied. We observed simpler preprocessing methods working better: this is expected as
the original networks’ capacities are reduced by the strong quantization, and training the network to
correctly classify images sampled from a richer distribution of distortions than that of the original
data takes away some of the capacity of the network.

4.2 HYPERPARAMETER SELECTION & RETRAINING TIME

We trained the networks using the Adam optimizer with initial learning rates identical to the
full-precision baseline models (10−3 for all models). During an initial training phase we use
a freezing fraction FF = 0.9 until stabilization of the validation metric. We proceed with
FF = 0.95, 0.975, 0.9875, 1.0. Each different FF was kept for 15 epochs, always starting with
the initial learning rate and reducing it by 10× after 10 epochs at the specific FF. After reaching
FF = 1.0, the learning rate is kept for 10 cycles each at 1×, 0.1×, and 0.01× the initial learning
rate. An example of a freezing fraction and learning rate schedule is shown in Figure 2.

In practice, quantizing a network with RPR requires a number of training epochs similar to training
the full-precision model. This is shown for the quantization of GoogLeNet to ternary weights in
Figure 2. The quantization with FF = 0.9 requires 37 epochs followed by 45 epochs of iteratively
increasing FF before a final phase of optimizing only the continuous parameters for 30 additional
epochs.

4.3 RESULTS & COMPARISON

We provide an overview of our results and a comparison to related work in Table 1. For ResNet-
18, our method shows similar accuracy to the ADMM-based method, clearly outperforming other
methods such as the XNOR-net BWN, TWN, and INQ. As discussed before, the ADMM algorithm
requires an optimization procedure that is not a simple variation of SGD and has thus not yet found
widespread adoption.

A higher accuracy than RPR is achieved by TTQ with an enlarged network (2.25× as many pa-
rameters) and by Quantization Networks. Both methods however, introduce trained quantization
levels with dire consequences for hardware implementations: either as many multipliers as in full-
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Table 1: ImageNet experiments

Model Method? Levels† Accuracy [%]
(top-1/top-5)

ResNet-18 baseline torchvision v0.4.0 full-prec. 69.76/89.08
ResNet-18 QN (Yang et al., 2019) 5: {αi}i 69.90/89.30
ResNet-18 ADMM (Leng et al., 2018) 5: {0} ∪ {±2i}i 67.50/87.90
ResNet-18 LQ-Nets (Zhang et al., 2018) 4: {±αi}i 68.00/88.00
ResNet-18 QN (Yang et al., 2019) 3: {α1, α2, α3} 69.10/88.90
ResNet-18+‡ TTQ (Zhu et al., 2017) 3: {α1, 0, α2} 66.60/87.20
ResNet-18 ADMM (Leng et al., 2018) 3: {−1, 0, 1} 67.00/88.00
ResNet-18 INQ (Zhou et al., 2017) 3: {−1, 0, 1} 66.00/88.00
ResNet-18+‡ TWN (Li et al., 2016) 3: {−1, 0, 1} 65.30/86.20
ResNet-18 TWN (Li et al., 2016) 3: {−1, 0, 1} 61.80/84.20
ResNet-18 RPR (ours) 3: {−1, 0, 1} 66.31/87.84
ResNet-18 ADMM (Leng et al., 2018) 2: {−1, 1} 64.80/86.20
ResNet-18 XNOR-net BWN (Rastegari et al., 2016) 2: {−1, 1} 60.80/83.00
ResNet-18 RPR (ours) 2: {−1, 1} 64.62/86.01
ResNet-50 baseline torchvision v0.4.0 full-prec. 76.15/92.87
ResNet-50 ADMM (Leng et al., 2018) 3: {−1, 0, 1} 72.50/90.70
ResNet-50 TWN (Li et al., 2016) 3: {−1, 0, 1} 65.60/86.50
ResNet-50 RPR (ours) 3: {−1, 0, 1} 71.83/90.28
ResNet-50 ADMM (Leng et al., 2018) 2: {−1, 1} 68.70/88.60
ResNet-50 XNOR-net BWN (Rastegari et al., 2016) 2: {−1, 1} 63.90/85.10
ResNet-50 RPR (ours) 2: {−1, 1} 65.14/86.31
GoogLeNet baseline torchvision v0.4.0 full-prec. 69.78/89.53
GoogLeNet ADMM (Leng et al., 2018) 3: {−1, 0, 1} 63.10/85.40
GoogLeNet TWN (Li et al., 2016) 3: {−1, 0, 1} 61.20/84.10
GoogLeNet RPR (ours) 3: {−1, 0, 1} 64.86/86.03
GoogLeNet ADMM (Leng et al., 2018) 2: {−1, 1} 60.30/83.20
GoogLeNet XNOR-net BWN (Rastegari et al., 2016) 2: {−1, 1} 59.00/82.40
GoogLeNet RPR (ours) 2: {−1, 1} 62.01/84.83
? Unless noted otherwise, the ResNet models have Type-B bypasses (with a 1 × 1 convolution

in the non-residual paths on increase of the feature map count).
† Unless noted otherwise, the first and last layers are excluded from quantization.
‡ Modified network: each layer has 2.25× as many weights.

precision networks are required, or the operations are transformed as
∑
i wixi = α1

∑
i 1wi=α1

xi+
α2

∑
i 1wi=α2

xi + α3

∑
i 1wi=α3

xi, requiring only very few multiplications but 3 adder trees,
thereby increasing the required silicon area for the main compute logic by ≈ 3× with respect to
a TWN with a fixed set of quantization levels L = {−1, 0, 1} and can thus be expected to have cor-
responding effects on energy. For ResNet-50, the results look similar: we achieved accuracies close
to the state-of-the-art (i.e., ADMM), but avoiding the added complexity of altering the optimization
method beyond a simple derivative of SGD.

For GoogLeNet we surpass the current state-of-the-art, ADMM, by 1.7% top-1 accuracy for binary
weights and 1.76% for ternary weights.

5 CONCLUSION

We have proposed using alternating optimization for training strongly weight-quantized neural net-
works by randomly relaxing the quantization constraint on small fractions of the weights. We have
implemented this method using standard SGD-based optimization. This method improves the state-
of-the-art accuracy for binary and ternary weight GoogLeNet and achieves accuracies similar to
previous methods on ResNet-18 and ResNet-50 while maintaining easy integrability into existing
deep learning toolkits by using standard gradient descent optimization.
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