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ABSTRACT

Generative Adversarial Networks are plagued by training instability, despite con-
siderable research effort. Progress has been made on this topic, but many of the
proposed interventions are complicated, computationally expensive, or both. In
this work, we propose a simple and effective training stabilizer based on the no-
tion of Consistency Regularization - a popular technique in the Semi-Supervised
Learning literature. In particular, we augment data passing into the GAN dis-
criminator and penalize the sensitivity of the ultimate layer of the discriminator
to these augmentations. This regularization reduces memorization of the train-
ing data and demonstrably increases the robustness of the discriminator to input
perturbations. We conduct a series of ablation studies to demonstrate that the
consistency regularization is compatible with various GAN architectures and loss
functions. Moreover, the proposed simple regularization can consistently improve
these different GANs variants significantly. Finally, we show that applying con-
sistency regularization to GANs improves state-of-the-art FID scores from 14.73
to 11.67 on the CIFAR-10 dataset.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a powerful framework for
generative modeling that have achieved especially impressive results on image synthesis bench-
marks(Brock et al., 2018; Salimans et al., 2016; Zhang et al., 2018; Miyato et al., 2018; Miyato &
Koyama, 2018). In the original setting, a GAN is composed of two neural networks trained with
competing goals. The generator is trained to synthesize realistic samples to fool the discriminator,
whereas the discriminator is trained to distinguish real samples from fake ones produced by the
generator. This training process corresponds to a minimax two-player game.

One major problem with GANs is the instability of the training procedure and the general sensitivity
of the results to various hyperparameters(Salimans et al., 2016). Because GAN training implicitly
requires finding the Nash equilibrium of a non-convex game in a continuous and high dimensional
parameter space, it is substantially more complicated than standard neural network training. In
fact, formally characterizing the convergence properties of the GAN training procedure is mostly an
open problem (Odena, 2019). Previous work (Miyato et al., 2018; Odena et al., 2017) has provided
evidence that interventions focused on the discriminator are helpful for mitigating some of these
stability issues. (Miyato et al., 2018) propose a technique called spectral normalization, in which
weight matrices in the discriminator are divided by an approximation of their largest singular value.
(Arjovsky et al., 2017) and (Gulrajani et al., 2017) propose forms of gradient norm penalties, in
which the norm of the discriminator jacobian is indirectly penalized. DRAGAN (Kodali et al.,
2017) introduces another form of gradient penalty where the gradients at Gaussian perturbations
of training data are penalized. All of these forms of regularization introduce non-trivial run-time
overheads (Kurach et al., 2019b) and considerably implementation complexity.

In the interest of simplifying things and reducing computational cost, we looked to a technique called
Consistency Regularization (Sajjadi et al., 2016; Zhai et al., 2019; Ye et al., 2017; Xie et al., 2019).
Roughly speaking, the over-arching theme of existing GAN ‘regularizers’ is that they enforce that
the discriminator’ outputs do not change too much with respect to small changes in the input. Con-
sistency regularization asks for something similar, but not exactly the same: that the outputs of the
model under consideration do not change too much with respect to transformations that should be
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Figure 1: A stylized illustration of consistency regularization for GANs. Before consistency regu-
larization, a GAN discriminator might ‘think’ that the sideways dog and the sideways cat are more
similar to each other than they are to their respective augmentations (i.e. zoom-in in our example),
by virtue of them being sideways. This is illustrated in the upper right, where the purple dot is
closer to the blue dot than to the green dot, and so forth. After we enforce consistency regularization
based on the implicit assumption that image augmentation preserves the semantics we care about,
the purple dot pulled closer to the red dot.

semantics preserving. For example, we might flip images horizontally and ask an object recognition
model to yield the same result for both the image and its flipped version. The difference between
this technique and, say, spectral normalization is that spectral normalization doesn’t have any notion
of what a semantics preserving transformation is. In light of the similarity between consistency reg-
ularization and GAN ‘regularization techniques’, it is natural to wonder if consistency regularization
can be applied to GAN discriminators. In this work, we introduce a technique to do just that: we
augment images before they are fed into the GAN discriminator and penalize the sensitivity of the
ultimate layer of the discriminator to those augmentations.

This technique is simple, but surprisingly effective. It is much less computationally expensive than
prior techniques, and much less complicated to implement and test. In extensive ablation studies,
we show that it works across a large range of GAN variants and data sets. We also show that
simply applying this technique on top of existing GAN models yields new state-of-the-art results as
measured by Frechet Inception Distance (Heusel et al., 2017).

In summary, our contributions are:

• We apply consistency regularization to GAN discriminators to yield a simple, effective
regularizer with substantially lower computational cost than gradient-based regularization
methods.

• We conduct a variety of experiments with different data sets and GAN variants to demon-
strate that our technique is generally applicable.

• We conduct experiments showing that applying consistency regularization to GANs can
yield substantial improvements over prior state of the art in image synthesis. For example,
the proposed consistency regularization improves state-of-the-art FID scores from 14.73 to
11.67 on the CIFAR-10 dataset.

2 METHOD

2.1 GANS

A GAN consists of a generator network and a discriminator network. The generator G(z) takes a
latent variable z ∼ q(z) from a prior distribution and maps it deterministically to the observation
space X . The discriminator D(x) takes an observation x ∈ X and produces a posterior distribution
over possible observation sources (either G or the target distribution). In the standard GAN training
procedure we attempt to solve the following min-max optimization problem:

min
G

max
D

Ex∼Pr [L(D(x), 1)] + Ex∼q(z) [L(D(G(z)), 0)] (1)
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where q(z) is usually a standard normal distribution and L(·, ·) is a loss function that enforces thatD
output 1 if its input is from the target distribution and 0 if its input is from the generator. In practice,
this means doing simultaneous gradient descent on the parameters of G and D.

A significant amount of research has been done on modifying this formulation in order to somehow
improve the training results. A notable example is Arjovsky et al. (2017), in which the authors
propose clipping the weights of the discriminator in an attempt to enforce that the GAN training
procedure implicitly optimizes a bound on the Wassertein distance between the target distribution
and the distribution given by the generator. Subsequent work has refined this technique in several
steps (Gulrajani et al., 2017; Miyato et al., 2018; Zhang et al., 2018), and the current ‘best practice’
is to enforce spectral normalization on both the generator and the discriminator.

2.2 CONSISTENCY REGULARIZATION

Consistency regularization has emerged as the gold-standard (Zhai et al., 2019; Sajjadi et al., 2016;
Ye et al., 2017; Xie et al., 2019; Oliver et al., 2018) for Semi-Supervised Learning on image data.
The basic idea is straightforward: an input image is perturbed in some semantics preserving way
and the sensitivity of the classifier to that perturbation is penalized. The perturbation can take many
forms: it can be image flipping, or cropping, or adversarial ‘attacks’. The precise form of the
regularization can also take many forms: sometimes it is a mean-squared-error on model logits
and sometimes it is some form of divergence between the distribution over classes implied by the
logits. All forms of consistency regularization can be seen as a way to use unlabeled data to find a
sub-manifold of observation space X that our image data set is ‘close’ to (Belkin et al., 2006). Of
course, this is only useful if we believe the hypothesis that the data actually do lie close to some low
dimensional manifold. For the rest of this paper we will assume that this hypothesis – often called
the Manifold Assumption or the Manifold Hypothesis (Chapelle et al., 2009) – is basically true for
modern image data sets.

2.3 CONSISTENCY REGULARIZATION FOR GANS

If the Manifold Hypothesis is mostly true, how can this help us train GANs? Informally speaking,
we’d like to ‘tell the generator’ to assume the Manifold Hypothesis. Since the generator param-
eters come from performing gradient descent on the discriminator activations, enforcing that the
discriminator roughly obeys the manifold hypothesis seems like a good way to accomplish this.

Thus, we propose performing consistency regularization on the GAN discriminator during train-
ing. In practice, we randomly augment training images as they are passed to the discriminator and
penalize the sensitivity of the discriminator’s ultimate layer to those augmentations.

We write Dj(x) to mean the output before activation of the jth layer of the discriminator given
output x. We write T (x, t) to denote a stochastic data augmentation function indexed by time t,
so that T (x, t) can be read as ‘the result of the augmentation applied to image x at time t’. This
function can be linear or nonlinear, but is understood to preserve the semantics1 of the input. Our
proposed regularization is defined as:

min
D
Lcs = min

D

n∑
j=m

(
Dj(x)−Dj(T (x, t))

)2
, (2)

where m denote m-th layer and totally n layers in the discriminator architecture. This consistency
regularization enforces the discriminator produce the same features for the data point x under dif-
ferent data augmentations. Empirically, high-level features are usually learned in the later layers of
the discriminator, while low-level and middle-level features are learned in the earlier layers.

In our experiments, we find that consistency regularization on the last layer of the discriminator
before activation is sufficient, so Lcs can be specifically rewritten as:

Lcs =
(
Dn(x)−Dn(T (x, t))

)2
, (3)

where from now on we will drop the j for brevity. Therefore the overall Consistency-Regularized
GAN objective is defined as

1 Where semantics in this case is understood to mean ‘whether the image should be classified as coming
from the target distribution or from the Generator.’
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Algorithm 1 Consistency Regularization Batch Update

Input: Parameters θG, θD, weight λ, learning rate α
Output: Updated parameters
z ∼ p(z) . Draw batch from prior
x ∼ pdata(x) . Draw batch from target distribution
Lcs ← (D(x)−D(T (x, t)))2 . Compute consistency loss
θG ← θG − α∇θG(LG(D(G(z)))) . Update G as normal
θD ← θD − α∇θD (LD(D(G(z), D(x))) + λLcs) . Update D using added consistency loss

min
G

max
D

Ex∼Pr

[
L(D(x), 1)

]
+ Ex∼q(z)

[
L(D(G(z)), 0)

]
+ Ex∼Pr

[
(Dn(x)−Dn(T (x, t)))

2 ]
.

(4)

This cost is just added to the discriminator loss (weighted by a hyper-parameter λ) when updating
the discriminator parameters. The generator update remains unchanged. See Algorithm 1 for more
details. Note that the only extra computational cost due to this method comes from feeding a third
more images through the discriminator forward and backward when updating the discriminator pa-
rameters. We speculate that this cost could be reduced further by throwing away half of the training
examples used to update the generator, augmenting only the remaining training examples, and pass-
ing a minibatch to the discriminator of the same size as the one passed to the generator, but we have
not tried this.

3 EXPERIMENTS

This section explores the empirical results of applying consistency regularization to GANs. First,
we compare our consistency-regularized GAN models with state-of-the-art GAN models (Miyato &
Koyama, 2018; Zhang et al., 2018; Brock et al., 2018). And then, the proposed consistency ‘reg-
ularizer’ is compared with previous GAN regularization techniques(Kodali et al., 2017; Gulrajani
et al., 2017) for several GAN architectures and loss functions. Finally, we investigate the proposed
consistency regularization with extensive ablation study.

All our experiments are based on the open-source codebase of compare GAN (Kurach et al., 2019a),
available at https://github.com/google/compare_gan.

3.1 DATASETS AND EVALUATION METRICS

We test our proposed method on two datasets: CIFAR-10 (Krizhevsky, 2009) and CELEBA-HQ-
128 (Karras et al., 2018). We follow the procedure in (Kurach et al., 2019b) to prepare datasets.
CIFAR-10 consists of 60 thousand of 32× 32 images in 10 classes; 50 thousand for training and 10
thousand for testing. CELEBA-HQ-128 (CELEBA) contains 30k images of faces at a resolution of
128× 128. We use three thousand of images for testing and the rest of images for training.

We adopt the Fréchet Inception distance (FID) (Heusel et al., 2017) for quantitative evaluation. FID
directly estimates the distance between the target distribution and the distribution implied by the
trained generator. It is broadly thought to be consistent with human evaluation in assessing the
realism and variation of the generated samples (Heusel et al., 2017). In our experiments the FID
score is calculated on the test dataset. By default, the best FID for each model is reported.

3.2 COMPARE WITH STATE-OF-THE-ART GAN MODELS

We first compare our proposed consistency-regularized GAN models with the state-of-the-art (Miy-
ato & Koyama, 2018; Brock et al., 2018) for class conditional image generation on CIFAR-10. As
shown in Table 1, our models achieve the best FID, with the proposed consistency regularization.
Our model renews the state-of-the-art FID on CIFAR-10 from 14.73 to 11.67.

To investigate whether directly adding the proposed consistency regularization can further boost the
state-of-the art GAN models. Our model has exactly the same architecture and is trained under
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Dataset SNGAN BigGAN BigGAN? Ours
(Miyato & Koyama, 2018) (Brock et al., 2018)

CIFAR-10 17.5 14.73 20.42 11.67

Table 1: Comparison of the proposed consistency-regularized GAN models with state-of-the-art
GAN models (Miyato & Koyama, 2018; Brock et al., 2018) for class conditional image generation
on CIFAR-10 in terms of FID. BigGAN? is the BigGAN implementation is the compare gan code-
base. Our model has the exactly same architecture as BigGAN? and trained under the same setting,
with the only difference that our model has the proposed consistency regularization.

the same setting as BigGAN?, the open sourced implementation of BigGAN in the compare GAN
codebase. The only difference is that our model has the proposed consistency regularization. As
reported in Table 1, the FID score of BigGAN on CIFAR-10 is improved from 20.42 to 11.67, which
demonstrates that the proposed consistency regularization can significantly improve state-of-the-art
for image generation.

We will explain more details about why the consistency regularization works in the ablation studies
section.

3.3 COMPARISON WITH OTHER GAN ‘REGULARIZERS’

We compare our methods with state-of-the-art GAN regularization techniques(Kodali et al., 2017;
Gulrajani et al., 2017) on CIFAR-10 and CELEBA datasets. We follow the procedure from (Kurach
et al., 2019a) to evaluate across several GAN architectures and loss functions. Specifically, we use
a ResNet (He et al., 2016; Gulrajani et al., 2017) architecture for CIFAR-10, and a SNDCGAN
(Miyato et al., 2018) model for CELEBA. For CIFAR-10, we evaluate regularization methods using
three loss functions:

• the non-saturating loss (NS) (Goodfellow et al., 2014)

• the Wasserstein loss (Wass) (Arjovsky et al., 2017)

• the hinge loss (Hinge) (Lim & Ye, 2017; Tran et al., 2017)

On CELEBA, we used the hinge loss for simplicity. All models are trained in the compare GAN
codebase with its default settings. Result for each model is based on three runs with different random
seeds. The top ten best FID scores for each run are collected for drawing Figure 2. We use mini-
batches of size 64 and we stop training after 200 thousand discriminator update steps for CIFAR-10
and 100 thousand steps for for CELEBA.

The results are illustrated in Figure 2. Our consistency-regularized models achieve the lowest (best)
mean FID for all settings across different GAN architectures, loss functions and datasets. For ex-
ample, our models significantly outperform all baseline models by adding the consistency regular-
ization. Especially, even when the baseline models completely fail to converge, e.g., settings (e)(f)
of Figure 2, reasonable FID scores are achieved by our consistency-regularized models. The results
indicate that the proposed consistency regularization is stable enough to be used as a plug-and-play
technique to improve GAN performance in different settings without much tuning.

In contrary, previous regularization techniques, such as DRAGAN(Kodali et al., 2017) and Gradi-
ent Penalty (GP)(Gulrajani et al., 2017), are more difficult to be plugged in the baseline model to
improve its performance without tuning the architecture or hyper-parameters. As shown in Fig-
ure 2 (a)(b)(c)(e), under the default setting of compare GAN codebase, adding DRAGAN or GP
regularization could not improve the baseline models. In some setting, e.g., (f)(g) of Figure 2, al-
though the baseline models are significant improved by DRAGAN and GP regularizers, they can
perform even better with our consistency regularization. Consequently, the comparison result fur-
ther demonstrates the advantage of the proposed consistency regularization. This finding is espe-
cially encouraging, considering that the proposed consistency regularization has substantially lower
computational cost (and is substantially simpler to implement) than the other techniques. In our
experiments, the consistency regularization is generally around 1.5 to 1.8 times faster than gradient
based regularization techniques, such as DRAGAN and GP, which need to compute higher order
gradients of the discriminator function.
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Figure 2: Comparison of our proposed consistency regularizer with previous regularization tech-
niques, baseline model without regularization (W/O), DRAGAN(Kodali et al., 2017), and Gradient
Penalty (GP)(Gulrajani et al., 2017), on different hyper-parameter and loss settings on CIFAR-10
(a-f) and CELEBA (g) datasets. (a) spectral normalization (SN) with non-saturating (NS) loss. (b)
NS w/o SN. (c) hinge loss (Hinge) with SN. (d) Hinge w/o SN. (e) Wasserstein loss (Wass) with SN.
(f) Wass w/o SN. (g) Hinge with SN.

4 ABLATION STUDIES AND DISCUSSION

4.1 HOW MUCH DOES AUGMENTATION MATTER BY ITSELF?

Our consistency regularization technique actually has two parts: we perform data augmentation on
inputs from the training data, and then we perform consistency regularization on both the augmented
data and the original data. But how much of the effect we measure in Section 3 are due to data
augmentation alone? After all, it’s well known that data augmentation can reduce over-fitting for
object recognition models, and a GAN discriminator is an object recognition model.

An experiment is designed to answer this question. First, we train three GANs:

• A GAN trained using Algorithm 1.
• A baseline GAN, trained without augmentation or Consistency Regularization.
• A GAN trained with only data augmentation, and no Consistency Regularization.

And then, we plot both their FID and the accuracy of the discriminator on a held-out test set in
Figure 3. The FID tells us how ‘good’ the resulting GAN is, and the discriminator accuracy tells us
how much the GAN discriminator over-fits.

Interestingly, we found that these two measures were not well correlated in this case. The model
trained with only data augmentation over-fits substantially less than the baseline GAN, but has al-
most exactly the same FID. The model trained with the consistency regularization has the same
amount of over-fitting as the model trained with just data augmentation, but a much lower FID.
This suggests an interesting hypothesis, which is that the mechanism by which the consistency reg-
ularization improves GANs is not simply discriminator generalization. The robustness to the data
perturbation is more likely to be main reason for the impressive gains from consistency regulariza-
tion.
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Figure 3: A study of how much data augmentation matters by itself. Three GANs were trained on
CIFAR-10: one baseline GAN, one GAN with data augmentation only, and one GAN with both data
augmentation and consistency regularization. (Left) Accuracy of the GAN discriminator on the held
out test set. The accuracy is low for the baseline GAN, which indicates it suffered from over-fitting.
The accuracy for the other two basically indistinguishable for each other. This suggests that aug-
mentation by itself is enough to reduce discriminator over-fitting, and that consistency regularization
by itself does little to address over-fitting. (Right) FID scores. The score for the GAN with only
augmentation is not any better than the score for the baseline, even though its discriminator is not
over-fitting. The score for the GAN with consistency regularization is better than both of the others,
suggesting that the consistency regularization acts on the score through some mechanism other than
by reducing discriminator over-fitting.
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Figure 4: CIFAR-10 GANs with various λ values. All the other hyper-parameters are held constant.
A value of 100 sometimes causes training to diverge. Otherwise, the FID of the generated samples
improves monotonically as we increase λ.

4.2 HOW DOES THE TYPE OF AUGMENTATION AFFECT RESULTS?

To analyze how different types of data augmentation affect our results, we conduction an ablation
study on the CIFAR-10 dataset comparing the results of using four different types of image augmen-
tation:

• Adding Gaussian noise to the image in pixel-space
• Randomly shifting the image by a few pixels and then flipping it horizontally.
• Applying cutout (DeVries & Taylor, 2017) transformations to the image.
• Cutout and random shifting and flipping.

As shown in Table 2, random flipping and shifting without cutout gives the best results (FID 16.04,
Inception Score 8.28) among all four methods. Adding Gaussian noise in pixel-space gives the worst
results. This could be because adding Gaussian noise is inconsistent with the Manifold Hypothesis.

It’s also noteworthy that the most extensive augmentation (random flipping and shifting with cutout)
did not perform the best - this suggests that it can be useful to start with simple augmentations and
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Metric Gaussian Noise Random shift Cutout Cutout w/ random shift
FID 21.91±0.32 16.04±0.17 17.10±0.29 19.46±0.26
Inception Score 8.12±0.02 8.28±0.02 8.18±0.40 8.16±0.10

Table 2: Scores of GAN quality on CIFAR-10 for different types of image augmentation. Gaussian
noise is the worst, and Random Shift is the best, consistent with general consensus on the best way
to perform image optimization on CIFAR-10 (Zagoruyko & Komodakis, 2016). Interestingly, the
most substantial augmentation does not yield the best performance.

gradually increase their complexity until results plateau. Notably, random flipping and shifting has
been adopted as the de-facto standard data augmentation policy on the CIFAR-10 dataset (Zagoruyko
& Komodakis, 2016), which is consistent with our results. For simplicity and because it performs
the best, we use random shifting and flipping as the default data augmentation policy for all of our
other experiments.

4.3 HOW DOES λ AFFECT RESULTS?

λ is the weight of the consistency loss in the overall discriminator loss function. To better understand
the effect of λ, we train GANs on CIFAR-10 for λ values of 0, 1, 10, and 100 while keeping all the
other hyperparameters fixed. A value of 100 causes training to diverge roughly a third of the time.
Otherwise – as shown in Figure 4 – the FID of the generated samples improves monotonically as we
increase λ. For this reason, we fixed λ = 10 in all our experiments.

5 CONCLUSION

In this paper, we have applied consistency regularization to GANs. This is a simple step, but a lot
of progress in the GAN literature has come from similar simple steps (Radford et al., 2016; Denton
et al., 2015; Odena et al., 2017; Zhang et al., 2018; Brock et al., 2018). Consistency regularization
is extremely simple to implement, computationally cheap, and results in improvements in all of the
many contexts in which we evaluated it. We also conducted a thorough study on hyper-parameters,
so that other will know how to most effectively apply the consistency regularization to their partic-
ular GAN. Finally, we conducted experiments examining why consistency regularization improves
GAN performance, finding that the answer is not simply that it reduces discriminator over-fitting.
Consistency regularization enforces robustness to data perturbation and gives a better training signal
for learning the generator. We hope that the proposed consistency regularization will become a stan-
dard element in the GAN ‘toolkit’, and that it will make things easier and simpler for researchers
and practitioners.
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