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ABSTRACT

Temporal difference (TD) learning is a popular algorithm for policy evaluation in
reinforcement learning, but the vanilla TD can substantially suffer from the inherent
optimization variance. A variance reduced TD (VRTD) algorithm was proposed by
Korda and La (2015), which applies the variance reduction technique directly to
the online TD learning with Markovian samples. In this work, we first point out the
technical errors in the analysis of VRTD in Korda and La (2015), and then provide
a mathematically solid analysis of the non-asymptotic convergence of VRTD and
its variance reduction performance. We show that VRTD is guaranteed to converge
to a neighborhood of the fixed-point solution of TD at a linear convergence rate.
Furthermore, the variance error (for both i.i.d. and Markovian sampling) and the
bias error (for Markovian sampling) of VRTD are significantly reduced by the
batch size of variance reduction in comparison to those of vanilla TD.

1 INTRODUCTION

In reinforcement learning (RL), policy evaluation aims to obtain the expected long-term reward of a
given policy and plays an important role in identifying the optimal policy that achieves the maximal
cumulative reward over time Bertsekas and Tsitsiklis (1995); Dayan and Watkins (1992); Rummery
and Niranjan (1994). The temporal difference (TD) learning algorithm, originally proposed by Sutton
(1988), is one of the most widely used policy evaluation methods, which uses the Bellman equation to
iteratively bootstrap the estimation process and continually update the value function in an incremental
way. In practice, if the state space is large or infinite, function approximation is often used to find
an approximate value function efficiently. Theoretically, TD with linear function approximation has
been shown to converge to the fixed point solution with i.i.d. samples and Markovian samples in
Sutton (1988); Tsitsiklis and Van Roy (1997). The finite sample analysis of TD has also been studied
in Bhandari et al. (2018); Srikant and Ying (2019); Dalal et al. (2018a); Cai et al. (2019).

Since each iteration of TD uses one or a mini-batch of samples to estimate the mean of the gradient 1,
TD learning usually suffers from the inherent variance, which substantially degrades the convergence
accuracy. Although a diminishing stepsize or very small constant stepsize can reduce the variance
Bhandari et al. (2018); Srikant and Ying (2019); Dalal et al. (2018a), they also slow down the
convergence significantly.

Two approaches have been proposed to reduce the variance. The first approach is the so-called batch
TD, which takes a fixed sample set and transforms the empirical mean square projected Bellman
error (MSPBE) into an equivalent convex-concave saddle-point problem Du et al. (2017). Due to the
finite-sample nature of such a problem, stochastic variance reduction techniques for conventional
optimization can be directly applied here to reduce the variance. In particular, Du et al. (2017) showed
that SVRG Johnson and Zhang (2013) and SAGA Defazio et al. (2014) can be applied to improve
the performance of batch TD algorithms, and Peng et al. (2019) proposed two variants of SVRG to
further save the computation cost. However, the analysis of batch TD does not take into account the
statistical nature of the training samples, which are generated by a MDP. Hence, there is no guarantee
of such obtained solutions to be close to the fixed point of TD learning.

The second approach is the so-called TD with centering (CTD) algorithm proposed in Korda and
La (2015), which introduces the variance reduction idea to the original TD learning algorithm. For

1We call the increment in each iteration of TD as "gradient" for convenience due to its analogous role as in
the gradient descent algorithm.
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the sake of better reflecting its major feature, we refer to CTD as Variance Reduced TD (VRTD)
throughout this paper. Similarly to the SVRG in Johnson and Zhang (2013), VRTD has outer and
inner loops. The beginning of each inner-loop (i.e. each epoch) computes a batch of sample gradients
so that each subsequent inner loop iteration modifies only one sample gradient in the batch gradient
to reduce the variance. The main difference between VRTD and batch TD is that VRTD applies
the variance reduction directly to TD learning rather than to a transformed optimization problem
in batch TD. Though Korda and La (2015) empirically verified that VRTD has better convergence
accuracy than vanilla TD learning, some technical errors in the analysis in Korda and La (2015)
have been pointed out in follow up studies Dalal et al. (2018a); Narayanan and Szepesvári (2017).
Furthermore, as we discuss in Section 3, the technical proof in Korda and La (2015) regarding the
convergence of VRTD also has technical errors so that their results do not correctly characterize the
impact of variance reduction on TD learning. Given the recent surge of interest in the finite time
analysis of the vanilla TD Bhandari et al. (2018); Srikant and Ying (2019); Dalal et al. (2018a), it
becomes imperative to reanalyze the VRTD and accurately understand whether and how variance
reduction can help to improve the convergence accuracy over vanilla TD. Towards this end, this paper
specifically addresses the following central questions.
• For i.i.d. sampling, it has been shown in Bhandari et al. (2018) that vanilla TD converges only to

a neighborhood of the fixed point for a constant stepsize and suffers from a constant error term
caused by the variance of the stochastic gradient at each iteration. For VRTD, does the variance
reduction help to reduce such an error and improve the accuracy of convergence? How does the
error depend on the variance reduction parameter, i.e., the batch size for variance reduction?

• For Markovian sampling, it has been shown in Bhandari et al. (2018); Srikant and Ying (2019)
that the convergence of vanilla TD further suffers from a bias error due to the correlation among
samples in addition to the variance error as in i.i.d. sampling. Does VRTD, which was designed to
have reduced variance, also enjoy reduced bias error? If so, how does the bias error depend on the
batch size for variance reduction?

1.1 OUR CONTRIBUTIONS

Our main contributions are summarized in Table 1 and are described as follows.

For i.i.d. sampling, we show that a slightly modified version of VRTD (for avoiding bias error)
converges linearly to a neighborhood of the fixed point solution for a constant stepsize α, with the
variance error at the order ofO(α/M), where M is the batch size for variance reduction. This clearly
reduces the corresponding variance error O(α) of vanilla TD in Bhandari et al. (2018).

For Markovian sampling, we show that VRTD has the same linear convergence and the same variance
error reduction over the vanilla TD Bhandari et al. (2018); Srikant and Ying (2019) as i.i.d. sampling.
More importantly, the variance reduction in VRTD also attains a substantially reduced bias error at
the order of O(1/

√
M) over the vanilla TD Bhandari et al. (2018); Srikant and Ying (2019), where

the bias error is at the order of O(α). Therefore, vanilla TD typically needs to decrease the stepsize
α in order to reduce the variance and bias errors, which however slows down the convergence. In
contrast, VRTD can increase the batch size to reduce both errors while still keeping the stepsize at a
desired constant level to maintain fast convergence, as can be observed in our experiments.

At the technical level, our analysis of bias error for Markovian sampling takes a different path from
the techniques used in Bhandari et al. (2018); Srikant and Ying (2019); Wang et al. (2017). Due
to the batch average of stochastic gradients adopted by VRTD to reduce the variance, we apply a
concentration bound established in Dedecker and Gouëzel (2015) for Markovian samples. This shows
that the correlation among samples in different epochs is eliminated due to the concentration to a
deterministic average, and the correlation among samples within each epoch is implicitly captured
by the parameters in the concentration inequality. Such an analysis also explicitly explains why the
variance reduction step can also reduce the bias error.

1.2 RELATED WORK

On-policy TD learning and variance reduction. On-policy TD learning aims to minimize the
Mean Squared Bellman Error (MSBE) Sutton (1988) when samples are drawn independently from
the stationary distribution of the corresponding MDP. The non-asymptotic convergence under i.i.d.
sampling has been established in Dalal et al. (2018a) for TD with linear function approximation and
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Table 1: Comparison of results on bias and variance errors.

Algorithm Variance Error Bias Error

i.i.d. sample TD O(α)
Bhandari et al. (2018) NA

VRTD O(α/M) (this work) NA

Markovian sample TD
O(α)

Bhandari et al. (2018)
Srikant and Ying (2019)

O(α)
Bhandari et al. (2018)

Srikant and Ying (2019)
VRTD O(α/M) (this work) O(1/

√
M) (this work)

for TD with overparameterized neural network approximation Cai et al. (2019). In the Markovian
setting, the non-asymptotic convergence has been studied for on-policy TD in Bhandari et al. (2018);
Srikant and Ying (2019); Karmakar and Bhatnagar (2016); Wang et al. (2019). Korda and La (2015)
proposed a variance reduced CTD algorithm (called VRTD in this paper), which directly applies
variance reduction technique to the TD algorithm. The analysis of VRTD provided in Korda and La
(2015) has technical errors. The aim of this paper is to provide a technically solid analysis for VRTD
to characterize the advantage of variance reduction.

Variance reduced batch TD learning. Batch TD Lange et al. (2012) algorithms are generally
designed for policy evaluation by solving an optimization problem on a fixed dataset. In Du et al.
(2017), the empirical MSPBE is first transformed into a quadratic convex-concave saddle-point
optimization problem and variance reduction methods of SVRG Johnson and Zhang (2013) and
SAGA Defazio et al. (2014) were then incorporated into a primal-dual batch gradient method.
Furthermore, Peng et al. (2019) applied two variants of variance reduction methods to solve the same
saddle point problems, and showed that those two methods can save gradient computation cost.

We note that due to the extensive research in TD learning, we include here only studies that are
highly related to our work, and cannot cover many other interesting topics on TD learning such as
asymptotic convergence of TD learning Tadić (2001); Hu and Syed (2019), off-policy TD learning
Sutton et al. (2008; 2009); Liu et al. (2015); Wang et al. (2017); Karmakar and Bhatnagar (2017), two
time-scale TD algorithms Dalal et al. (2018b); Yu (2017), fitted TD algorithms Lee and He (2019),
etc. The idea of the variance reduction algorithm proposed in Korda and La (2015) as well as the
analysis techniques that we develop in this paper can potentially be useful for these algorithms.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 ON-POLICY VALUE FUNCTION EVALUATION

We describe the problem of value function evaluation over a Markov decision process (MDP)
(S,A,P, r, γ), where each component is explained in the sequel. Suppose S ⊂ Rd is a compact
state space, and A is a finite action set. Consider a stationary policy π, which maps a state s ∈ S to
the actions in A via a probability distribution π(·|s). At time-step t, suppose the process is in some
state st ∈ S, and an action at ∈ A is taken based on the policy π(·|st). Then the transition kernel
P = P(st+1|st, at) determines the probability of being at state st+1 ∈ S in the next time-step, and
the reward rt = r(st, at, st+1) is received, which is assumed to be bounded by rmax. We denote the
associated Markov chain by p(s′|s) =

∑
a∈A p(s

′|s, a)π(a|s), and assume that it is ergodic. Let µπ
be the induced stationary distribution, i.e.,

∑
s p(s

′|s)µπ(s) = µπ(s′). We define the value function
for a policy π as vπ (s) = E[

∑∞
t=0 γ

tr(st, at, st+1)|s0 = s, π], where γ ∈ (0, 1) is the discount
factor. Define the Bellman operator Tπ for any function ξ(s) as Tπξ(s) := rπ(s) + γEs′|sξ(s′),
where rπ(s) = Ea,s′|sr(s, a, s′) is the expected reward of the Markov chain induced by the policy π.
It is known that vπ(s) is the unique fixed point of the Bellman operator Tπ, i.e., vπ(s) = Tπvπ(s).
In practice, since the MDP is unknown, the value function vπ(s) cannot be directly obtained. The
goal of policy evaluation is to find the value function vπ(s) via sampling the MDP.

2.2 TD LEARNING WITH LINEAR FUNCTION APPROXIMATION

In order to find the value function efficiently particularly for large or infinite state space S, we
take the standard linear function approximation v̂(s, θ) = φ(s)>θ of the value function, where
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φ(s)> = [φ1(s), · · · , φd(s)] with φi(s) for i = 1, 2, · · · d denoting the fixed basis feature functions
of state s, and θ ∈ Rd is a parameter vector. Let Φ be the |S| × d feature matrix (with rows indexed
by the state and columns corresponding to components of θ). The linear function approximation can
be written in the vector form as v̂(θ) = Φθ. Our goal is to find the fixed-point parameter θ∗ ∈ Rd
that satisfies Eµπ v̂(s, θ∗) = EµπTπ v̂(s, θ∗). The TD learning algorithm performs the following
fixed-point iterative update to find such θ∗.

θt+1 = θt + αtgxt(θt) = θt + αt(Axtθt + bxt), (1)

where αt > 0 is the stepsize, and Axt and bxt are specified below. For i.i.d. samples generated from
the distribution µπ, we denote the sample as xt = (st, rt, s

′
t), and Axt = φ(st)(γφ(s′t)− φ(st))

>

and bxt = r(st)φ(st). For Markovian samples generated sequentially from a trajectory, we denote
the sample as xt = (st, rt, st+1), and in this case Axt = φ(st)(γφ(st+1) − φ(st))

> and bxt =
r(st)φ(st). We further define the mean gradient g(θ) = Aθ + b where A = Eµπ [φ(s)(γφ(s′) −
φ(s))>] and b = Eµπ [r(s)φ(s)]. We call g(θ) as gradient for convenience due to its analogous role
as in the gradient descent algorithm. It has been shown that the iteration in eq. (1) converges to the
fix point θ∗ = −A−1b at a sublinear rate O(1/t) with diminishing stepsize αt = O(1/t) using both
Markovian and i.i.d. samples Bhandari et al. (2018); Dalal et al. (2018a); Srikant and Ying (2019).
Throughout the paper, we make the following standard assumptions Wang et al. (2017); Korda and
La (2015); Tsitsiklis and Van Roy (1997); Bhandari et al. (2018); Srikant and Ying (2019).
Assumption 1 (Problem solvability). The matrix A is non-singular.
Assumption 2 (Bounded feature). ‖φ(s)‖2 ≤ 1 for all s ∈ S.
Assumption 3 (Geometric ergodicity). The considered MDP is irreducible and aperiodic, and there
exist constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st ∈ ·|s0 = s), µπ(s)) ≤ κρt, ∀t ≥ 0,

where dTV (P,Q) denotes the total-variation distance between the probability measures P and Q.

Assumption 1 requires the matrix A to be non-singular so that the optimal parameter θ∗ = −A−1b is
well defined. Assumption 2 can be ensured by normalizing the basis functions {φi}di=1. Assumption
3 holds for any time-homogeneous Markov chain with finite state-space and any uniformly ergodic
Markov chains with general state space.

3 THE VARIANCE REDUCED TD ALGORITHM

In this section, we first introduce the variance-reduced TD (VRTD) algorithm proposed in Korda and
La (2015) for Markovian sampling and then discuss the technical errors in the analysis of VRTD in
Korda and La (2015).

3.1 VRTD ALGORITHM KORDA AND LA (2015)

Since the standard TD learning takes only one sample in each update as can be seen in eq. (1), it
typically suffers from a large variance. This motivates the development of the VRTD algorithm in
Korda and La (2015) (named as CTD in Korda and La (2015)). VRTD is formally presented in
Algorithm 2, and we briefly introduce the idea below. The algorithm runs in a nested fashion with
each inner-loop (i.e., each epoch) consists of M updates. At the beginning of the m-th epoch, a batch
of M samples are acquired and a batch gradient gm(θ̃m−1) is computed based on these samples
as an estimator of the mean gradient. Then, each inner-loop update randomly takes one sample
from the batch, and updates the corresponding component in gm(θ̃m−1). The idea is similar to the
SVRG algorithm proposed in Johnson and Zhang (2013) for conventional optimization. Since a batch
gradient is used at each inner-loop update, the variance of the gradient is expected to be reduced.

3.2 TECHNICAL ERRORS IN KORDA AND LA (2015)

In this subsection, we point out the technical errors in the analysis of VRTD in Korda and La (2015),
which thus fails to provide the correct variance reduction performance for VRTD.

At the high level, the batch gradient gm(θ̃m−1) computed at the beginning of each epoch m should
necessarily introduce a non-vanishing variance error for a fixed stepsize, because it cannot exactly
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Algorithm 1 Variance Reduced TD with iid sam-
ples

Input: batch size M , learning rate α and initialization
θ̃0

1: for m = 1, 2, ..., S do
2: θm,0 = θ̃m−1

3: Sample a set Bm with M samples indepedently
from the distribution µπ

4: gm(θ̃m−1) = 1
M

∑
xi∈Bm gxi(θ̃m−1)

5: for t = 0, 1, ...,M − 1 do
6: Sample xjm,t indepedently from the distribu-

tion µπ
7: θm,t+1 = θm,t + α

(
gxjm,t (θm,t)

8: −gxjm,t (θ̃m−1) + gm(θ̃m−1)
)

9: end for
10: set θ̃m = θm,t for randomly chosen t ∈
{1, 2, ...,M}

11: end for
Output: θ̃S

Algorithm 2 Variance Reduced TD with Marko-
vian samples Korda and La (2015)

Input: batch size M , learning rate α and initialization
θ̃0

1: for m = 1, 2, ..., S do
2: θm,0 = θ̃m−1

3: gm(θ̃m−1) = 1
M

∑mM−1
i=(m−1)M gxi(θ̃m−1)

4: for t = 0, 1, ...,M − 1 do
5: Sample jm,t uniformly at random in {(m −

1)M, ...,mM − 1} from trajetory

6: θm,t+1 = ΠRθ

(
θm,t + α

(
gxjm,t (θm,t)

7: −gxjm,t (θ̃m−1) + gm(θ̃m−1)
))

8: end for
9: set θ̃m = θm,t for randomly chosen t ∈
{1, 2, ...,M}

10: end for
Output: θ̃S

equal the mean (i.e. population) gradient g(θ̃m−1). Furthermore, due to the correlation among
samples, the gradient estimator in expectation (with regard to the randomness of the sample trajectory)
does not equal to the mean gradient, which should further cause a non-vanishing bias error in the
convergence bound. Unfortunately, the convergence bound in Korda and La (2015) indicates an exact
convergence to the fixed point, which contradicts the aforementioned general understanding. More
specifically, if the batch size M = 1 (with properly chosen λA), VRTD reduces to the vanilla TD.
However, the exact convergence result in Theorem 3 in Korda and La (2015) does not agree with
that of vanilla TD characterized in the recent studies Bhandari et al. (2018); Srikant and Ying (2019),
which has variance and bias errors.

More specifically, we next use a counter-example to show that one major technical step for character-
izing the convergence bound in Korda and La (2015) does not hold. Consider Step 4 in the proof of
Theorem 3 in Korda and La (2015). For the following defined ε(θ)

ε(θ) = (θ − θ∗)>[E(v>v|Fn)− EΨ,θn(v>v)](θ − θ∗), (2)

Korda and La (2015) claimed that the following inequality holds

‖ε(θ)‖2 ≤ 2H ‖E(v|Fn)− EΨ,θn(v)‖2 . (3)

This is not correct. Consider the following counter-example. Let the batch size M = 3 and the
dimension of the feature vector be one, i.e., Φ ∈ R|S|×1. Hence, all variables in eq. (3) and eq. (2) are
scalars. Since the steps for proving eq. (3) in Korda and La (2015) do not have specific requirements
for the transition kernel, eq. (3) should hold for any distribution of v. Thus, suppose v follows the
uniform distribution over [−3, 3]. Further assume that in the n-th epoch, the samples of v are given
by {1, 2,−3}. Recall that E(·|Fn) is the average over the batch samples in the n-th epoch. We have:

EΨ,θn(v) = 0, EΨ,θn(v2) = 3, E(v|Fn) = 0, E(v2|Fn) =
14

3
.

Substituting the above values into eq. (3) yields

‖ε(θ)‖2 =
(14

3
− 3
)

(θ − θ∗)2 ≤ 2H × 0 = 0, (4)

which obviously does not hold in general when θ 6= θ∗. Consequently the second statement in
Theorem 3 of Korda and La (2015), which is critically based on the above erroneous steps does not
hold, and hence the first statement in the same theorem whose proof is based on the second statement
cannot hold either. The goal of this paper is to provide a rigorous analysis of VRTD to characterize
its variance reduction performance.
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4 MAIN RESULTS

As aforementioned, the convergence of VRTD consists of two types of errors: the variance error
due to inexact estimation of the mean gradient and the bias error due to Markovian sampling. In
this section, we first focus on the first type of error and study the convergence of VRTD under i.i.d.
sampling. We then study the Markovian case to further analyze the bias. In both cases, we compare
the performance of VRTD to that of the vanilla TD described in eq. (1) to demonstrate its advantage.

4.1 CONVERGENCE ANALYSIS OF VRTD WITH I.I.D. SAMPLES

For i.i.d. samples, it is expected that the bias error due to the time correlation among samples does
not exist. However, if we directly apply VRTD (Algorithm 2) originally designed for Markovian
samples, there would be a bias term due to the correlation between the batch gradient estimate and
every inner-loop updates. Thus, we slightly modify Algorithm 2 to Algorithm 1 to avoid the bias
error in the convergence analysis with i.i.d. samples. Namely, at each inner-loop iteration, we draw a
new sample from the stationary distribution µπ for the update rather than randomly selecting one
from the batch of samples drawn at the beginning of the epoch as in Algorithm 2. In this way, the
new independent samples avoid the correlation with the batch gradient evaluated at the beginning of
the epoch. Hence, Algorithm 1 does not suffer from an extra bias error.

To understand the convergence of Algorithm 1 at the high level, we first note that the sample
batch gradient cannot estimate the mean gradient g(θ̃m−1) exactly due to its population nature.
Then, we define em(θ̃m) = gm(θ̃m−1) − g(θ̃m−1) as such a gradient estimation error. Further let
λA = 2|λmax(A+A>)|, and then our analysis (see Appendix B) shows that after each epoch update,
we have

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0]
≤ 1/M + 4α2(1 + γ)2

αλA − 4α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+
2α

λA − 4α(1 + γ)2
E
[∥∥∥em(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] , (5)

where Fm,0 denotes the σ-field that includes all the randomness in sampling and updates before
the m-th epoch. The first term in the right-hand side of eq. (5) captures the contraction property of
Algorithm 1 and the second term corresponds to the variance of the gradient estimation error. It can
be seen that due to such an error term, Algorithm 1 is expected to have guaranteed convergence only
to a neighborhood of θ∗, when applying eq. (5) iteratively. Our further analysis shows that such an
error term can still be well controlled (to be small) by choosing an appropriate value for the batch
size M , which captures the advantage of the variance reduction. The following theorem precisely
characterizes the non-asymptotic convergence of Algorithm 1.

Theorem 1. Consider the VRTD algorithm in Algorithm 1. Suppose Assumptions 1–3 hold. Set a
constant stepsize α < λA

8(1+γ)2 , which guarantees the existence of a sufficiently large M such that

C1 =
(

4α(1 + γ)2 +
4(1 + γ)2α2 + 1

αM

) 1

λA − 4α(1 + γ)2
< 1.

Then, for all m ∈ N,

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+
2D2α

(1− C1)(λA − 4α(1 + γ)2)M
, (6)

where D2 = 4((1 + γ)2R2
θ + r2max).

Theorem 1 shows that Algorithm 1 converges linearly (under a properly chosen constant stepsize) to
a neighborhood of the fixed point solution, and the size of the neighborhood (i.e., the error term) has
the order of O( αM ), which can be made as small as possible by properly increasing the batch size M .
This is in contrast to the convergence result of the vanilla TD, which suffers from the constant error
term with order O(α) Bhandari et al. (2018) for a fixed stepsize. Thus, a small stepsize α is required
in vanilla TD to reduce the variance error, which, however, slows down the practical convergence
significantly. In contrast, this is not a problem for VRTD, which can attain a high accuracy solution
while still maintaining fast convergence at a desirable stepsize.
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We further note that if we have access to the mean gradient g(θ̃m−1) in each epoch m, then the error
term becomes zero, and Algorithm 1 converges linearly to the exact fixed point solution, which is
similar to the conventional convergence of SVRG for strongly convex optimization Johnson and
Zhang (2013). However, the proof here is very different. Unlike Johnson and Zhang (2013), in which
the convergence proof relies on the relationship between the gradient and the value of the objective
function. But for TD learning there is not such an objective function, and hence the convergence of
the parameter θ needs to be developed by exploiting the structure of the Bellman operator.

4.2 CONVERGENCE ANALYSIS OF VRTD WITH MAKOVIAN SAMPLES

In this section, we study the VRTD algorithm (i.e., Algorithm 2) with Markovian samples, in which
samples are generated from one single MDP path. In such a case, we expect that the convergence of
VRTD to have both the variance error due to the gradient estimation (similar to the case with i.i.d.
samples) and the bias error due to the correlation among samples. To understand this at the high level,
we define the bias at each iteration as ξm(θ) = (θ − θ∗)>(gm(θ) − g(θ)). Then our analysis (see
Appendix C) shows that after each epoch update, we have

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0]
≤ 1/M + 3α2(1 + γ)2

αλA − 3α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+
3α

λA − 3α(1 + γ)2
E
[
‖gm(θ∗)‖22

∣∣∣Fm,0]
+

2

[λA − 3α(1 + γ)2]M

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm,0] (7)

The first term on the right-hand side of eq. (7) captures the epochwise contraction property of
Algorithm 2. The second term is due to the variance of the gradient estimation, which captures how
well the batch gradient gm(θ∗) approximates the mean gradient g(θ∗) (note that g(θ∗) = 0). Such a
variance term can be shown to decay to zero as the batch size gets large similarly to the i.i.d. case.
The third term captures the bias introduced by the correlation among samples in the m-th epoch. To
quantitatively understand this error term, we provide the following lemma that characterizes how the
bias error is controlled by the batch size M .

Lemma 1. For any m > 0 and any θ ∈ Bθ, which is a ball with the radius Rθ, we have

E[ξm(θ)] ≤ 4[(1 + γ)R2
θd

3 + rmaxRθd
3
2 ]

√
πC0

M
,

where the expectation is over the random trajectory, θ is treated as a fixed variable, and 0 < C0 <∞
is a constant depending only on the MDP.

Lemma 1 shows that the bias error decreases sublinearly as M increases. To explain why this
happens, we note that the bias contains the difference between the sample batch gradient and
the mean gradient, which can be bounded by the concentration property for the ergodic process as
gm(θ) = 1

M

∑mM−1
i=(m−1)M gxi(θ)

a.s.→ g(θ). In this way, the randomness due to the gradient estimation
is essentially averaged out due to the variance reduction step in VRTD, which implicitly eliminates
its correlation from samples in the previous epochs.

As a comparison, the bias error in vanilla TD has been shown to be bounded by E[ξn(θ)] =
O(α log(1/α)) Bhandari et al. (2018); Srikant and Ying (2019). In order to reduce the bias and
achieve a high convergence accuracy, the stepsize α is required to be small, which causes the
algorithm to run very slowly. The advantage of VRTD is that the bias can be reduced by choosing a
sufficiently large batch size M so that the stepsize can still be kept at a desirable constant to guarantee
fast convergence.

Theorem 2. Consider the VRTD algorithm in Algorithm 2. Suppose Assumptions 1–3 hold. Set the
constant stepsize α < λA

6(1+γ)2 , which guarantees that there exists a sufficiently large M such that

C1 =
1/M + 3α2(1 + γ)2

αλA − 3α2(1 + γ)2
< 1.

7
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Then, we have:

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+
3C4α

(1− C1)[λA − 3α(1 + γ)2]M
+

8[(1 + γ)R2
θd

3 + rmaxRθd
3
2 ]

(1− C1)[λA − 3α(1 + γ)2]

√
πC0

M
,

(8)

where C4 = [(1 + γ)Rθ + rmax]2 + 2ρκG[(1+γ)Rθ+rmax]
(1−ρ) .

Theorem 2 shows that Algorithm 2 with Markovian samples converges to a neighborhood of θ∗ at
a linear rate, and the size of the neighborhood (i.e., convergence error) decays sublinearly with the
batch size M . More specifically, the first term in the right-hand side of eq. (8) captures the linear
convergence of the algorithm, the second term corresponds to the accumulated gradient estimation
error, and the third term corresponds to the accumulated bias error. For the fixed stepsize, the
total convergence error is dominated by the bias O(1/

√
M). Therefore, the variance reduction in

Algorithm 2 not only reduces the variance, but also reduces the bias of the gradient estimator.

Comparison of Theorem 2 to Theorem 1 indicates that VRTD with Markovian samples has a larger
total convergence error than VRTD with i.i.d. samples, due to the bias error introduced by correlation
among samples.

5 EXPERIMENTS

In this section, we provide numerical results to verify our theoretical results. We consider an MDP
with γ = 0.95 and |S| = 50. The reward is a state-dependent function and the feature matrix
Φ ∈ R50×4 are generated randomly based on the uniform distribution. We conduct two experiments
to investigate how the batch size M for variance reduction affects the performance of VRTD with
i.i.d. and Markovian samples. In the Markovian setting, we sample the data from a MDP trajectory.
In the i.i.d. setting, we sample the data independently from the corresponding stationary distribution.
In both experiments, we set the constant stepsize to be α = 0.1 and we run the experiments for
seven different batch sizes: M = 1, 50, 500, 1000, 2000. Our results are reported in Figure 1. All
the plots report the square error over 1000 independent runs. In each case, the left figure illustrates
the convergence process over the number of gradient computations and the right figure shows the
convergence errors averaged over the last 10000 iterations for different batch size values. It can
be seen that in both i.i.d. and Markovian settings, the averaged error decreases as the batch size
increases, which corroborates both Theorem 1 and Theorem 2. We also observe that increased batch
size substantially reduces the error without much slowing down the convergence, demonstrating the
desired advantage of variance reduction. Moreover, we observe that the error of VRTD with i.i.d
samples is smaller than that of VRTD with Markovian samples under all batch size settings, which
indicates that the correlation among Markovian samples introduces additional errors.
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(a) i.i.d. (left: iteration process; right: averaged
convergence error)
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(b) Markovian (left: iteration process; right: averaged
convergence error)

Figure 1: Error decay of VRTD with i.i.d. and Markovian samples

6 CONCLUSION

In this paper, we provided the convergence analysis for VRTD with both i.i.d. and Markovian
samples. We developed a novel technique to bound the bias of the VRTD gradient estimator. Our
result demonstrate the advantage of VRTD over vanilla TD on the reduced variance and bias errors
by the batch size. We anticipate that such a variance reduction technique and our analysis tools can
be further applied to other RL algorithms.
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Tadić, V. (2001). On the convergence of temporal-difference learning with linear function approxima-
tion. Machine Learning, 42(3):241–267.

Tsitsiklis, J. N. and Van Roy, B. (1997). Analysis of temporal-diffference learning with function
approximation. In Proc. Advances in Neural Information Processing Systems (NIPS), pages
1075–1081.

Wang, G., Li, B., and Giannakis, G. B. (2019). A multistep Lyapunov approach for finite-time
analysis of biased stochastic approximation. arXiv preprint arXiv:1909.04299.

Wang, Y., Chen, W., Liu, Y., Ma, Z.-M., and Liu, T.-Y. (2017). Finite sample analysis of the
GTD policy evaluation algorithms in Markov setting. In Proc. Advances in Neural Information
Processing Systems (NIPS), pages 5504–5513.

Yu, H. (2017). On convergence of some gradient-based temporal-differences algorithms for off-policy
learning. arXiv preprint arXiv:1712.09652.

10



Under review as a conference paper at ICLR 2020

Supplementary Materials

A USEFUL LEMMAS

Lemma 2. For any xi = (si, ri, s
′
i) (i.i.d. sample) or xi = (si, ri, si+1) (Markovian sample), we

have ‖Axi‖2 ≤ 1 + γ and ‖bxi‖2 ≤ rmax.

Proof. First consider the case when samples are i.i.d. Due to the definition of Axi , we have

‖Axi‖2 =
∥∥φ(si)(γφ(s′i)− φ(si))

>∥∥
2

≤
∥∥φ(si)(γφ(s′i)− φ(si))

>∥∥
F

≤ γ
∥∥φ(si)φ(s′i)

>∥∥
F

+
∥∥φ(si)φ(si)

>∥∥
F

≤ 1 + γ.

Then, consider bxi :
‖bxi‖2 = ‖rxiφ(si)‖2 ≤ rmax ‖φ(si)‖2 ≤ rmax.

Following similar steps, we can obtain the same upper bounds for the case with Markovian samples.

Lemma 3. Let G = (1 + γ)Rθ + rmax. Consider Algorithm 2. For any m > 0 and 0 ≤ t ≤M − 1,

we have
∥∥gxjm,t(θm,t)∥∥2 , ∥∥∥gxjm,t(θ̃m−1)

∥∥∥
2
,
∥∥∥gm(θ̃m−1)

∥∥∥
2
≤ G.

Proof. First, we bound
∥∥gxjm,t(θm,t)∥∥2 as follows.∥∥gxjm,t(θm,t)∥∥2 =

∥∥Axjm,tθm,t + bθm,t
∥∥
2

≤
∥∥Axjm,t∥∥2 ‖θm,t‖2 +

∥∥bθm,t∥∥2
≤ (1 + γ)Rθ + rmax.

Following the steps similar to the above, we have
∥∥∥gxjm,t(θ̃m−1)

∥∥∥
2
≤ G. Finally for∥∥∥gxjm,t(θ̃m−1)

∥∥∥
2
, we have

∥∥∥gxjm,t(θ̃m−1)
∥∥∥
2

=

∥∥∥∥∥∥ 1

M

mM−1∑
i=(m−1)M

gxi(θ̃m−1)

∥∥∥∥∥∥
2

≤ 1

M

mM−1∑
i=(m−1)M

∥∥∥gxi(θ̃m−1)
∥∥∥
2

≤ G, (9)

where eq. (9) follows from the last fact
∥∥∥gxjm,t(θ̃m−1)

∥∥∥
2
≤ G.

Lemma 4. Define D1 = 2(1 + γ)2 and D2 = 4((1 + γ)2R2
θ + r2max). For any θ ∈ Rd, we have

‖gxi(θ)‖
2
2 ≤ D1 ‖θ − θ∗‖22 +D2.

Proof. Recalling the definition of gxi , and applying Lemma 2, we have

‖gxi(θ)‖
2
2 = ‖Axiθ + bxi‖

2
2

= ‖Axi(θ − θ∗) + (Axiθ
∗ + bxi)‖

2
2

≤ 2 ‖Axi(θ − θ∗)‖
2
2 + 2 ‖Axiθ∗ + bxi‖

2
2

≤ 2 ‖Axi‖
2
2 ‖θ − θ

∗‖22 + 4(‖Axi‖
2
2 ‖θ

∗‖22 + ‖bxi‖
2
2)

≤ 2(1 + γ)2 ‖θ − θ∗‖22 + 4((1 + γ)2R2
θ + r2max)

= D1 ‖θ − θ∗‖22 +D2.

11
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Lemma 5. Considering Algorithm 2 with Markovian samples. We have ‖E[Aj |Pi]−A‖2 ≤ (1 +

γ)κρj−i and ‖E[bj |Pi]− b‖2 ≤ rmaxκρ
j−i for 0 < i < j.

Proof. We first derive

‖E[Aj |Pi]−A‖2 =

∥∥∥∥∫ AxidP (xi|Pj)−
∫
Axidµπ

∥∥∥∥
2

≤
∫
‖AxidP (xi|Pj)−Axidµπ‖2

≤
∫
‖Axi‖2 |dP (xi|Pj)− dµπ|

≤ (1 + γ) ‖P (xi|Pj), µπ‖TV
≤ (1 + γ)κρj−i.

Following the steps similar to the above, we can derive ‖E[bj |Pi]− b‖2 ≤ 2rmaxκρ
j−i.

B PROOF OF THEOREM 1: CONVERGENCE OF VRTD WITH I.I.D. SAMPLES

Recall that Bm is the sample batch drawn at the beginning of each m-th epoch and xi,j denotes the
sample picked at the j-th iteration in the i-th epoch in Algorithm 1. We denote σ(θ̃0) as a trivial
σ-field when θ̃0 is a deterministic vector. Let σ(A ∪ B) indicate the smallest σ-field that contains
both A and B. Then, we construct a set of σ-fields in the following incremental way.

F1,0 = σ(θ̃0), F1,1 = σ(F1,0 ∪ σ(B1) ∪ σ(x1,1)), ..., F1,M = σ(F1,(M−1) ∪ σ(x1,M )),

F2,0 = σ(F1,M ∪ σ(θ̃1)), F21 = σ(F2,0 ∪ σ(B2) ∪ σ(x2,1)), ..., F2,m = σ(F2,(M−1) ∪ σ(x2,M )),

...

Fm,0 = σ(F(m−1),M ∪ σ(θ̃m−1)), Fm1 = σ(Fm,0 ∪ σ(Bm) ∪ σ(xm,1)), ..., Fm,M = σ(Fm,(M−1) ∪ σ(xm,M )).

The proof of Theorem 1 proceeds along the following steps.

Step 1: Iteration within the m-th epoch

For the m-th epoch, we consider the last update (i.e., the M -th iteration in the epoch), and decompose
its error into the following form.

‖θm,M − θ∗‖22 =
∥∥∥θm,M−1 + α

(
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

)
− θ∗

∥∥∥2
2

= ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>
(
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

)
+ α2

∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)
∥∥∥2
2
. (10)

First, consider the third term in the right-hand side of eq. (10), we have∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)
∥∥∥2
2

≤ 2
∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + g(θ̃m−1)

∥∥∥2
2

+ 2
∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

= 2
∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)−

[(
gxjm,M (θ̃m−1)− gxjm,M (θ∗)

)
−
(
g(θ̃m−1)− g(θ∗)

)]∥∥∥2
2

+ 2
∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

≤ 4
∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)

∥∥∥2
2

+ 4
∥∥∥(gxjm,M (θ̃m−1)− gxjm,M (θ∗)

)
−
(
g(θ̃m−1)− g(θ∗)

)∥∥∥2
2

+ 2
∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2
. (11)

12
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Then, by taking the expectation conditioned on Fm,M−1 on both sides of eq. (11), we have

E
[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,M−1]
(i)

≤ 4E
[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)

∥∥∥2
2

∣∣∣Fm,M−1]
+ 4E

[∥∥∥(gxjm,M (θ̃m−1)− gxjm,M (θ∗)
)
− E

[
gxjm,M (θ̃m−1)− gxjm,M (θ∗)

∣∣Fm,M−1]
∥∥∥2
2

∣∣∣Fm,M−1]
+ 2E

[∥∥∥gm(θ̃m−1)− g(θ̃m−1)
∥∥∥2
2

∣∣∣Fm,M−1]
(ii)

≤ 4(1 + γ)2E
[
‖θm,M−1 − θ∗‖22 |Fm,M−1

]
+ 4(1 + γ)2E

[∥∥∥θ̃m−1 − θ∗∥∥∥2
2
|Fm,M−1

]
+ 2E

[∥∥∥gm(θ̃m−1)− g(θ̃m−1)
∥∥∥2
2

∣∣∣Fm,M−1]

where (i) follows from the fact that E[
(
gxjm,M (θ̃m−1)−gxjm,M (θ∗)

)
|Fm,M−1] = g(θ̃m−1)−g(θ∗),

and (ii) follows from the inequality E[(X − EX)2] ≤ EX2 and Lemma 2. Then, taking the
expectation conditioned on Fm,M−1 on both sides of eq. (10) yields

E
[
‖θm,M − θ∗‖22

∣∣∣Fm,M−1]
= ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>E

[
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

∣∣∣Fm,M−1]
+ α2E

[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)
∥∥∥2
2

∣∣∣Fm,M−1]
(i)

≤ ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>g(θm,M−1)

+ 2α(θm,M−1 − θ∗)>
(
E
[
gm(θ̃m−1)

∣∣∣Fm,M−1]− g(θ̃m−1)
)

+ 4α2(1 + γ)2 ‖θm,M−1 − θ∗‖22 + 4α2(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2

+ 2α2E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,M−1]
(ii)

≤ ‖θm,M−1 − θ∗‖22 − αλA ‖θm,M−1 − θ
∗‖22 + 2αE

[
ξm(θ̃m−1)

∣∣∣Fm,M−1]
+ 4α2(1 + γ)2 ‖θm,M−1 − θ∗‖22 + 4α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ 2α2E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,M−1]
(iii)

≤ ‖θm,M−1 − θ∗‖22 − [αλA − 4α2(1 + γ)2] ‖θm,M−1 − θ∗‖22 + 4α2(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2

+ 2αE
[
ξm(θ̃m−1)

∣∣∣Fm,M−1]+ 2α2E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,M−1] , (12)

where (i) follows from the fact that E
[
gxjm,M (θ̃m−1)

∣∣∣Fm,M−1] = g(θ̃m−1). In (ii) we define

λA as the absolute value of the largest eigenvalue of matrix (AT + A), which is negative definite
according to Tsitsiklis and Van Roy (1997). In (iii) we define ξm(θ) = (θ − θ∗)>(gm(θ)− g(θ))
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for θ ∈ Rd. Then, by applying eq. (12) iteratively, we have

E
[
‖θm,1 − θ∗‖22

∣∣∣Fm,0]
≤ ‖θm,0 − θ∗‖22 − [αλA − 4α2(1 + γ)2]

M−1∑
i=0

E
[
‖θm,i − θ∗‖22

∣∣∣Fm,0]+ 4Mα2(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2

+ 2αME
[
ξm(θ̃m−1)

∣∣∣Fm,0]+ 2Mα2E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] . (13)

For all 1 ≤ i ≤M , we have

E
[
ξm(θ̃m−1)

∣∣∣Fm,0] = E
[
gm(θ̃m−1)

∣∣∣Fm,0]− g(θ̃m−1)

=
1

M

∑
i∈Bm

E[Axi θ̃m + bxi |Fm,0]− (Aθ̃m + b)

=
[( 1

M

∑
i∈Bm

E[Axi |Fm,0]
)
−A

]
θ̃m +

[( 1

M

∑
i∈Bm

E[bxi |Fm,0]
)
− b
]

= 0.

Then, arranging terms in eq. (13) and using the above fact yield

[αλA − 4α2(1 + γ)2]

M−1∑
i=0

E
[
‖θm,i − θ∗‖22

∣∣∣Fm,0]
≤ [1 + 4Mα2(1 + γ)2]

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ 2Mα2E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] . (14)

Finally, dividing eq. (14) by [αλA − 4α2(1 + γ)2]M on both sides yields

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0]
≤ 1/M + 4α2(1 + γ)2

αλA − 4α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+
2α

λA − 4α(1 + γ)2
E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] .
(15)

Step 2: Bounding the variance error

For any 0 ≤ k ≤ m− 1, we have

E
[∥∥∥gm(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] (16)

= E

∥∥∥∥∥ 1

M

∑
i∈Bm

gxi(θ̃m−1)− g(θ̃m−1)

∥∥∥∥∥
2

2

∣∣∣Fm,0
 =

1

M2
E

∥∥∥∥∥ ∑
i∈Bm

gxi(θ̃m−1)− g(θ̃m−1)

∥∥∥∥∥
2

2

∣∣∣Fm,0


=
1

M2
E

( ∑
i∈Bm

gxi(θ̃m−1)− g(θ̃m−1)
)>( ∑

j∈Bm

gxj (θ̃m−1)− g(θ̃m−1)
)∣∣∣Fm,0


=

1

M2

∑
i∈Bm

∑
j∈Bm

E
[〈
gxi(θ̃m−1)− g(θ̃m−1), gxj (θ̃m−1)− g(θ̃m−1)

〉∣∣∣Fm,0]
=

1

M2

∑
i=j

E
[∥∥∥gxi(θ̃m−1)− g(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0]
=

1

M2

∑
i=j

E
[∥∥∥gxi(θ̃m−1)− E

[
gxi(θ̃m−1)

∣∣∣Fm,0]∥∥∥
2

∣∣∣Fm,0]
≤ 1

M2

∑
i=j

E
[∥∥∥gxi(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,0] ≤ 1

M

(
D1

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+D2

)
, (17)
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where eq. (17) follows from Lemma 4.

Step 3: Iteration over m epoches

First, we substitute eq. (17) into eq. (15) to obtain

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0] ≤ C1

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+
2D2α

(λA − 4α(1 + γ)2)M
, (18)

where we define C1 =
(

4α(1 + γ)2 + 2D1α
2+1

αM

)
1

λA−4α(1+γ)2 .

Taking the expectation of eq. (18) conditioned on Fm−1,0 and following the steps similar to those in

step 1 to upper bound E
[∥∥∥θ̃m−1 − θ∗∥∥∥2

2

∣∣∣Fm−1,0], we obtain

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm−1,0] ≤ C1E
[∥∥∥θ̃m−1 − θ∗∥∥∥2

2

∣∣∣Fm−1,0]+
2D2α

(λA − 4α(1 + γ)2)M

≤ C2
1

∥∥∥θ̃m−2 − θ∗∥∥∥2
2

+
2D2α

(λA − 4α(1 + γ)2)M

1∑
k=0

Ck1 .

Then, by following the above steps for (m− 1) times, we have

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+
2D2α

(λA − 4α(1 + γ)2)M

m−1∑
k=0

Ck1

≤ Cm1
∥∥∥θ̃0 − θ∗∥∥∥2

2
+

2D2α

(1− C1)(λA − 4α(1 + γ)2)M
,

which yields the desirable result.

C PROOF OF THEOREM 2: CONVERGENCE OF VRTD WITH MARKOVIAN
SAMPLES

We define σ(S) to be the σ-field of all sample trajectories {x1, x2, ...} and recall that jm,t is the
index of the sample picked at the t-th iteration in the m-th epoch in Algorithm 2. Then we define a
set of σ-fields in the following incremental way:

F1,0 = σ(S), F1,1 = σ(F1,0 ∪ σ(j1,1)), ..., F1,M = σ(F1,(M−1) ∪ σ(j1,M )),

F2,0 = σ(F1,M ∪ σ(θ̃1)), F21 = σ(F2,0 ∪ σ(j2,1)), ..., F2,m = σ(F2,(M−1) ∪ σ(j2,M )),

...

Fm,0 = σ(F(m−1),M ∪ σ(θ̃m−1)), Fm1 = σ(Fm,0 ∪ σ(jm,1)), ..., Fm,M = σ(Fm,(M−1) ∪ σ(jm,M )).

C.1 PROOF OF LEMMA 1

We first prove Lemma 1, which is useful for step 4 in the main proof in Theorem 2 provided in
Section C.2.

Proof. Recall the definition of the bias term: ξn(θ) = (θ − θ∗)>(gn(θ)− g(θ)). We have

ξn(θ) = (θ − θ∗)>(gn(θ)− g(θ))

= (θ − θ∗)>[(
1

M

nM−1∑
i=(n−1)M

Axi −A)θ + (
1

M

nM−1∑
i=(n−1)M

bxi − b)]

≤ ‖θ − θ∗‖2 ‖θ‖2

∥∥∥∥∥∥ 1

M

nM−1∑
i=(n−1)M

Axi −A

∥∥∥∥∥∥
2

+ ‖θ − θ∗‖2

∥∥∥∥∥∥ 1

M

nM−1∑
i=(n−1)M

bxi − b

∥∥∥∥∥∥
2

≤ 2R2
θ ‖Wn‖F + 2Rθ ‖Vn‖F , (19)
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where Wn = 1
M

∑nM−1
i=(n−1)M Axi − A and Vn = 1

M

∑nM−1
i=(n−1)M bxi − b. Then for any ε > 0, we

have
P (‖Wn‖F ≥ ε|Fn,0) ≤

∑
1≤i≤d

∑
1≤j≤d

P (|Wn,(i,j)| >
ε

d
|Fn,0), (20)

and
P (‖Vn‖F ≥ ε|Fn,0) ≤

∑
1≤i≤d

P (|Vn,i| >
ε√
d
|Fn,0). (21)

To bound eq. (20) and eq. (21), we apply the concentration inequality over Markov chains developed
in Dedecker and Gouëzel (2015). We first introduce such a concentration bound as follows.

Theorem 3 (Dedecker and Gouëzel (2015), Theorem 2). Let {Xn} be an irreducible aperiodic
Markov chain which is geometrically ergodic on a space S . Let π be its stationary distribution. There
exists a constant C0 depending on the Markov chain (see the detailed definition of C0 in Dedecker
and Gouëzel (2015)) with the following property. Let n ∈ N. Let K(x0, · · · , xn−1) be a function of
n variables on Sn. Then for all t > 0,

Pπ(|K(X0, · · · , Xn−1)− EµK(X0, · · · , Xn−1)| > t) ≤ 2e−C
−1
0 t2/

∑
L2
i ,

where µ is the stationary distribution of the Markov chain and 0 ≤ Li < +∞ is a constant that
satisfies:

|K(s0, · · · , xi−1, xi, xi+1, · · · , xn−1)−K(s0, · · · , xi−1, x′i, xi+1, · · · , xn−1)| ≤ Li,
for all 0 ≤ i ≤ n− 1.

Since the MDP in Algorithm 2 satisfies Assumption 3, it satisfies the assumptions in Theorem 3.
Then applying Theorem 3 to each Wn,(i,j) and Vn,i, we have

P (|Wn,(i,j)| >
ε

d
|Fn,0) ≤ 2e

−ε2M
4(1+γ)2C0d

2 , (22)

and

P (|Vn,i| >
ε√
d
|Fn,0) ≤ 2e

−ε2M
4r2maxC0d , (23)

where 0 < C0 <∞ is a constant depending on the MDP parameters. Then, substituting eq. (22) into
eq. (20) and eq. (23) into eq. (21) yield

P (‖Wn‖F ≥ ε|Fn,0) ≤ 2d2e
−ε2M

4(1+γ)2C0d
2 , (24)

and

P (‖Vn‖F ≥ ε|Fn,0) ≤ 2de
−ε2M

4r2maxC0d , (25)
Then we derive the following two bounds:

E[‖Wn‖F |Fn,0] =

∫ +∞

0

P (‖Wn‖F ≥ t|Fn,0)dt

≤ 2d2
∫ +∞

0

e
−t2M

4(1+γ)2C0d
2 dt

= 2(1 + γ)d3
√
πC0

M
, (26)

and

E[‖Vn‖F |Fn,0] =

∫ +∞

0

P (‖Vn‖F ≥ t|Fn,0)dt

≤ 2d

∫ +∞

0

e
−t2M

4r2maxC0d dt

= 2rmaxd
3
2

√
πC0

M
. (27)

Finally, substituting eq. (26) and eq. (27) into eq. (19) yields

E[ξm(θ)] ≤ 4[(1 + γ)R2
θd

3 + rmaxRθd
3
2 ]

√
πC0

M
.
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C.2 PROOF OF THEOREM 2

Step 1: Iteration within the m-th inner loop

For the m-th inner loop, we consider the last update (i.e., the M -th iteration in the epoch), and
decompose its error into the following form.

‖θm,M − θ∗‖22 =
∥∥∥ΠRθ

(
θm,M−1 + α

(
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

))
− θ∗

∥∥∥2
2

≤
∥∥∥θm,M−1 + α(gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1))− θ∗

∥∥∥2
2

= ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>
(
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

)
+ α2

∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)
∥∥∥2
2
. (28)

First, consider the third term in the right-hand side of eq. (28).

∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)
∥∥∥2
2

=
∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)−

[(
gxjm,M (θ̃m−1)− gxjm,M (θ∗)

)
−
(
gm(θ̃m−1)− gm(θ∗)

)]
+ gm(θ∗)

∥∥∥2
2

≤ 3
∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)

∥∥∥2
2

+ 3
∥∥∥(gxjm,M (θ̃m−1)− gxjm,M (θ∗)

)
−
(
gm(θ̃m−1)− gm(θ∗)

)∥∥∥2
2

+ 3 ‖gm(θ∗)‖22 . (29)

Then, by taking the expectation conditioned on Fm,(M−1) on both sides of eq. (29), we have

E
[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

∥∥∥2
2

∣∣∣Fm,M−1]
(i)

≤ 3E
[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)

∥∥∥2
2

∣∣∣Fm,M−1]
+ 3E

[∥∥∥(gxjm,M (θ̃m−1)− gxjm,M (θ∗)
)
− E

[
gxjm,M (θ̃m−1)− gxjm,M (θ∗)|Fm,M−1

]∥∥∥2
2

∣∣∣Fm,M−1]
+ 3E

[
‖gm(θ∗)‖22

∣∣∣Fm,M−1]
≤ 3E

[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ∗)
∥∥∥2
2

∣∣∣Fm,M−1]+ 3E
[∥∥∥gxjm,M (θ̃m−1)− gxjm,M (θ∗)

∥∥∥2
2

∣∣∣Fm,M−1]
(ii)

≤ 3E
[
‖Am,M‖22 ‖θm,M−1 − θ

∗‖22
∣∣∣Fm,M−1]+ 3E

[
‖Am,M‖22

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

∣∣∣Fm,M−1]
+ 3E

[
‖gm(θ∗)‖22

∣∣∣F1,0

]
(iii)

≤ 3(1 + γ)2 ‖θm,M−1 − θ∗‖22 + 3(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2
+ 3E

[
‖gm(θ∗)‖22

∣∣∣F1,0

]
(30)

where (i) follows from the fact that E[
(
gxjm,M (θ̃m−1) − gxjm,M (θ∗)

)
|Fm,M−1] = gm(θ̃m−1) −

gm(θ∗), (ii) follows from the inequality E[(X − EX)2] ≤ EX2, and (iii) follows from Lemma 2.
We further consider the last term in eq. (30):

E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
=

∥∥∥∥∥∥
( 1

M

mM−1∑
i=(m−1)M

Ai

)
θ∗ +

( 1

M

mM−1∑
i=(m−1)M

bi

)∥∥∥∥∥∥
2

2

.
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Then, taking the expectation conditioned on Fm,M−1 on both sides of eq. (28) yields

E
[
‖θm,M − θ∗‖22

∣∣∣Fm,M−1]
≤ ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>E

[
gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + gm(θ̃m−1)

∣∣∣Fm,M−1]
+ α2E

[∥∥∥gxjm,M (θm,M−1)− gxjm,M (θ̃m−1) + g̃m

∥∥∥2
2

∣∣∣Fm,M−1]
(i)

≤ ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>E
[
gxjm,M (θm,M−1)

∣∣∣Fm,M−1]+ 3α2(1 + γ)2 ‖θm,M−1 − θ∗‖22

+ 3α2(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2
+ 3α2E

[
‖gm(θ∗)‖22

∣∣∣F1,0

]
(ii)
= ‖θm,M−1 − θ∗‖22 + 2α(θm,M−1 − θ∗)>g(θm,M−1) + 2αE

[
ξm(θm,M−1)

∣∣∣Fm,M−1]
+ 3α2(1 + γ)2 ‖θm,M−1 − θ∗‖22 + 3α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ 3α2E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
≤ ‖θm,M−1 − θ∗‖22 − [αλA − 3α2(1 + γ)2] ‖θm,M−1 − θ∗‖22 + 3α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ 2αE
[
ξm(θm,M−1)

∣∣∣Fm,M−1]+ 3α2E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
, (31)

where (i) follows by plugging eq. (30) into its preceding step and from the fact that
E
[
gxjm,M (θ̃m−1)− gm(θ̃m−1)

∣∣∣Fm,M−1] = 0. In (ii) we define ξm(θ) = (θ−θ∗)>(gm(θ)−g(θ))

for θ ∈ Rd. Then, by applying eq. (31) iteratively, we have

E
[
‖θm,1 − θ∗‖22

∣∣∣Fm,0]
≤ ‖θm,0 − θ∗‖22 − [αλA − 3α2(1 + γ)2]

M−1∑
i=0

E
[
‖θm,i − θ∗‖22

∣∣∣Fm,0]+ 3Mα2(1 + γ)2
∥∥∥θ̃m−1 − θ∗∥∥∥2

2

+ 2α

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm,0]+ 3Mα2E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
. (32)

Arranging the terms in eq. (32) yields

[αλA − 3α2(1 + γ)2]

M−1∑
i=0

E
[
‖θm,i − θ∗‖22

∣∣∣Fm,0]
≤ [1 + 3Mα2(1 + γ)2]

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ 2α

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm,0]+ 3Mα2E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
.

(33)

Then, dividing eq. (33) by [αλA − 3α2(1 + γ)2]M on both sides, we obtain

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0]
≤ 1/M + 3α2(1 + γ)2

αλA − 3α2(1 + γ)2

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+
2

[λA − 3α(1 + γ)2]M

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm,0]
+

3α

λA − 3α(1 + γ)2
E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
. (34)

For simplicity, let C1 = 1/M+3α2(1+γ)2

αλA−3α2(1+γ)2 , C2 = 2
[λA−3α(1+γ)2]M and C3 = 3α

λA−3α(1+γ)2 . Then we
rewrite eq. (34):

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm,0] ≤ C1

∥∥∥θ̃m−1 − θ∗∥∥∥2
2

+ C2

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm,0]+ C3E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
.

(35)
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Step 2: Iteration over m epochs

Taking the expectation of eq. (35) conditioned on Fm−1,0 and upper-bounding E
[∥∥∥θ̃m−1 − θ∗∥∥∥2

2

]
by following similar steps in the previous steps, we obtained

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣Fm−1,0]
≤ C1E

[∥∥∥θ̃m−1 − θ∗∥∥∥2
2

∣∣∣Fm−1,0]+ C2

M−1∑
i=0

E
[
ξm(θm,i)

∣∣∣Fm−1,0]+ C3E
[
‖gm(θ∗)‖22

∣∣∣F1,0

]
≤ C2

1

∥∥∥θ̃m−2 − θ∗∥∥∥2
2

+ C2

1∑
k=0

Ck1

M−1∑
i=0

E
[
ξm−k(θm−k,i)

∣∣∣Fm−1,0]+ C3

1∑
k=0

Ck1E
[
‖gm−k(θ∗)‖22

∣∣∣F1,0

]
.

By following the above steps for (m− 1) times, we have

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

∣∣∣F1,0

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+ C2

m−1∑
k=0

Ck1

M−1∑
i=0

E
[
ξm−k(θm−k,i)

∣∣∣F1,0

]
+ C3

m−1∑
k=0

Ck1E
[
‖gm−k(θ∗)‖22

∣∣∣F1,0

]
.

(36)

Then taking the expectation of σ(S) (which contains the randomness of the entire sample trajectory)
on both sides of eq. (36) yields

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+ C2

m−1∑
k=0

Ck1

M−1∑
i=0

E [ξm−k(θm−k,i)] + C3

m−1∑
k=0

Ck1E
[
‖gm−k(θ∗)‖22

]
, (37)

where the second term in the right hand side of eq. (37) corresponds to the bias error and the third
term corresponds to the variance error.

Step 3: Bounding the variance error

For any 0 ≤ k ≤ m− 1, we have

‖gm−k(θ∗)‖22 =

∥∥∥∥∥∥ 1

M

(m−k)M−1∑
i=(m−k−1)M

gxi(θ
∗)

∥∥∥∥∥∥
2

2

=
1

M2

( (m−k)M−1∑
i=(m−k−1)M

g>xi(θ
∗)
)( (m−k)M−1∑

j=(m−k−1)M

gxj (θ
∗)
)

=
1

M2

(m−k)M−1∑
i=(m−k−1)M

(m−k)M−1∑
j=(m−k−1)M

g>xi(θ
∗)gxj (θ

∗)

=
1

M2

∑
i=j

‖gxi(θ∗)‖
2
2 +

1

M2

∑
i 6=j

g>xi(θ
∗)gxj (θ

∗)

(i)

≤ G2

M
+

1

M2

∑
i 6=j

g>xi(θ
∗)gxj (θ

∗), (38)

where (i) follows from Lemma 3. Consider the expectation of the second term in eq. (38), which is
given by

1

M2

∑
i 6=j

E[g>xi(θ
∗)gxj (θ

∗)]. (39)
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Without loss of generality, we consider the case when j > i as follows:

E[g>xi(θ
∗)gxj (θ

∗)] = E[E[gxj (θ
∗)|Pi]>gxi(θ∗)]

≤ E[
∥∥E[gxj (θ

∗)|Pi]
∥∥
2
‖gxi(θ∗)‖2]

≤ GE[
∥∥E[gxj (θ

∗)|Pi]
∥∥
2
]

= GE[‖E[(Ajθ
∗ + bj)|Pi]‖2]

≤ GE[‖E[Aj |Pi]θ∗ + E[bj |Pi]‖2]

= GE[‖(E[Aj |Pi]−A)θ∗ + (E[bj |Pi]− b)‖2]

≤ GE[‖(E[Aj |Pi]−A)θ∗‖2 + ‖E[bj |Pi]− b‖2]

≤ GE[‖E[Aj |Pi]−A‖2 ‖θ
∗‖2 + ‖E[bj |Pi]− b‖2]

≤ κG[(1 + γ)Rθ + rmax]ρj−i. (40)

Substituting eq. (40) into eq. (39), we obtain

1

M2

∑
i 6=j

E[g>xi(θ
∗)gxj (θ

∗)] ≤ κG[(1 + γ)Rθ + rmax]

M2

∑
i6=j

ρ|i−j|

≤ κG[(1 + γ)Rθ + rmax]

M2
(2M

dM2 e∑
k=1

ρk)

≤ 2ρκG[(1 + γ)Rθ + rmax]

(1− ρ)M
. (41)

Then substituting eq. (41) into eq. (38) yields

E[‖gm−k(θ∗)‖22] ≤ 1

M

(
G2 +

2ρκG[(1 + γ)Rθ + rmax]

(1− ρ)

)
≤ C4

M
, (42)

where C4 = G2 + 2ρκG[(1+γ)Rθ+rmax]
(1−ρ) . Finally, substituting eq. (42) into the accumulated residual

variance term in eq. (37), we have

C3

m−1∑
k=0

Ck1E
[
‖gm−k(θ∗)‖22

]
≤ C3C4

M

m−1∑
k=0

Ck1 ≤
C3C4

(1− C1)M
. (43)

Step 4: Bounding the bias error using concentration

The bias error is characterized by the proof of Lemma 1 in Section C.1. Substituting the value of C2

into the accumulated bias term in eq. (37) and following Lemma 1 yield

C2

m−1∑
k=0

Ck1

M−1∑
i=0

E [ξm−k(θm−k,i)] ≤
8[(1 + γ)R2

θd
3 + rmaxRθd

3
2 ]

(1− C1)[λA − 3α(1 + γ)2]

√
πC0

M
. (44)

Step 5: Combining all error terms

Finally, substituting eq. (43) and eq. (44) and substituting the values of C2 and C3 into eq. (37), we
have

E
[∥∥∥θ̃m − θ∗∥∥∥2

2

]
≤ Cm1

∥∥∥θ̃0 − θ∗∥∥∥2
2

+
3C4α

(1− C1)[λA − 3α(1 + γ)2]M
+

8[(1 + γ)R2
θd

3 + rmaxRθd
3
2 ]

(1− C1)[λA − 3α(1 + γ)2]

√
πC0

M
,

which yields the desired result.

20


	Introduction
	Our Contributions
	Related Work

	Problem Formulation and Preliminaries
	On-policy Value Function Evaluation
	TD Learning with Linear Function Approximation

	The Variance Reduced TD Algorithm
	VRTD Algorithm korda2015td
	Technical Errors in korda2015td

	Main Results
	Convergence Analysis of VRTD with i.i.d. Samples
	Convergence Analysis of VRTD with Makovian Samples

	Experiments
	Conclusion
	Useful Lemmas
	Proof of Theorem 1: Convergence of VRTD with i.i.d. samples
	Proof of Theorem 2: Convergence of VRTD with Markovian samples
	Proof of Lemma 1
	Proof of Theorem 2


