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ABSTRACT

Multi-hop text-based question-answering is a current challenge in machine com-
prehension. This task requires to sequentially integrate facts from multiple pas-
sages to answer complex natural language questions. In this paper, we propose
a novel architecture, called the Latent Question Reformulation Network (LQR-
net), a multi-hop and parallel attentive network designed for question-answering
tasks that require reasoning capabilities. LQR-net is composed of an association
of reading modules and reformulation modules. The purpose of the reading
module is to produce a question-aware representation of the document. From this
document representation, the reformulation module extracts essential elements to
calculate an updated representation of the question. This updated question is then
passed to the following hop. We evaluate our architecture on the HOTPOTQA
question-answering dataset designed to assess multi-hop reasoning capabilities.
Our model achieves competitive results on the public leaderboard and outper-
forms the best current published models in terms of Exact Match (EM) and F1

score. Finally, we show that an analysis of the sequential reformulations can pro-
vide interpretable reasoning paths.

1 INTRODUCTION

The ability to automatically extract relevant information from large text corpora remains a major
challenge. Recently, the task of question-answering has been largely used as a proxy to evaluate
the reading capabilities of neural architectures. Most of the current datasets for question-answering
focus on the ability to read and extract information from a single piece of text, often composed of
few sentences (Rajpurkar et al., 2016; Nguyen et al., 2016). This has strengthened the emergence
of easy questions in the sense of Sugawara et al. (2018) and influenced the recent state-of-the-art
models to be good at detecting patterns and named entities (Devlin et al., 2018; Yu et al., 2018;
Wang et al., 2017). However they still lack actual reasoning capabilities.

The problem of reasoning requires machine comprehension models to gather and compose over dif-
ferent pieces of evidence spread across multiple paragraphs. In this work, we propose an original
neural architecture that repeatedly reads from a set of paragraphs to aggregate and reformulate infor-
mation. In addition to the sequential reading, our model is designed to collect pieces of information
in parallel and to aggregate them in its last layer. Throughout the model, the important pieces of the
document are highlighted by what we call a reading module and integrated into a representation of
the question via our reformulation module. Our contributions can be summarised as follows:

• We propose a machine reading architecture, composed of multiple token-level attention
modules, that collect information sequentially and in parallel across a document to answer
a question,

• We propose to use an input-length invariant question representation updated via a dynamic
max-pooling layer that compacts information form a variable-length text sequence into a
fixed size matrix,

• We introduce an extractive reading-based attention mechanism that computes the attention
vector from the output layer of a generic extractive machine reading model,
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• We illustrate the advantages of our model on the HOTPOTQA dataset.

The remainder of the paper is organized as follows: Section 2 presents the multi-hop machine read-
ing task, and analyses the required reasoning competencies. In Section 3, we detail our novel reading
architecture and present its different building blocks. Section 4 presents the conducted experiments,
several ablation studies, and qualitative analysis of the results. Finally, Section 5 discusses related
work.

Our code to reproduce the results is publicly available at (removed for review).

2 TEXT-BASED QUESTION-ANSWERING AND MACHINE REASONING

Figure 1: Examples of reasoning paths to answer two questions of the HOTPOTQA dataset. In this
picture, we do not display the full paragraphs, but only the supporting facts.

The task of extractive machine reading can be summarized as follows: given a document D and
a question Q, the goal is to extract the span of the document that answers the question. In this
work, we consider the explainable multi-hop reasoning task described in Yang et al. (2018) and its
associated dataset: HOTPOTQA . We focus our experiments on the ”distractor” configuration of
the dataset. In this task, the input document D is not a single paragraph but a set of ten paragraphs
coming from different English Wikipedia articles. Answering each question requires gathering and
integrating information from exactly two paragraphs; the eight others are distractors selected among
the results of a tf-idf retriever (Chen et al., 2017). These required paragraphs are called the gold
paragraphs. There are two types of questions proposed in this dataset: extractive ones where the
answer is a span of text extracted from the document and binary yes/no questions. In addition to
the answer, it is required to predict the sentences, also called supporting facts, that are necessary
to produce the correct answer. This task can be decomposed in three subtasks: (1) categorize the
answer among the three following classes: yes, no, text span, (2) if it is a span, predict the start
and end positions of this span in the document, and (3) predict the supporting sentences required to
answer the question.

Among the competencies that multi-hop machine reading requires, we identify two major reasoning
capabilities that human readers naturally exploit to answer these questions: sequential reasoning
and parallel reasoning. Sequential reasoning requires reading a document, seeking a piece of in-
formation, then reformulating the question and finally extracting the correct answer. This is called
multi-hop question-answering and refers to the bridge questions in HOTPOTQA . Another reason-
ing pattern is parallel reasoning, required to collect pieces of evidence for comparisons or question
that required checking multiple properties in the documents. Figure 1 presents two examples from
HOTPOTQA that illustrate such required competencies. We hypothesize that these two major rea-
soning patterns should condition the design of the proposed neural architectures to avoid restricting
the model to one or the other reasoning skill.

3 THE MODEL

In this section, we describe the Latent Question Reformulation Network (LQR-net), shown in Figure
2. This multi-hop model is designed as an association of four modules: (1) an encoding module, (2)
a reading module, (3) a question reformulation module, and (4) an answering module. (1) and (4)
are input and output modules, whereas (2) and (3) constitute a hop, and are repeated respectively T
and T − 1 times: the answering module does not require a last reformulation step.

Given a document and a question, the reading module is in charge of computing a question-aware
representation of the document. Then, the reformulation module extracts essential elements from
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Figure 2: Overview of LQR-net with K parallel heads and T sequential reading modules. In this
architecture, a latent representation of the question is sequentially updated to perform multi-hop
reasoning. K independent reading heads collect pieces of information before feeding them to the
answering module. Sections 3 present the different building blocks of this end-to-end trainable
model.

this document representation and uses them to update a representation of the question in a latent
space. This reformulated question is then passed to the following hop.

The model can have multiple heads, as in the Transformer architecture (Vaswani et al., 2017). In
this case, the iterative mechanism is performed several times in parallel in order to compute a set
of independent reformulations. The final representations of the document produced by the different
heads are eventually aggregated before being fed to the answering module. This module predicts
the answer and the supporting facts from the document. The following parts of this section describe
each module that composes this model.

Note: The model is composed of K independent reading heads that process the document and
question in parallel. To not overload the notations of the next parts, we do not subscript all the
matrices by the index of the head and focus on the description of one. The aggregation process of
the multi-head outputs is explained in Section 3.5.

3.1 ENCODING MODULE

We adopt a standard representation of each token by using the pre-trained parametric language model
BERT (Devlin et al., 2018). Let a document D = {p1, p2, . . . , p10} be the set of input paragraphs,
of respective lengths {n1, . . . , n10}, associated to a question Q of length L. These paragraphs
are independently encoded through the pre-trained BERT model. Each token is represented by its
associated BERT hidden state from the last layer of the model. The tokens representations are
then concatenated to produce a global representation of the set of 10 paragraphs of total length
N =

∑10
i=1 ni. The representations are further passed through a Bidirectional Gated Recurrent Unit

(BiGRU) (Cho et al., 2014) to produce the final representation of the document ED ∈ RN×2h and
question EQ ∈ RL×2h, where h is the hidden state dimension of the BiGRUs.

EQ = BiGRU(BERT(Q)), ED = BiGRU([BERT(p1); . . . ;BERT(p10)]), (1)

where [; ] is the concatenation operation.
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To compute the first representation of the question U (0), we use an interpolation layer to map
EQ ∈ RL×2h to U (0) ∈ RM×2h where M is an hyperparameter of the model. Intuitively, RM×2h

corresponds to the space allocated to store the representation of the question and its further reformu-
lations. It does not depend on the length of the original question L.

3.2 READING MODULE

Our model is composed of T hops of reading that sequentially extract relevant information from a
document regarding the current reformulation of the question. At step t, given a representation of
the reformulated question U (t) ∈ RM×2h and a representation of the document ED ∈ RN×2h, this
module computes a question-aware representation of the document. This module is a combination
of two layers: a document-question attention followed by a document self-attention.

Document-Question Attention: We first construct the interaction matrix between the document
and the current reformulation of the question S ∈ RN×M as:

Si,j = w1E
D
i,: +w2U

(t)
j,: +w3(E

D
i,: �U

(t)
j,: ), (2)

where w1,w2,w3 are trainable vectors of R2h and � the element-wise multiplication. Then, we
compute the document-to-question attention Cq ∈ RN×2h :

Pi,j =
exp(Si,j)∑M
k=1 exp(Si,k)

, Cq
i,: =

M∑
j=1

Pi,jU
(t)
j,: . (3)

And the question-to-document attention qc ∈ RN :

mi = max
j∈{1,...,M}

Si,j , p = softmax(m), qc =

M∑
j=1

pjE
D
j,:. (4)

Finally, we compute the question-aware representation of the document X(t) ∈ RN×8h:

X
(t)
i,: = [ED

i,:;C
q
i,:;E

D
i,: �Cq

i,:; q
cCq

i,:], (5)
where [;] concatenation operation. Finally, we use a last BiGRU that reduces the dimension of
X(t) to N × 2h. This specific attention mechanism was first introduced in the Bidirectional
Attention Flow model of Seo et al. (2017). We hypothesize that such token-level attention will
produce a finer-grained representation of the document compared to sentence-level attention used
in state-of-the-art Memory Network architectures.

Document Self-Attention: So far, the contextualization between the ten paragraphs has only be
done by the BiGRUs of equation 1. One limitation of the current representation of the document
is that each token has very limited knowledge of the other elements of the context. To deal with
long-range dependencies, we apply this same attention mechanism between the question-aware rep-
resentation of the document, X(t), and itself to produce the reading module output V ∈ RN×2h.
This self-contextualization of the document has been found useful in our experiments as presented
in the ablation analysis of Section 4.3.

3.3 QUESTION REFORMULATION MODULE

A reformulation module t takes as input the output of the previous attention module V (t), the pre-
vious representation of the reformulated question U (t), and an encoding of the document ED. It
produces an updated reformulation of the question U (t+1).

Reading-based Attention: Given V (t) we compute p(t)s ∈ RN and p(t)e ∈ RN using two BiGRUs
followed by a linear layer and a softmax operator. They are computed from:

Y (t)s = BiGRU(V (t))

p(t)s = softmax(wsY
(t)s)

Y (t)e = BiGRU(Y (t)s)

p(t)e = softmax(weY
(t)e),

(6)
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where weand ws are trainable vectors of Rh. The two probability vectors p(t)s and p(t)e are not
used to predict an answer but to compute a reading-based attention vector a(t) over the document.
Intuitively, these probabilities represent the belief of the model at step t of the probability for each
word to be the beginning and the end of the answer span. We define the reading-based attention of
a token as the probability that the predicted span has started before this token and will end after. It
can be computed as follows:

a
(t)
i =

( i∑
k=0

p
(t)s
k

)( N∑
k=i

p
(t)e
k

)
. (7)

Finally, we use these attention values to re-weight each token of the document representation. We
compute Ẽ(t)D ∈ RN×2h with:

Ẽ
(t)D
i,j = a

(t)
j ED

i,j . (8)

Dynamic Max-Pooling: This layer aims at collecting the relevant elements of Ẽ(t)D to add to the
current representation of dimension M × 2h. We partition the row of the initial sequence into M
approximately equal parts. It produces a grid of M × 2h in which we apply a max-pooling operator
in each individual window. As a result, a matrix of fixed dimension adequately represents the input,
preserving the global structure of the document, and focusing on the important elements of each
region. This can be seen as an adaptation of the dynamic pooling layer proposed by Socher et al.
(2011).

Formally, let Ẽ(t)D be the input matrix representation, we dynamically compute the kernel size,
w, of the max-pooling according to the length of the input sequence and the required output shape:
w = dNM e, d·e being the ceiling function. Then the output representation of this pooling layer will
be O(t) ∈ RM×2h where

O
(t)
i,j = max

k∈{iw,...,(i+1)w}
(Sk,j). (9)

Finally, to compute the updated representation of the question U (t+1) ∈ RM×2h, we sum U (t) and
O(t).

3.4 ANSWERING MODULE

The answering module is a sequence of four BiGRUs, each of them followed by a fully connected
layer. Their respective goal is to supervise (1) the supporting facts psf, (2) the answer starting and (3)
ending probabilities, pe, ps, of each word of the document. (4) The last layer is used as a three-way
classifier to predict pc the probability of the answer be classified as yes, no or a span of text.

Y sf = BiGRU(V (t))
Y s = BiGRU(Y sf)

ps = softmax(wsY
s)

Y e = BiGRU(Y s)

pe = softmax(weY
e)

Y c = BiGRU(Y e)

pc = softmax(wcY
c)

(10)

where ws ∈ Rh,we ∈ Rh,Wc ∈ Rh×3 are trainable parameters.

To predict the supporting facts, we construct a sentence based representation of the document. Each
sentence is represented by the concatenation of its starting and ending supporting fact tokens from
Y sf. We compute psf

i,j the probability of sentence j of example i of being a supporting fact with a
linear layer followed by a sigmoid function.

3.5 MULTI-HEAD VERSION

We define a multi-head version of the model. In this configuration, we use a set of independent
parallel heads. All heads are composed of the same number of reading and reformulation modules.
Each head produces a representation V

(T )
k of the document. We finally sum these K matrices to

compute the input of the answering block.
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3.6 TRAINING

We jointly optimize the model on the three subtasks (supporting facts, span position, classifier
yes/no/span) by minimising a linear combination of the supporting facts loss Lsf, the span loss
Lspan and the class loss Lclass. Let Nd be the number of examples in the training dataset. Lsf(θ) is
defined by:

Lsf(θ) =
1

Nd

Nd∑
i

1

nbsi

nbsi∑
j

(psf
i,j − y

(1)
i,j )

2, (11)

where nbsi corresponds to the number of sentences in the document i. y(1)i,j being 1 if the sentence j
of the document i is a supporting fact otherwise 0.

Selecting the answer in multi-hop reading datasets is a weakly supervised task. Indeed, similarly to
the observations of Min et al. (2019a) for open-domain question-answering and discrete reasoning
tasks, it is frequent for a given answer of HOTPOTQA to appear multiple times in its associated
document. In our case, we assume that all the mentions of the answer in the supporting facts are
related to the question. We tag as a valid solution, the start and end positions of all occurrences of
the answer in the given supporting facts.

Lspan(θ) is defined by:

Lspan(θ) =
1

Nd

Nd∑
i

1

2
DKL(p

s
i‖y

(2)
i ) +DKL(p

e
i‖y

(3)
i ) (12)

where y(2)i ∈ RN , y
(3)
i ∈ RN are vectors containing the value 1/ni at the start, end positions of all

the occurrences of the answer, 0 otherwise; ni being the number of occurrences of the answer in the
context.

Lclass(θ) is defined by:

Lclass(θ) = −
1

Nd

Nd∑
i

log(pc
i,y

(4)
i

), (13)

where y(4)i corresponds to the index of the label of the question type {yes, no, span}. We finally
define the training loss as follows:

L(θ) = Lclass(θ) + αLspan(θ) + βLsp(θ), (14)

where α and β are hyperparameters tuned by cross-validation.

4 EXPERIMENTS

4.1 DATA AUGMENTATION

In the original HOTPOTQA dataset, the two gold paragraphs required to answer a given question
come with eight distractor paragraphs. These eight distractor paragraphs, collected from Wikipedia,
are selected among the results of a bigram tf-idf retriever (Chen et al., 2017) using the question as
the query. As an augmentation strategy, we created additional ”easier” examples by combining the
two gold paragraphs with eight other paragraphs randomly selected in the dataset. For each example
of the original training set, we generate an additional ”easier” example. These examples are shuffled
in the dataset.

4.2 IMPLEMENTATION DETAILS

Our model is composed of 3 parallel heads (K = 3) each of them composed of two reading modules
and one reformulation module (T = 2). We set the hidden dimension of all the GRUs to d = 80. We
use M = 100 to allocate a space of R100×160 to store the question and its reformulations. We use
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Model Answer Sup Fact Joint

EM F1 EM F1 EM F1

LQR-net (our) 60.20 73.78 56.21 84.09 36.56 63.68
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82

QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16

DecompRC (Min et al., 2019b) 55.20 69.63 N/A N/A N/A N/A
Self-Assembling NMN (Jiang & Bansal, 2019) 49.58 62.71 N/A N/A N/A N/A

Table 1: Performance comparison on the private test set of HOTPOTQA in the distractor setting.
We compare our model, in term of Exact Match and F1 scores, against the published models at the
time of submission (September 25th). Our submission is tagged as LQR-net 2 + BERT-Base (single
model) on the official leaderboard (https://hotpotqa.github.io/).

pre-trained BERT-base-cased model (Devlin et al., 2018) and adapt the implementation of Hugging
Face1 to compute embedding representations of documents and questions. We optimize the network
using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 1e−4. We set α to 1
and β to 10. All these parameters have been defined through cross-validation.

4.3 RESULTS AND ABLATION ANALYSIS

Table 1 presents the performance of our LQR-net on the distractor setting of the HOTPOTQA dataset.
We compare our model against the published approaches evaluated on the HOTPOTQA dataset. We
can see from this table that our model achieves strong performance on the answer prediction task. It
outperforms the current best model by 3.9 points of EM and 4.1 points of F1 score. Our model also
achieves competitive performance for the evidence extraction task. The LQR-net achieves state-of-
the-art performance on the joint task improving the best published approaches by 2.9 points on EM
and 3.9 points of F1.

Model Answer Sup Fact Joint

EM F1 EM F1 EM F1

LQR 60.0 74.1 55.8 83.9 36.5 64.0
- Data aug 59.3 73.4 52.8 84.2 34.4 63.6
CE Loss 59.6 73.6 52.7 83.5 34.4 63.2

K = 1 59.2 73.2 48.9 83.8 31.6 63.0
- Self-Att 53.4 66.8 48.9 79.2 30.1 55.7

T = 1 53.4 67.2 48.3 78.2 28.8 55.1
M = 1 51.8 65.2 42.1 72.1 25.8 50.7

Table 2: Comparison of different architectures and model choices against the best configuration on
the development set of HotpotQA.

To evaluate the impact of the different components of our model, we perform an ablation analysis.
Table 2 presents the results of this analysis.

Impact of sequential and parallel reading: We study the contributions of the sequentiality in the
model and of the multiple parallel heads. We compare our model to a similar architecture without
the sequential reformulation (T = 1). We find that this sequential association of reading modules
and reformulation modules is a critical component. F1 score decreases by 6.9 points for the answer
prediction task and 5.7 points for the evidence extraction task when the model does not have the
capability to reformulate the question.

1https://github.com/huggingface/pytorch-transformers
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The impact of the parallel heads is more limited than the sequentiality but still remains significant.
Indeed, the configuration that uses only a single head (K = 1) stands 1 F1 points below the best
model on the joint metric.

Weak supervision of the answer: In this work, we propose to label as positive all occurrences of
the answer in the supporting facts. We compare this configuration to the standard approach, where
only the first occurrence of the answer is labeled as positive and the others as negative. In this last
configuration, the span loss corresponds to a cross-entropy loss (CE loss) between the predicted start
and end probabilities and the target positions. This decreases the joint F1 score by 0.8 points.

Impact of the self-attention layer: We study the impact of the self-attention layer in the reading
module. We found that this self-attention layer is an essential component in the reading process.
Indeed, when we omit this layer, the F1 score decreases by 8.3 points on the joint metric. This out-
lines the necessity to be able to propagate long-range information between the different paragraphs
and not only in the local neighborhood of a token. Compared to previously proposed approaches,
this layer does not rely on any handcrafted relationship across words.

Question as a single vector: Finally, we study the case where the question representation is reduced
to a vector of R2h (M = 1). This configuration achieves the worst results of our analysis, dropping
the joint F1 score by 13.3 points and highlights the importance of preserving a representation of the
question as a matrix to maintain its meaning.

4.4 QUALITATIVE ANALYSIS

Figure 3: Distribution of the probabilities for each word to be part of the predicted span, before the
first reformulation module and in the answering module. We display the reading-based attention
computed in Equation 7 and the reading-based attention computed from ps and pe from Equation
10. In these examples, we show only the supporting facts.

Question Reformulation and Reasoning Chains: Because our model reformulates the question in
a latent space, we cannot directly visualize the text of the reformulated question. However, one way
to assess the effectiveness of this reformulation is to analyze the evolution of ps and pe across the
two hops of the model. We present in Figure 3 an analysis of the evolution of these probabilities
on two bridge samples of the development dataset. We display the reading-based attention, that
corresponds to the probabilities for each word to be part of the predicted span, computed from ps

and pe in Equation 7. These examples show this attention before the first reformulation of the
question and in the answering module.

From these observations, we can see that the model tends to follow a natural reasoning path to
answer bridge questions. Indeed, before the first reformulation module, the attentions tend to focus
on the first step of reasoning. For the question ”What award did the writer of Never Let Me Go novel
win in 1989?”, the model tends to focus on the name of the writer at the first step, before jumping the
award description in the second step. Similarly, for the question ”What is the population according
to the 2007 population census of the city in which the National Archives and Library of Ethiopia is
located?” we can see the model focusing on Addis Ababa at the first step, i.e the name of the city
where the National Archives and Library of Ethiopia are located and then jumping to the population
of this city in the next hop. We display more visualizations of the sequential evolution of the answer
probabilities in Appendix A.
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Limitations: We manually examine one hundred errors produced by our multi-step reading archi-
tecture on the development set of HOTPOTQA . We identify three recurrent cases of model failure:
(1) the model stops at the first hop of required reasoning, (2) the model fails at comparing two prop-
erties, and (3) the answer does not match all the requirements of the question. We illustrate these
three recurrent types of error with examples from the dataset in Appendix B.

During this analysis of errors, we found that in only 3% of the cases, the answer is selected among
one of the distractor paragraphs instead of a gold one. Our architecture successfully detects the rele-
vant paragraphs regarding a question even among similar documents coming from a tf-idf retriever.
Moreover, there are no errors where the model produces a binary yes/no answer instead of extracting
a text span and vice versa. Identifying the type of question is not challenging for the model. This
might be explained by the question’s ”patterns” that are generally different between binary yes/no
and extractive questions.

5 RELATED WORK

Multi-hop Machine Comprehension: The question-answering task has recently increased its pop-
ularity as a way to assess machine reading comprehension capabilities. The emergence of large
scale datasets such as CNN/Daily Mail, (Hermann et al., 2015), SQuAD (Rajpurkar et al., 2016) or
MSMARCO (Nguyen et al., 2016) have encouraged the development of multiple machine reading
models (Devlin et al., 2018; Wang et al., 2018; Tan et al., 2017). These models are mainly com-
posed of multiple attention layers that update the representation of the document conditioned by a
representation of the question.

However, most of this work focuses on the ability to answer questions from a single paragraph,
often limited to a few sentences. Weston et al. (2015a); Joshi et al. (2017) were the first attempts to
introduce the task of multi-documents question-answering. QAngaroo (Welbl et al., 2018) is another
dataset designed to evaluate multi-hop reading architectures. However, state-of-the-art architectures
on this task (Zhong et al., 2019; Cao et al., 2019) tend to exploit the structure of the dataset by using
the proposed candidate spans as an input of the model.

Recently, different approaches have been developed for HOTPOTQA focusing on the multiple chal-
lenges of the dataset. Nishida et al. (2019) focuses on the evidence extraction task and highlight
its similarity with the extractive summarization task. Related works also focus on the interpretation
of the reasoning chain with an explicit decomposition of the question (Min et al., 2019b) or a de-
composition of the reasoning steps (Jiang & Bansal, 2019). Other models like Qiu et al. (2019) aim
at integrating a graph reasoning type of attention where the nodes are recognized by a BERT NER
model over the document. Moreover, this model leverages on handcrafted relationships between
tokens. Related multi-hop reasoning work was also performed by Bauer et al. (2018) as a way to
integrate prior knowledge in a generative model.

Memory Networks: Memory networks are a generic type of architecture Weston et al. (2015b);
Sukhbaatar et al. (2015); Miller et al. (2016) designed to iteratively collect information from memory
cells using attention mechanism. They have been used to read from sentences, paragraphs, and
knowledge bases. In these models, the answer layer uses the last value of the controller to predict
the answer. Two main differences with our architecture are the representation of the controller and
the associated attention mechanism. Indeed, in these models, the controller is reduced to a single
vector, and the attention mechanism is based on a simple dot-product between each token of the
document and the representation of the controller. We utilize a token-level attention mechanism
compared to the sentence-level one, classically used in Memory Networks.

Transformer Networks: The transformer architecture has been introduced by Vaswani et al. (2017)
in the context of machine translation. It is mainly composed of attention layers in both the encoder
and the decoder module. The transformer networks introduced the so-called multi-head attention,
consisting of several attention layers running in parallel. This multi-head attention allows the model
to concurrently access information from different representations of the input vector. Inspired by
this work, we designed our multi-head module to read in parallel into different representations of
the document while solely accumulate information into the representation of the question.
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6 CONCLUSION

In this paper, we propose a novel multi-hop reading model designed for question-answering tasks
that explicitly require reasoning capabilities. We have designed our model to gather information
sequentially and in parallel from a given set of paragraphs to answer a natural language question.
Our neural architecture, uses a sequence of token-level attention mechanisms to extract relevant
information from the paragraphs and update a latent representation of the question. Our proposed
model achieves competitive results on the HOTPOTQA reasoning task and performs better than the
current best published approach in terms of both Exact Match and F1 score. In addition, we show
that an analysis of the sequential attentions can possibly provide human-interpretable reasoning
chains.
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Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and compre-
hend. In Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 1693–1701, 2015. URL http://papers.nips.cc/paper/
5945-teaching-machines-to-read-and-comprehend.

Yichen Jiang and Mohit Bansal. Self-assembling modular networks for interpretable multi-hop
reasoning. CoRR, abs/1909.05803, 2019. URL http://arxiv.org/abs/1909.05803.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp. 1601–1611.

10

https://aclanthology.info/papers/D18-1454/d18-1454
https://aclanthology.info/papers/D18-1454/d18-1454
https://www.aclweb.org/anthology/N19-1240/
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://www.aclweb.org/anthology/D14-1179/
https://www.aclweb.org/anthology/D14-1179/
http://arxiv.org/abs/1810.04805
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://arxiv.org/abs/1909.05803


Under review as a conference paper at ICLR 2020

Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1147. URL https:
//doi.org/10.18653/v1/P17-1147.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. In Jian Su, Xavier
Carreras, and Kevin Duh (eds.), Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp.
1400–1409. The Association for Computational Linguistics, 2016. URL http://aclweb.
org/anthology/D/D16/D16-1147.pdf.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and Luke Zettlemoyer. A discrete hard EM
approach for weakly supervised question answering. CoRR, abs/1909.04849, 2019a. URL
http://arxiv.org/abs/1909.04849.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop reading compre-
hension through question decomposition and rescoring. In Anna Korhonen, David R. Traum,
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A SEQUENTIAL EVOLUTION OF THE ANSWER SPAN PROBABILITIES

This section includes examples from the HOTPOTQA development set that illustrate the evolution of
the probabilities for each word to be part of the predicted span, before the first reformulation module
and in the answering module presented in Section 4.4. For each example, we show only the text of
the two gold paragraphs. identifies the supporting facts in these visualizations.
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B ERROR ANALYSIS

This section includes examples from the HOTPOTQA development set that illustrate the categories of
errors presented in Section 4.4. For each example, we show only the text of the two gold paragraphs.

identifies the supporting facts in these visualizations.

The model stops at the first hop of required reasoning:

The model fails at comparing two properties:
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The answer does not match all the requirements of the question:
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