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ABSTRACT

There are two main lines of research on visual reasoning: neural module net-
work (NMN) with explicit multi-hop reasoning through handcrafted neural mod-
ules, and monolithic network with implicit reasoning in the latent feature space.
The former excels in interpretability and compositionality, while the latter usually
achieves better performance due to model flexibility and parameter efficiency. In
order to bridge the gap of the two, we present Meta Module Network (MMN), a
novel hybrid approach that can efficiently utilize a Meta Module to perform versa-
tile functionalities, while preserving compositionality and interpretability through
modularized design. The proposed model first parses an input question into a
functional program through a Program Generator. Instead of handcrafting a task-
specific network to represent each function like traditional NMN, we use Recipe
Encoder to translate the functions into their corresponding recipes (specifications),
which are used to dynamically instantiate the Meta Module into Instance Modules.
To endow different instance modules with designated functionality, a Teacher-
Student framework is proposed, where a symbolic teacher pre-executes against
the scene graphs to provide guidelines for the instantiated modules (student) to
follow. In a nutshell, MMN adopts the meta module to increase its parameter-
ization efficiency, and uses recipe encoding to improve its generalization ability
over NMN. Experiments conducted on the GQA benchmark demonstrates that: ()
MMN achieves significant improvement over both NMN and monolithic network
baselines; (i¢) MMN is able to generalize to unseen but related functions.

1 INTRODUCTION

Visual reasoning requires a model to learn strong compositionality and generalization abilities, i.e.,
understanding and answering compositional questions without having seen similar semantic com-
positions before. Such compositional visual reasoning is a hallmark for human intelligence that
endows people with strong problem-solving skills given limited prior knowledge. Recently, neural
module networks (NMNs) (Andreas et al., 2016aib; |[Hu et al., 2017; Johnson et al., [2017b; Hu et al.,
2018; Mao et al., [2019) have been proposed to perform such complex reasoning tasks. First, NMN
needs to pre-define a set of functions and explicitly encode each function into unique shallow neural
networks called modules, which are composed dynamically to build an instance-specific network for
each input question. This approach has high compositionality and interpretability, as each module
is specifically designed to accomplish a specific sub-task and multiple modules can be combined to
perform unseen combinations during inference. However, with increased complexity of the task, the
set of functional semantics and modules also scales up. As observed in|Hudson & Manning| (2018)),
this leads to higher model complexity and poorer scalability on more challenging scenarios.

Another line of research on visual reasoning is focused on designing monolithic network architec-
ture, such as MFB (Yu et al.,|2017), BAN (Kim et al.,[2018)), DCN (Nguyen & Okatani, 2018), and
MCAN (Yu et al.} 2019). These black-box methods have achieved state-of-the-art performance on
more challenging realistic image datasets like VQA (Hudson & Manning} 2019a), surpassing the
aforementioned NMN approach. They use a unified neural network to learn general-purpose rea-
soning skills (Hudson & Manning, 2018)), which is known to be more flexible and scalable without
making strict assumption about the inputs or designing operation-specific networks for the pre-
defined functional semantics. As the reasoning procedure is conducted in the latent feature space,
the reasoning process is difficult to interpret. Such a model also lacks the ability to capture the
compositionality of questions, thus suffering from poorer generalizability than module networks.
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Figure 1: The model architecture of Meta Module Network: the lower part describes how the ques-
tion is translated into programs and instantiated into operation-specific modules; the upper part
describes how execution graph is built based on the instantiated modules.

Motivated by this, we propose a Meta Module Network (MMN) to bridge the gap, which preserves
the merit of interpretability and compositionality of traditional module networks, but without requir-
ing strictly defined modules for different semantic functionality. As illustrated in instead
of handcrafting a shallow neural network for each specific function like NMNs, we propose a flexi-
ble meta (parent) module g(x, *) that can take a function recipe f as input and instantiates a (child)
module gy () = g(x, f) to accomplish the functionality specified in the recipe. These instantiated
modules with tied parameters are used to build an execution graph for answer prediction. The in-
troduced meta module empowers the MMN to scale up to accommodate a larger set of functional
semantics without adding complexity to the model itself. To endow each instance module with the
designated functionality, we introduce module supervision to enforce each module g () to imitate
the behavior of its symbolic teacher learned from ground-truth scene graphs provided in the training
data. The module supervision can dynamically disentangle different instances to accomplish small
sub-tasks to maintain high compositionality.

Our main contributions are summarized as follows. (i) We propose Meta Module Network for
visual reasoning, in which different instance modules can be instantiated from a meta module. (i7)
Module supervision is introduced to endow different functionalities to different instance modules.
(#21) Experiments on GQA benchmark validate the outperformance of our model over NMN and
monolithic network baselines. We also qualitatively provide visualization on the inferential chain
of MMN to demonstrate its interpretability, and conduct experiments to quantitatively showcase the
generalization ability to unseen functional semantics.

2 META MODULE NETWORK

The visual reasoning task (Hudson & Manning},[20194)) is formulated as follows: given a question )
grounded in an image I, where Q = {q1,- - , ga } With g; representing the i-th word, the goal is to
select an answer a € A from a set A of possible answers. During training, we are provided with an
additional scene graph G for each image I, and a functional program P for each question (). During
inference, scene graphs and programs are not provided.

provides an overview of Meta Module Network (MMN), which consists of three com-
ponents: (i) Visual Encoder (Sec. 2.I), which consists of self-attention and cross-attention layers
on top of an object detection model, transforming an input image into object-level feature vectors;
(44) Program Generator (Sec. [2.2)), which generates a functional program from the input question;
(¢27) Meta Module (Sec. @), which can be instantiated to different instance modules to execute the
program for answer prediction. The following sub-sections describe each component in detail.
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Figure 2: Architecture of the Coarse-to-fine Program Generator: the left part depicts the coarse-to-
fine two-stage generation; the right part depicts the resulting execution graph.

2.1 VISUAL ENCODER

The Visual Encoder is based on a pre-trained object detection model (Ren et al., [2015} |Anderson
et al., 2018)) that extracts from image I a set of regional features R = {ri}lf.vzl, where r; € RV,
N denotes the number of region of interest, and D, denotes the feature dimension. Similar to a
Transformer block (Vaswani et all [2017), we first use two self-attention networks, SA, and SA,,

to encode the question and the regional features as Q= SA,(Q,Q;¢) and R = SA,(R,R;¢),

respectively, where Q e RM*D R e RN*P and D is the network’s hidden dimension. Based
on this, a cross-attention network C'A is applied to use the question as guidance to refine the visual
features into V = C’A(f{, Q; #) € RV*P where Q is used as the query vector, and ¢ denotes all
the parameters in the Visual Encoder. The attended visual features V will then be fed into the meta
module, detailed in Sec.[2.3] We visualize the encoder in the Appendix for better illustration.

2.2 PROGRAM GENERATOR

Similar to other programming languages, we define a set of syntax rules for building valid programs
and a set of semantics to determine the functionality of each program. Specifically, we define a set of
functions F with their fixed arity ny € {1,2, 3,4} based on the semantic string provided inHudson
& Manning| (2019a). The definitions for all the functions are provided in the Appendix. The defined
functions can be divided into 10 different categories based on their abstract semantics (e.g., “relate,
verify, filter”), and each abstract function type is further implemented with different realizations
depending on their arguments (e.g., “verify_attribute, verify_geometric, verify_relation”).

In total, there are 48 different functions defined, whose returned values could be List of Objects,
Boolean or String. A program P is viewed as a sequence of function calls fi,-- - , fr. For example,
in[Figure 2] foisRelate ([1], beside, boy), the functionality of which is to find a boy who
is beside the objects returned by f; : Select (ball). Formally, we call Relate the “function
name”, [1] the “dependency”, and beside, boy the “arguments”. By exploiting the dependency
relationship between functions, we build an execution graph for answer prediction.

In order to generate syntactically plausible programs, we follow Dong & Lapatal (2018) and
adopt a coarse-to-fine two-stage generation paradigm, as illustrated in Specifically, the
Transformer-based program generator (Vaswani et al.,|2017) first decodes a sketch containing only
function names, and then fills the dependencies and arguments into the sketch to generate the pro-
gram P. Such a two-stage generation process helps guarantee the plausibility and grammaticality
of synthesized programs. We apply the known constraints to enforce the syntax in the fine-grained
generation stage. For example, if function Filter is sketched, we know there are two tokens re-
quired to complete the function. The first token should be selected from the dependency set ([11],
[2], ...), while the second token should be selected from the attribute set (e.g., color, size).
With these syntactic constraints, our program synthesizer can achieve a 98.8% execution accuracy.

2.3 META MODULE

Instead of learning a full inventory of task-specific modules for different functions as in NMN (An-
dreas et al.l |2016b), we design an abstract Meta Module that can instantiate a generic meta mod-
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Figure 3: Illustration of the instantiation process for “Relate” and “Filter” functions.

ule into instance modules based on an input function recipe, which is a set of pre-defined key-
value pairs specifying the properties of the function. As exemplified in when taking
Function:relate; Geometric:to the left as the input, the Recipe Embedder pro-
duces a recipe vector to transform the meta module into a “geometric relation” module, which can
search for target objects that the current object is to the left of.

Two-layered Attention: The left part of demonstrates the computation flow in Meta Mod-
ule based on multi-head attention network (Vaswani et all [2017). Specifically, a Recipe Embedder
encodes a function recipe into a real-valued vectorry € RP. In the first attention layer, r 1 is fed into
an attention network gy as the query vector to incorporate the output (01.x) of neighbor modules
on which the current module is dependent. The intermediate output (o4) from this attention layer
is further fed into a second attention network g, to incorporate the visual representation V of the
image. The final output from the is denoted as g(r s, 61.x, V) = gv(ga(rs, 61.x), V).

Instantiation & Execution: Here is how the instantiation process of Meta Module works. First, we
feed a function f to instantiate the meta module g into an instance module g (61.x, V; ¢), where ¢
denotes the parameters of the meta module. The instantiated module is then used to build the execu-
tion graph on the fly as depicted in Each module g outputs o( f) € R”, which acts as the
message passed to its neighbor modules. For brevity, we use o( f;) to denote the MMN’s output at
the i-th function f;. The final output o( f1,) of function f;, will be fed into a softmax-based classifier
for answer prediction. During training, we optimize the parameters ¢ (in Meta Module) and the
parameters ¢ (in Visual Encoder) to maximize the likelihood py (a|P, @, R) on the training data,
where a is the answer, and P, ), R are programs, questions and visual features, respectively.

As demonstrated, Meta Module Network excels over standard module network in the following as-
pects. (¢) The parameter space of different functions is shared, which means similar functions can
be jointly optimized, benefiting from more efficient parameterization. For example, query_color
and verify_color share the same partial parameters related to the input color. (i¢) Our Meta
Module can accommodate larger function semantics by using function recipes and scale up to more
complex reasoning scenes. (i¢7) Since all the functions are embedded into the recipe space, func-
tionality of an unseen recipe can be inferred from its neighboring recipes (see Sec. for details),
which equips our Meta Module with better generalization ability to unseen functions.

2.4 MODULE SUPERVISION

In this sub-section, we explain how to extract supervision signals from scene graphs and programs
provided in the training data, and how to adapt these learning signals during inference when no
scene graphs or programs are available. We call this “Module Supervision”, which is realized by
a Teacher-Student framework as depicted in First, we define a Symbolic Executor as the
‘Teacher’, which can traverse the ground-truth scene graph provided in training data and obtain in-
termediate results by executing the programs. The ‘Teacher’ exhibits these results as guideline  for
the ‘Student’ instance module g to adhere to during training.

Symbolic Teacher: We first pre-execute the program P = fy,---, fr on the ground-truth scene
graph G provided in the training data to obtain all the intermediate execution results. According
to the function definition (see Appendix for details), the intermediate results are either List of Ob-
Jjects or Boolean. If the result is: (i) Non-empty List of Objects: use the first element’s vertexes
[€1,y1,x2,y2] to represent it; (74) Empty List of Objects: use dummy vertexes [0,0,0,0] as the
default representation; (#¢3) “True” from Boolean: use the vertexes from last step to represent it;
(iv) “False” from Boolean: use dummy vertexes as in (i7). Therefore, the intermediate results from
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Figure 4: Illustration of the Module Supervision process: the symbolic teacher executes the function
on the scene graph to obtain the bounding box b, which is then aligned with bounding boxes from
the object detection model to compute the distribution guideline ~y for supervision.

(f1,-++, fr—1) are unified into a series of quadruples denoted as {b; iL:_ll.

Knowledge Transfer: As no scene graphs are provided during inference, we need to train a Student
to mimic the Symbolic Teacher in associating objects between input images and generated programs
for end-to-end model training. To this end, we compare the execution results from the Symbolic
Teacher with object detection results from the Visual Encoder to provide learning guideline for the
Student. Specifically, for the i-th step function f;, we compute the overlap between its execution re-

sult b; and all the model-detected regions R as a; ; = %ﬁ(b;?) If 37, a;; > 0, which means
T

that there exists detected bounding boxes overlapping with the ground-truth object, we normalize
ai’]‘

a;; over R to obtain a guideline distribution ~y; ; = S s and append an extra O in the end to

obtain y; € RVNTL If 3 ; @i,j = 0, which means no detected bounding box has overlap with the

ground-truth object (or b; = [0,0, 0, 0]), we use the one-hot distribution v; = [0,--- ,0,1] € RN+!
as the learning guideline. The last bit represents “No Match”.

Student Training: To explicitly teach the student module g¢ to follow the learning guideline from
the Symbolic Teacher, we add an additional head to each module output o( f;) to predict the execu-
tion result distribution, denoted as §; = softmax(MLP(o(f;))). During training, we propel the
instance module to align its prediction 4; with the guideline distribution -; by minimizing their KL
divergence K L(;||%:). Formally, given the quadruple of (P, @, R, a) and the pre-computed guide-

line distribution v, we propose to add KL divergence to the standard loss function with a balancing

factor 1: L(p, 1) = —log py.y(al P, Q,R) + 15" KL(7il[%).

3 EXPERIMENTS

In this section, we conduct the following experiments. (i) We evaluate the proposed Meta Module
Network on the GQA vl1.1 dataset (Hudson & Manning, 2019a), and compare with the state-of-
the-art methods. (ii) We provide visualization of the inferential chains and perform fine-grained
error analysis based on that. (7i7) We design synthesized experiments to quantitatively measure our
model’s generalization ability towards unseen functional semantics.

3.1 EXPERIMENTAL SETUP

Dataset The GQA dataset contains 22M questions over 140K images. This full “all-split” dataset
has unbalanced answer distributions, thus, is further re-sampled into a “balanced-split” with a more
balanced answer distribution. The new split consists of 1M questions. Compared with the VQA
v2.0 dataset (Goyal et al.l 2017)), the questions in GQA are designed to require multi-hop reasoning
to test the reasoning skills of developed models. Compared with the CLEVR dataset (Johnson et al.,
2017a), GQA greatly increases the complexity of the semantic structure of questions, leading to a
more diverse function set. The real-world images in GQA also bring in a bigger challenge in visual
understanding. In GQA, around 94% of questions need multi-hop reasoning, and 51% questions are
about the relationships between objects. Following Hudson & Manning| (2019a), the main evalua-
tion metrics used in our experiments are accuracy, consistency, plausibility, and validity.
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Model Binary Open Consistency Plausibility Validity — Accuracy
Bottom-up (Anderson et al., 2018) 66.64  34.83 78.71 84.57 96.18 49.74
MAC (Hudson & Manning} [2018) 71.23 38091 81.59 84.48 96.16 54.06
GRN (Guo et al.| [2019) 7493 41.24 87.41 84.68 96.14 57.04
LCGN (Hu et al.l[2019) 73.777 4233 84.68 84.81 96.48 57.07
BAN (Kim et al.| 2018) 76.00 4041 91.70 85.58 96.16 57.10
LXMERT (Tan & Bansal,2019) 7716 4547 89.59 84.53 96.35 60.33
NSM (Hudson & Manning, [2019b)  78.94  49.25 93.25 84.28 96.41 63.17
MCAN (Yu et al.,[2019) 75.87 4215 87.72 84.57 96.20 57.96
NMN (Andreas et al.|[2016b) 72.88  40.53 83.52 84.81 96.39 55.70
MMN (Ours) 7849 44.31 92.16 84.29 96.13 60.33

Table 1: Comparison of MMN single model with published state-of-the-art methods on the blind
test2019 set, as reported on the leaderboard as of Sep. 2019.

Implementation Details The dimensionality of input image features D,, is 2048, extracted from the
bottom-up-attention model (Anderson et al., 2018 For each image, we keep the top 48 bound-
ing boxes ranked by confidence score with the positional information of each bounding box in the
form of [top-left-x, top-left-y, bottom-right-x, bottom-right-y], normalized by the image width and
height. Both the Meta Module and the Visual Encoder have a hidden dimension D of 512 with 8
heads. GloVe embeddings (Pennington et al.,2014) are used to encode both questions and function
keywords with 300 dimensions. The total vocabulary size is 3761, including all the functions, ob-
jects, and attributes. For training, we first use the 22M unbalanced “all-split” to bootstrap our model
with a mini-batch size 2048 for 3-5 epochs, then fine-tune on the “balanced-split” with a mini-batch
size 256. The testdev-balanced split is used for selecting the best model.

3.2 EXPERIMENTAL RESULTS

We report our experimental results on the test2019 split (from the public GQA leaderboard) in
First, we observe significant performance gain from MMN over NMN (Andreas et al.,[2016b)),
which demonstrates the effectiveness of the proposed meta module mechanism. Further, we ob-
serve that our model outperforms the VQA state-of-the-art monolithic model MCAN (Yu et al.,
2019) by a large margin, which demonstrates the strong compositionality of our module-based ap-
proach. Overall, our single model achieves competitive performance (tied top 2) among published
approaches. Notably, we achieve the same performance as LXMERT (Tan & Bansall 2019), which
is pre-trained on large-scale out-of-domain datasets. The performance gap with NSM (Hudson &
Manning, |2019b) is debatable since our model is self-contained without relying on well-tuned ex-
ternal scene graph generation model (Xu et al.,|2017;|Yang et al., 2016} |Chen et al., [2019).

To verify the contribution of each component in MMN, we perform several ablation studies: (1) w/o
Module Supervision vs. w/ Module Supervision. We investigate the influence of module supervision
by changing the hyper-parameter 1 from 0 to 2.0. (2) Attention Supervision vs. Guideline: We
investigate different module supervision strategies, by directly supervising multi-head attention in
multi-modal fusion stage (Figure T)). Specifically, we supervise different number of heads or the
mean/max over different heads. (3) w/o Bootstrap vs w/ Bootstrap: We investigate the effectiveness
of bootstrapping in training to validate the influence of pre-training on the final model performance.

Results are summarized in From Ablation (1), we observe that without module supervision,
our MMN achieves decent performance improvement over MCAN (Yu et al.,[2019), but with much
fewer parameters. By increasing n from 0.1 to 0.5, accuracy steadily improves, which reflects the
importance of module supervision. Further increasing the value of 7 did not improve the perfor-
mance empirically. From Ablation (2), we observe that directly supervising the attention weights in
different Transformer heads only yields marginal improvement, which justifies the effectiveness of
the implicit regularization in MMN. From Ablation (3), we observe that bootstrapping is an impor-
tant step for MMN, as it explores more data to better regularize functionalities of reasoning modules.
It is also observed that the epoch number of bootstrap also influences the final model performance.
Choosing the optimal epoch size can lead to a better initialization for the following fine-tuning stage.

'"https://github.com/peteanderson80/bottom-up-attention
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Ablation (1) Accuracy \ Ablation (2) Accuracy \ Ablation (3) Accuracy
6-Layered MCAN 57.4 Ours + AS (1 head) 57.5 w/o Bootstrap 58.4
Ours w/o MS 58.1 Ours + AS (2 head) 58.0 w/o Fine-tuning 56.5
Ours + MS (n=0.1) 59.1 Ours + AS (4 head) 58.0 Bootstrap (2 epochs) 59.2
Ours + MS (n =0.5) 60.0 Ours + AS (Mean) 58.1 Bootstrap (3 epochs) 59.6
Ours + MS (n=1.0) 59.8 Ours + AS (Max) 58.2 Bootstrap (4 epochs) 60.0
Ours + MS (n=2.0) 59.5 Ours + Guideline 60.0 Bootstrap (5 epochs) 59.8

Table 2: Three sets of ablation study on GQA. MS: Module Supervision; AS: Attention Supervision;
w/o Bootstrap: Directly training on the balanced-split.
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Figure 5: Visualization of the inferential chains learned by our model.

3.3 INTERPRETABILITY AND ERROR ANALYSIS

To demonstrate the interpretability of MMN, [Figure 5| provides some visualization results to show
the inferential chain during reasoning. As shown, the model correctly executes the intermediate
results and yields the correct final answer. To better interpret the model’s behavior, we also perform
quantitative analysis to diagnose the errors in the inferential chain. Here, we held out a small val-
idation set to analyze the execution accuracy of different functions. Our model obtains Recall@ 1
of 59% and Recall @2 of 73%, which indicates that the object selected by the symbolic teacher has
59% chance of being top-1, and 73% chance as the top-2 by the student model, significantly higher
than random-guess Recall@1 of 2%, demonstrating the effectiveness of module supervision.

Furthermore, we conduct detailed analysis on function-wise execution accuracy to understand the
limitation of MMN. Results are shown in Below are the observed main bottlenecks: (7)
relation-type functions suchas relate, relate_inv;and (i¢) object/attribute recognition func-
tions such as query_name, query_color. We hypothesize that this might be attributed to the
quality of visual features from standard object detection models (Anderson et al., 2018), which
does not capture the relations between objects well. Besides, the object and attribute classifica-
tion network is not fine-tuned on GQA. This suggests that scene graph modeling for visual scene
understanding is critical to surpassing NSM (Hudson & Manning, 2019b)) on performance.

3.4 ANALYSIS ON GENERALIZATION

To demonstrate the generalization ability of the meta module, we perform additional experiments to
validate whether the recipe representation can generalize to unseen functions. Specifically, we held
out all the training instances containing verify_shape, relate_name, choose_name to
quantitatively measure model’s on these unseen functions. Standard NMN (Andreas et al., 2016b)
fails to handle these unseen functions, as it requires training instances for the randomly initialized
shallow network for these unseen functions. In contrast, MMN can transform the unseen functions

Return Type Binary Objects String
Abstract Function | verify choose compare exist and/or | filter select relate | query
Accuracy 0.74 0.79 0.88 0.88 099 | 067 0.61 0.44 0.61

Table 3: Error analysis on different functions. “Objects” functions only appear in the intermediate
step, “String” function only appears in the final step, “Binary” functions can occur in both cases.

7
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Function Verify_color Relate_name Choose_name
Methods | NMN MMN  Full-Shot | NMN MMN  Full-Shot | NMN MMN  Full-Shot
Accuracy | 50% 61% 74% 5% 23% 49% 50% 62% 79%

Table 4: Comparison between MMN and NMN on generalization ability to unseen functions.

into recipe format and exploits the structural similarity with its related functions to infer its seman-
tic functionality. For example, if the training set contains verify_size (function: verify, type:
size, attr: ?) and filter_shape (function: filter, type: shape, attr: ?) functions in the recipes,
an instantiated module is capable of inferring the functionality of an unseen but similar function
verify_shape (function: verify, type:shape, attr: ?) from the recipe embedding space.
shows that the zero-shot accuracy of the proposed meta module is significantly higher than NMN
(equivalent to random guess), which demonstrates the generalization ability of MMN and validate
the extensibility of the proposed recipe encoding. Instead of handcrafting new modules every time
when new functional semantics comes in like NMN (Andreas et al., [2016b)), our MMN is more
flexible and extensible for handling growing function sets under incremental learning.

4 RELATED WORK

Monolithic Networks: Most monolithic networks for visual reasoning resort to attention mecha-
nism for multimodal fusion (Zhu et al., [2017; 2016} [Zhou et al., 2017 |Yu et al., [2019; 2017 [Kim
et al.,[2016;2018; [Kafle et al., 2018} [Li et al.,2019; Hu et al.,|2019)). To realize multi-hop reasoning
on complex questions, SAN (Yang et al.,|2016), MAC (Hudson & Manning, |2018) and MuRel (Ca-
dene et al., 2019) models have been proposed. However, their reasoning procedure is built on a
general-purpose reasoning block, which can not be disentangled to perform specific tasks, resulting
in limited model interpretability and compositionality.

Neural Module Networks: By parsing a question into a program and executing the program through
dynamically composed neural modules, NMN excels in interpretability and compositionality by de-
sign (Andreas et al.l 2016aib; [Hu et al., 2017; [Johnson et al 2017b; [Hu et al.l 2018} [Y1 et al}
2018;|Mao et al.||2019; Vedantam et al.,[2019). However, its success is mostly restricted to the syn-
thetic CLEVR dataset, whose performance can be surpassed by simpler methods such as relational
network (Santoro et al.,|2017) and FiLM (Perez et al.,[2018)).

Our MMN is a module network in concept, thus possessing high interpretability and composition-
ality. However, different from traditional NMN, MMN uses only one Meta Module for program
execution recurrently, similar to an LSTM cell (Hochreiter & Schmidhuber, [1997) in Recurrent
Neural Network. This makes MMN a monolithic network in practice, which ensures strong empiri-
cal performance without sacrificing model interpretability.

State of the Art on GQA: GQA was introduced inHudson & Manning|(2019a) for real-world visual
reasoning. Simple monolithic networks (Wu et al.| 2019), MAC netowrk (Hudson & Manning,
2018)), and language-conditioned graph neural networks (Hu et al., [2019; |Guo et al., [2019) have
been developed for this task. LXMERT (Tan & Bansal, [2019)), a large-scale pre-trained encoder,
has also been tested on this dataset. Recently, Neural State Machine (NSM) (Hudson & Manning,
2019b)) proposed to first predict a probabilistic scene graph, then perform multi-hop reasoning over
the graph for answer prediction. The scene graph serves as a strong prior to the model. Our model is
designed to leverage dense visual features extracted from object detection models, thus orthogonal to
NSM and can be enhanced with their scene graph generator once it is publicly available. Different
from the aforementioned approaches, MMN also performs explicit multi-hop reasoning based on
predicted programs, so the inferred reasoning chain can be directly used for model interpretability.

5 CONCLUSION

In this paper, we propose Meta Module Network that bridges the gap between monolithic networks
and traditional module networks. Our model is built upon a Meta Module, which can be instantiated
into an instance module performing specific functionalities. Our approach significantly outperforms
baseline methods and achieves comparable performance to state of the art. Detailed error analysis
shows that relation modeling over scene graph could further boost MMN for higher performance.
For future work, we plan to incorporate scene graph prediction into the proposed framework.
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A APPENDIX

A.1 VISUAL ENCODER AND MULTI-HEAD ATTENTION

The visual encoder and multi-head attention network is illustrated in [Figure 6|and [Figure 7| respec-
tively.

Meta Module

Visual

Figure 7: Illustration of the multi-head attention network used in the Meta Module.

A.2 RECIPE EMBEDDING

The recipe embedder is illustrated in

Il/ Function: relate Function

1 Type: none Type

! Relation: beside Att:'bf’te |:|
Relate(Dependents, beside, boy) —vs Subject: boy zil:‘tels: Lookup Flatten > eee

! Geometric: none Geometric |:|

1 Optionl: none Optionl

'\\OptionZ: none Option2

Figure 8: Illustration of the recipe embedder.

A.3 FUNCTION STATISTICS

The function statistics is listed in[Iable 5|

A.4 FUNCTION DESCRIPTION

The detailed function descriptions are provided in

A.5 INFERENTIAL CHAINS

More inferential chains are visualized in|[Figure 10|and [Figure 11}
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Type Relate Select Filter Choose Verify Query Common Differ Bool Exist All

Funcs 5 1 8 12 5 6 2 6 2 1 48

Table 5: The statistics of different functions.

Type Overrides arg0 argl arg2 arg3 Output
(? Means Dependency)
Relate ? Relation - -
Relate_with_name ? Relation Object -

Relationship Relate_invese ? Relation - - Region
Relate_inverse_with_name ? Relation Object -
Relate_with_same_attribute ? Relation Attribute -

Selection Select - Object - - Region
Filter_horizontal_position ? H-Position - -

Filter_Vertical_position ? V-Position - -
Filter_with_color ? Color - -

Filter Filter_with_shape ? Shape - - Region
Filter_with_activity ? Activity - -

Filter_with_material ? Material - -
Filter_with_color_noteq ? Color - -
Filter_with_shape_noteq ? Shape - -
Choose_name ? Namel Name2 -
Choose_scene - Scenel Scene2 -
Choose_color ? Colorl Color2 -
Choose_shape ? Shapel Shape2 -
Choose_horizontal_position ? H-Positionl H-Position2 -

Choose Choose_vertical_position ? V-Positionl V-Position2 - Answer
Choose_relation_name ? Relationl Relation2 Name
Choose_relation_inverse_name | ? Relationl Relation2 Name
Choose_younger ? ? - -

Choose_older ? ? - -
Choose_healthier ? ? - -
Choose_less_healthier ? ? - -
Verify_color ? Color - -
Verify_shape ? Shape - -

Verify Verify_scene - Scene - - Answer
Verify_relation_name ? Relation Name -

Verify_relation_inv_name ? Relation Name -
Query_name ? - - -
Query_color ? - - -

Query Query_shape ? . . . Answer
Query_scene - - - -
Query_horizontal_position ? - - -

Query_vertical_position ? - - -

Common Common_color [??2.7] - - - Answer
Common_material [??2..7] - - -

Different_name [??2.7] - - -

Different Different_name ? ? - - Answer
Different_color ? ? - -

Same_name [??2..7] - - -

Same Same_name ? ? - - Answer
Same_color ? ? - -

And And ? ? - - Answer

Or Or ? ? - - Answer

Exist Exist ? ? - - Answer

Figure 9: The function definitions and their corresponding outputs.
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Stairs

MLP \

select(person) b—»ﬁlter([ﬂ! sitting) ——{ relate inv(T[2],sitting) }———{Query([3], name)

What is the person that is sitting down sitting atop ?

No

(same_attr([2], [3], color) ]

o #
!

Yes

exist([1])

I
(select(sky) )

(relate name([1T],Ieft, mountain) |

wt?

select(person

Are sky and mountain to the right of the man of same color?

(‘select(laptop) ] [ select(TV) ]

Is there a laptop or television in the picture?

Figure 10: More examples on visualization of the inferential chains learned by our model.

Shirt

Query([2], name

Counter

Query([2], name

(relate([1], getting on) )

Pants

Mlﬁll,nﬂu

( )

Filter([2], %tanding)

]
[select(clothing) )

[ select(person) |

What is the dark clothing?

What is the man getting on?

[_relate inv([1],lnear, person) |

select(man

What do you think is the standing person near the man wearing ?

Figure 11: More examples on visualization of the inferential chains learned by our model.
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