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ABSTRACT

Generative Adversarial Networks (GANs) is a powerful family of models that
learn an underlying distribution to generate synthetic data. Many existing studies
of GANs focus on improving the realness of the generated image data for visual
applications, and few of them concern about improving the quality of the gener-
ated data for training other classifiers—a task known as the model compatibility
problem. As a consequence, existing GANs often prefer generating ‘easier’ syn-
thetic data that are far from the boundaries of the classifiers, and refrain from
generating near-boundary data, which are known to play an important roles in
training the classifiers. To improve GAN in terms of model compatibility, we
propose Boundary-Calibration GANs (BCGANSs), which leverage the boundary
information from a set of pre-trained classifiers using the original data. In par-
ticular, we introduce an auxiliary Boundary-Calibration loss (BC-loss) into the
generator of GAN to match the statistics between the posterior distributions of
original data and generated data with respect to the boundaries of the pre-trained
classifiers. The BC-loss is provably unbiased and can be easily coupled with dif-
ferent GAN variants to improve their model compatibility. Experimental results
demonstrate that BCGANS not only generate realistic images like original GAN's
but also achieves superior model compatibility than the original GANS.

1 INTRODUCTION

The success of machine learning relies on not only the advances of different models (e.g. deep
learning) but also data with sufficient quality and quantity. Nowadays, companies spend tremendous
efforts and expense collecting data to build their products. To better solve complicated real-world
problems with public or third-party machine learning experts, many companies now needs release
some data sets for competitions (e.g. Kaggle) or proof-of-concept purposes. However, considering
the costs of collecting data, companies may not willing to release the dataset if possible. As a
result, a technique which can generate synthetic data with the property similar to the original data is
demanding. To be specific, we are looking for generating a dataset with the property that machine
learning models trained on the generated dataset can exhibit similar performance to ones trained
on the original data. This property is called model compatibility (Park et al., |2018)) or machine
learning efficacy (Xu et al.,|2019). The organizations can share the generated data with high model
compatibility to the public and enjoy the solution derived from it without leaking the real dataset.

When it comes to data generation, generative adversarial networks (GANs, (Goodfellow et al.|[2014)
is the most popular family of generative algorithms because of its impressive performance on gen-
erating realistic images (Karras et al., 2018)). In GANs, the generator is trained via minimizing a
neural network (discriminator) defined probability divergence (Goodfellow et al.| [2014; |Arjovsky
et al, |2017; Nowozin et al.; [2016). In addition to image generation, GANSs are also widely used in
other applications, such as style transfer (Isola et al.,|2017; |Zhu et al.| [2017; Kim et al., 2017) and
image processing (Pathak et al.,[2016j |Ledig et al.,|2017;|Chang et al., 2017), and generating differ-
ent types of data, including time series (Luo et al., 2018; |Chang et al., 2019)), text (Yu et al.| 2017
Press et al., [2017), point clouds (Li et al, 2018)), voxels (Wu et al.l 2016) and tabular data (Park
et al.L 2018 | Xu et al.,[2019).
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Although GANSs are versatile as aforementioned, most of their development focus on the metrics
such as quality and diversity of the data Salimans et al.| (2016)); Heusel et al.| (2017); |[Lucic et al.
(2018). Generating high model compatibility data via GANSs is still under explored. The pioneered
work (Xu et al.| 2019) first shows that data generated from conditional GANs (Mirza & Osindero,
2014) enjoys better model compatibility than VAEs (Kingma & Welling, 2013)). So we wonder can
we improve the model compatibility if we consider the information of models trained on the
original data? For example, Wasserstein GAN (WGAN, |Arjovsky et al.||2017) performs a mean-
matching between the distribution of real data and generated data. However, only mean-matching is
sometimes not enough to learn the whole distribution especially for those boundary cases. Appar-
ently, if a GAN knows the boundary between different classes, it may be able to generate instances
which are close to the boundary with correct labels. These boundary points will guide a classifier to
learn the correct decision boundary.

In this work, we try to improve GANs with regards to model compatibility in classification problems.
We use a set of pre-trained classifiers to obtain multiple decision boundaries. Then the proposed
method is able to generate data with better model compatibility by calibrating the distribution with
regards to these decision boundaries. The main contributions of this work are:

e In Section[2] we propose a way to evaluate model compatibility in classification problems.
We consider a variety of machine learning algorithms and average the performance to ob-
tain a comprehensive metric.

e In Section[d] we propose a loss function called Boundary-Calibration loss (BC-loss) which
helps typical GANs to learn a distribution with better model compatibility. The loss con-
siders the decision boundaries of pre-trained classifiers and minimizes the maximum mean
discrepancy (MMD, |Gretton et al.|[2012) between the original dataset and the generated
dataset. In addition, we show that optimizing the BC-loss would not change the optimal
solution of the original GAN, but it reduces the feasible set to ensure the model compati-
bility.

e In Section[5] we demonstrate how BC-loss effects the boundary of the generated data with a
two-dimensional toy dataset. We also show that the BC-loss improves model compatibility
of the generated data with different types of classifiers and a variety of datasets. Finally, we
inspect the feature selection results to examine how the interpretation of machine learning
models may be effected.

Last, in Section 3] we discuss some works which are similar to our work and describe how does our
work differ from them.

2 MODEL COMPATIBILITY IN CLASSIFICATION

In this work, we focus on generating data for fully-supervised classification learning. Given a dataset
D = {(w;,y;)},, where &; € X represents features of an instance, y; = f(x;) € ) represents
the corresponding label of @; according f : X — Y, and («;,y;) ~ Pp, a learning algorithm A :
(X,Y)™ — H learns a hypothesis h € H to approximate the mapping function, i.e. A(D) = h = f.
Our goal is to obtain a generator G which generates a synthetic dataset D" = {(z’,y})}-, such
that A(D") = h’ =~ h. We call this property model compatibility as proposed in [Park et al.[(2018]).

To measure the model compatibility of a generated dataset quantitatively, we consider the perfor-
mance of a classifier trained on the generated dataset comparing to the one trained on the real dataset.
We evaluate the accuracy on a separate test dataset to indicate the performance of a given classifier.
In addition, we calculate relative accuracy by scaling the test accuracy of the classifier trained on the
generated dataset by the accuracy of the classifier trained on the real dataset. The relative accuracy
allows us to average the results from different machine learning algorithms more fairly. The final
evaluation is :

=\ ) 1

®)y”’ (

= acc(h, D))
where A is a set of learning algorithms , D) = {(xf), y,m ) }f\il is the test dataset, and acc(h, D(t))

is the accuracy of hypothesis h on test data DY), We can determine A as a wide variety of learning
algorithms to make the metric provide a more comprehensive measurement of model compatibility.
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3 RELATED WORKS

Research about generating data for classification can be divided into two categories: formulation and
architecture. For formulation, Conditional GAN (CGAN, Mirza & Osindero|2014)) is an intuitive
way to generate instances with corresponding labels. We can learn the distribution of label by
counting and sample the instances from CGAN conditionally. Auxiliary Classifier GAN (ACGAN,
Odena et al.|2017) is considered as a better way for conditional generation. It uses an auxiliary
classifier to provide information about the boundary between each classes. However, ACGAN has
been proved that the objective is biased so it tends to generate data with lower entropy for the
auxiliary classifier (Shu et al., |2017)). Thus, the lose of instances near the decision boundary may
worsen the model compatibility. In this work, we use CGAN along with the proposed BC-loss to
generate data with model compatibility.

On the other hand, the other line of research focuses on generating data with different network archi-
tecture or data processing procedure. Recent works that also consider model compatibility are Table
GAN (Park et al., 2018) and Tabular GAN (Xu et al., 2019). Table GAN focuses on the privacy of
generated data and thus their is a trade off between privacy and model compatibility. To achieve
privacy preserving, they do not improve the model compatibility compared to the original GAN. On
the other hand, Tabular GAN puts emphasis on increasing model compatibility of generated data.
They propose a framework with a more complicated data processing procedure and use LSTM to
better parameterize the target distribution. In contrast to these works, our work focus on the formu-
lation of GANs and can be applied to most variants of GANSs, including Table-GAN and Tabular
GAN. Moreover, while these former works only focus on tabular data, our BC-loss is applicable to
generate image datasets as well.

Some GAN variants are named similarly to our work but they pay attention to different problems.
For example, the boundary described in boundary-seeking GAN (Hjelm et al., 2017) means the de-
cision boundary of the discriminator rather than the decision boundary for the supervised labels. To
the best of our knowledge, we are the first work trying to improve model compatibility by modifying
the formulation of GANS.

4 BOUNDARY-CALIBRATION GAN

To achieve better model compatibility of GAN, we propose an auxiliary GAN loss which we call
boundary-calibration loss (or BC-loss). We assume that we have a set of pre-trained classifiers
which are well-trained on the original dataset. The BC-loss helps GANSs to calibrate the distribution
with respect to the distribution of decision values predicted by pre-trained classifiers. The calibra-
tion leads to more accurate data generation near the decision boundary and thus enabling a machine
learning algorithm to learn a similar hypothesis to one that learns from the original dataset. To ease
the complexity of learning to generate (,y) jointly, we infer P(y) by counting the proportion of
each class in the original dataset and train a conditional generator G such that G(z,y) ~ Pxyy,
where Py |, is the conditional data distribution and 2z ~ Pz is the initial randomness such as Gaus-
sian distribution. Therefore we can generate (¢, y) by sampling y ~ P(y) and G(z,y).

4.1 BOUNDARY CALIBRATION

Given a pre-trained classifier C, we hope the generated dataset adopt the same statistics as the
original dataset while considering the decision boundary of C'. To known about the boundary, we
obtain posterior Po(y | ;) from the decision values predicted by the classifier. The posterior
provides information of an instance from the classifier’s aspect. Therefore, given the real dataset
X = {x1,%2,...,x,}, we can obtain a set of posterior vector C'(X) = (Pc(y | 1), Pc(y |
x2), ..., Po(y | :cn)). To generate data X’ with the same distribution of posteriors to the boundary,
we match the statistics of C'(X) and C(X”) by optimizing the a distance M:

£BC(Xa X/7C) = M(C(X)7C(X/)) 2

Here M can be any distance metric which measures the distance between two sets of samples. In
statistics, the problem to distinguish whether two sets of samples are from the same distribution is
called Two-Sample Test. A classical solution to two-sample test is kernel maximum mean discrep-
ancy (MMD, (Gretton et al.|2012). The idea is to compare the statistics between the two sets of
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samples. If they are close the sets might be sampled from the same distribution. Given two sets of
samples X = {x;}{; and Y = {y;}}_;, an unbiased estimator of MMD with kernel % is defined
as:

NI(X,Y) = (1) S k(i) - (2) S k() + (1) Skwy) O

2/ it 2/ it 2 i

In practice, we use Gaussian kernel k(z, ') = exp(||z — =’||?) in MMD since Gaussian kernel is
a characteristic kernel which ensures that the distance is zero if and only if the two distributions are
the same (Gretton et al.| [2012).

The BC-loss can be applied in generator of any GAN variants to improve the model compatibility.
In addition, to better fit the real unknown boundary, we can use multiple classifiers to calibrate the
distributions from different aspects. As a result, for a loss function of generator L, we can modify
the loss to be:

Jy ﬁ S N (C(X), C(G(Z,) @)
CeC

where Z is a set of noises, C is a set of pre-trained classifiers and A is a hyper-parameter to control
the weight of BC-loss.

4.2 ANALYSIS OF OPTIMAL SOLUTION

Next we prove that adding our proposed BC-loss would not change the optimal solution of the
original objective. Here we assume the loss of the generator L achieves its optimal value in the its
GAN objectives L if and only if the distribution of G(z, y) recovers PX|y for all y € ), which
holds for the vanilla GAN (Goodfellow et al., 2014) and most of other GAN variants.

Theorem 1 (Gretton et al.[2012). Given a kernel k, if k is a characteristic kernel, then My (P, Q) =
0 < P=0Q.

Theorem 2 (Equivalence of optimal solution). G is an optimal solution of Lo <= G is an optimal
solution of Lg

Proof. (=) According to the assumption, G is an optimal solution of L implies G(Z, y) recovers
Py, for all y € Y. Therefore, Po(x) = Po(az,y)) and Mi(Po(xy, Poaz,y))) = 0 by Theo-
rem|ll Now £ = Lo 4+ 0 = L and G is an optimal solution of L, so G is also an optimal
solution of ﬁg.

(<) Since Lpc > 0, we have Lo = Lo+ Lpe > Le. From above, we know ﬁg(G) =0
if G = Py. Thus, for an optimal solution G*, 0 > ﬁg(G*) > La(G*) > 0, which implies
Lc(G*) = L&(G*) = 0. Therefore, G* is also an optimal solution of L. O

The proof shows that the proposed BC-loss does not change the optimal solution of the original
optimization problem. However, we can consider BC-loss as a Lagrangian constraint which restricts
the solution to a subspace where the generator owns higher model compatibility .

4.3 COMPARISON TO MMD GAN

MMD GAN (Li et al.,[2017) is a variant of GAN where the generator tries to minimized the MMD
between generated data and original data and the discriminator learns a kernel which maximizes
the MMD. Though the formulation of MMD GAN and BC-loss are similar, they still do not con-
flict because MMD GAN do not known the information about the classifier and the objective of
MMD GAN would not leads the discriminator to a classifier. Therefore, BC-loss may still improve
MMD GAN by guiding the generator to not generate points across the boundary. To understand
the improvement in MMD GAN from BC-loss, we use MMD GAN as one of the baselines in our
experiments.



Under review as a conference paper at ICLR 2020

B
o1
L
08 S, 08
06 05
04 ‘ ;' 04
.

<2 00 02 o4 o5 08 10 12 02 oo 02 o4 06 08 10 12

(a) Real (b) ACGAN (c) WGAN (d) BWGAN (proposed)
accuracy = 0.995 accuracy = 0.932 accuracy = 0.979 accuracy = 0.984

<z oo o0z o4 o5 08 10 12z

Figure 1: A toy dataset generated by different GAN methods. Figure (a) is the original training
data and the others are data generated by ACGAN, WGAN and our BWGAN respectively. The
background color indicates the decision boundary of a random forest trained on corresponding data.
The captions show the test accuracy of the random forest.

5 EXPERIMENTS

In this section, we use a toy dataset to illustrate how the proposed method improves the model
compatibility. To be more realistic, we provide more comprehensive results for four different real-
world dataset from UCI dataset repository (Dua & Graff, 2017): Adult, Connect-4, Covertype and
Sensorless. We then show our method is also applicable in image dataset: MNIST and Cifarl0
without losing the image quality. In addition, we investigate the results of feature selections on
the generated dataset to see whether the generated data can preserve the interpretation of machine
learning models.

5.1 EXPERIMENTAL SETTINGS

EVALUATION

In this work, we focus on model compatibility of generated datasets. We use a wide variety of
machine learning algorithms including linear SVM, decision tree (DT), random forest (RF), and
multi-layer perception (MLP) to evaluate the model compatibility. As described in Section 2} we
evaluate the relative accuracy for each type of machine learning model, where the relative accuracy
is calculated by dividing the accuracy of classifier trained on generated data to the accuracy of
classifier trained on original data.

COMPARED METHODS

We take Wasserstein GAN (WGAN) and MMD GAN as our baselines to evaluate the effective-
ness of the proposed boundary-calibration technique. We denotes their counterparts with BC-loss
as BWGAN and BMMDGAN respectively. All of the methods use gradient penalty to enforce the
Lipschitz constraint on the discriminator (Gulrajani et al.,|2017). To achieve conditional data gener-
ation as described in Section[d] we add an embedding layer to learn the embedding vector for each
class and concatenate the embedding vector to the inputs of both generators and discriminators.

5.2 2D Toy DATASET

We use a 2D toy dataset with two classes to illustrate the results generated by different GAN methods
in Figure[I] Figure [Ta]shows the distribution of the original training data. We use these generated
data to train a random forest and depict the decision boundary by different background color. From
Figure[Tb] we can see that although ACGAN can make use of the auxiliary classifier during training,
it learns a biased distribution that push the generated data away from the boundary. The large
margin between the two clusters brings more uncertainty to the decision boundary and thus leads
to worse test accuracy. In Figure WGAN approximates the original distribution well in the
center part of the two cluster, but do not get a clear boundary between the two classes. It generates
some ambiguous points near the boundary that would confuse the classifier. Finally, our BWGAN
generates points near the boundary more precisely, as shown in Figure
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Table 1: Summary result of model compatibility evaluate on UCI datasets. The numbers are relative
accuracy.

adult connect4 covertype sensorless average

ACGAN 97.78 83.71 51.98 77.47 71.74
WGAN 96.60 87.59 79.56 84.63 87.10
BWGAN 98.79 88.95 83.16 93.34 91.06
MMDGAN 95.67 86.29 77.14 86.28 86.35
BMMDGAN 97.23 87.38 79.82 88.14 88.14

Table 2: Breakdown results on Sensorless dataset. The numbers are relative accuracy of a machine
learning model trained on data generated by the corresponding methods. For DT and RF, d means
maximum depth and n means number of estimator used for ensemble. For MLP, MLP (200x2)
means a multi-layer perceptron with two layers each consist of 200 units.

ACGAN WGAN BWGAN MMDGAN BMMDGAN

DT (d=10) 78.7 80.8 90.5 85.5 85.8
DT (d=20) 76.7 69.5 91.1 82.6 85.2
Linear SVM 76.7 69.5 91.1 82.6 85.2
MLP (100) 77.8 93.8 96.0 88.0 90.6
MLP (200x2) 77.8 91.7 94.9 86.5 88.)
RF (n=10, d=10) 77.5 93.6 94.1 89.4 90.2
RF (n=10, d=20) 77.3 93.6 95.8 89.4 91.0
Avg. 77.5 84.6 93.3 86.3 88.1

5.3 UCI DATASET

We evaluate our proposed BC-GAN on four datasets from UCI repository. The attributes of the
datasets can be found at Appendix [Al For each dataset, we train six multi-layer perceptrons with a
random split of half of training data as pre-trained classifiers.

Table [1| summarize the comparison between different methods. We calculate the relative accuracy
of different machine learning models mentioned in Section [5.1] and average the relative accuracy
to indicate the model compatibility of generated data for each dataset. The table shows that the
proposed BC-loss improves the accuracy of classifiers generally compared to original WGAN and
MMD GAN. Moreover, ACGAN performs worst on three out of four datasets and exhibit a signifi-
cant deficiency though it is proved to have the state-of-the-art generation quality. This again prove
that the biased objective of ACGAN depresses the model compatibility seriously, and the importance
of taking model compatibility into account in the algorithm design. Table[2]lists the breakdown rel-
ative accuracy of each classifier trained on Sensorless dataset. We can observe that BWGAN and
BMMD GAN achieve higher accuracy comparing to their non-boundary-calibration counterparts.
The breakdown results for other datasets and real accuracy are provided in Appendix [B]

5.4 INTERPRETABILITY

In addition to accuracy, it is also important that the model trained on generated data should give us
the same interpretation of a model trained on the original data. We investigate the interpretability by
two common feature selection techniques. First, we train two random forest on the generated and
original dataset respectively. Each random forest can providing the importances of the features. We
evaluate the consistency of interpretation by calculating precision at Kth, which means how many
features ranked top-k in random forest trained on original data are in the top-k importance feature
of the random forest trained on generated data. The results are shown in Table |3} The effect of BC-
loss is not significant in this aspect. However, the scores of ACGAN drop seriously, which means
training a classifier on data generated by ACGAN is somehow dangerous because the meaning of
model may be totally different.
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Table 3: Precision at K of feature importance ranking compared to the feature importance ranking
obtained from the original dataset

ACGAN WGAN BWGAN MMDGAN BMMDGAN

dataset metric

adult P@10 0.40 0.80 0.80 0.80 0.70
P@20 0.45 0.75 0.80 0.85 0.75
P@30 0.63 0.90 0.90 0.87 0.87

connect4 P@10 0.30 1.00 1.00 0.90 0.80
P@20 0.35 0.90 0.85 0.95 0.85
P@30 0.33 0.83 0.90 0.77 0.83

covertype P@10 0.30 0.60 0.80 0.30 0.60
P@20 0.50 0.75 0.85 0.90 0.85
P@30 0.70 0.93 0.87 0.87 0.87

sensorless P@10 0.60 0.80 0.90 0.70 0.70
P@20 0.50 0.75 0.85 0.80 0.85
P@30 0.80 0.90 0.90 0.87 0.83

Table 4: F1 score of feature selection by L1 linear SVM

ACGAN WGAN BWGAN MMDGAN BMMDGAN

dataset metric

adult f1 (C=0.01) 0.571 0.697 0.787 0.795 0.725
f1 (C=0.001) 0.500 0.737 0.789 0.700 0.789

connect4 f1 (C=0.01) 0.860 0.889 0.866 0.874 0.831
f1 (C=0.001) 0.718 0.796 0.739 0.750 0.752

covertype  fl1 (C=0.01) 0.923 0911 0.935 0.730 0.773
f1 (C=0.001) 0.825 0.912 0.825 0.800 0.815

sensorless  f1 (C=0.01) 0.848 0.900 0.918 0.813 0.844
f1 (C=0.001) 0.778 0.769 0.733 0.812 0.710

Another way to select feature is training a linear model with L1 objective. In Table[d] we use linear
SVM with L1 loss to select features. Then we calculate the F1 score of features selected by clas-
sifiers trained on generated data to known how similar between the two sets of features selected by
classifiers trained on original and generated dataset. The results again shows that using boundary-
calibration does not has significant effect to feature selection and ACGAN is not proper to generated
data for training.

5.5 IMAGE DATASET

We further use MNIST and CIFAR-10 dataset to investigate the effectiveness of boundary-
calibration on image datasets. For MNIST, we train six 4-layer convolution neural networks (CNN)
with random sampling half of training data as pre-trained classifiers, and use the same classifier set
in Section@]to evaluate model compatibility. For CIFAR-10, we use ResNet56v2 (He et al., 2016)
to obtain three pre-trained classifier and evaluate on CNN and ResNet56v2. In both task, we use
DCGAN (Radford et al., [2016) as network structure in all GANSs.

Table [5] and Table [6] shows the relative accuracy of classifiers trained on generated data. The pro-
posed BWGAN still outperforms WGAN with better accuracy in general. The results generated
by WGAN and BWGAN are pictured in Figure [2| It’s difficult to detect the difference of quality
between the images generated from WGAN and BWGAN. The results indicate that even though
our method seems not improve the image quality, it is still able to improve the model compatibility
without losing image quality.

6 DISCUSSION

We introduce an auxiliary loss in GANs which improves the model compatibility of generated
dataset. We prove the new loss is unbiased and is applicable to all variants of GAN to improve
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(d) BWGAN CIFAR-10

(c) WGAN CIFAR-10

Figure 2: Gnerated samples from WGAN and our BWGAN. The images in the same column are in
the same category.

Table 5: Breakdown results on MNIST dataset.

REAL WGAN BWGAN

DT (d=10) 86.58  54.54 (62.99) 48.28 (55.76))
DT (d=20) 87.95  34.48 (39.20) 48.21 (54.82)
Linear SVM 87.95  34.48(39.20) 48.21 (54.82)
MLP (100) 97.60  96.16 (98.52) 96.82 (99.20)
MLP (200x2) 97.89  96.73 (98.81) 96.14 (98.21)
RF (n=10, d=10) 92.47  75.53(81.68) 83.73 (90.55)
RF (n=10, d=20) 94.71  67.51(71.28) 71.45 (75.44)
Avg. 100.00  70.24 75.54

Table 6: Breakdown results on CIFAR-10 dataset.

REAL WGAN BWGAN
CNN 70.76  63.53(89.78) 63.01 (89.05)
Resnet56v2  77.51  48.76 (62.91) 51.33 (66.22)
Avg. 100.00  76.35 77.64

model compatibility. We further demonstrate that our method has clear advantages with a variety
of machine learning models trained on generated dataset. In addition, we investigate the results
of feature selection and found that the BC-loss doesn’t effect the interpretation of machine learn-
ing models. While this work only focus on classification problem, generating data for regression
problem is also worth studying. We hope our work open the path for GANs with better model
compatibility so that synthetic data can be more useful in practice.
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A DATASET INFORMATION

Table 7: Attributes of UCI datasets

Dataset #of train # of test # of discrete feature  # of continuous feature  # of class
Adult 32561 16281 123 0 2
Connect-4 54046 13511 126 0 3
Covertype 116203 116202 44 10 7
Sensorless 46807 11702 0 48 11
B DETAIL RESULT
B.1 ADULT
REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN
DT (d=10) 83.6 (100.0) 80.8(96.6) 80.3(96.0) 81.9(97.9) 79.7(95.3) 81.2(97.1)
DT (d=20) 81.2(100.0) 80.9(99.6) 759(93.5) 79.9(98.4) 73.8(91.0) 75.9(93.5)
Linear SVM 81.2 (100.0) 80.9(99.6) 75.9(93.5) 79.9(98.4) 73.8(91.0) 75.9(93.5)
MLP (100) 84.4 (100.0) 81.8(96.9) 83.1(98.5) 83.6(99.1) 829(98.2) 84.1(99.7)
MLP (200x2) 84.4 (100.0) 82.0(97.2) 83.1(98.5) 83.8(99.3) 82.6(97.9) 84.2(99.8)
RF (n=10, d=10) 83.9(100.0) 82.6(98.4) 83.4(99.4) 83.6(99.6) 83.5(99.5) 83.3(99.3)
RF (n=10, d=20) 84.1 (100.0) 80.7 (96.0) 81.5(96.9) 83.2(99.0) 81.5(96.9) 82.3(97.8)
Avg. 100.0 97.8 96.6 98.8 95.7 97.2
B.2 CONNECT4
REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN
DT (d=10) 74.7 (100.0) 64.1(85.8) 67.7(90.7) 69.5(93.1) 66.7(89.3) 68.5(91.7)
DT (d=20) 76.3 (100.0) 64.1(83.9) 609 (79.8) 64.9(85.1) 61.4(80.4) 64.1(84.0)
Linear SVM 76.3 (100.0) 64.1(83.9) 60.9(79.8) 64.9(85.1) 61.4(80.4) 64.1(84.0)
MLP (100) 84.2 (100.0) 66.0(78.4) 74.7(88.7) 73.7(87.6) 72.2(85.8) 72.8(86.5)
MLP (200x2) 85.7 (100.0) 66.6 (77.7) 74.5(86.9) 73.7(86.0) 719 (83.8) 72.9(85.0)
RF (n=10, d=10) 73.0(100.0) 66.8 (91.6) 71.4(97.8) 70.4(96.4) 70.1(96.0) 68.3(93.6)
RF (n=10, d=20) 79.2 (100.0) 67.0(84.6) 70.7(89.3) 70.8(89.4) 69.8(88.1) 68.9(87.0)
Avg. 100.0 83.7 87.6 88.9 86.3 87.4
B.3 COVERTYPE
REAL ACGAN WGAN BWGAN MMDGAN BMMDGAN
DT (d=10) 77.1 (100.0) 37.8(49.1) 65.6(85.1) 68.9(89.4) 65.5(84.9) 66.7(86.5)
DT (d=20) 86.9 (100.0) 39.4(453) 629(72.3) 67.2(77.3) 622(71.6) 63.4(73.0)
Linear SVM 86.9 (100.0) 39.4(45.3) 62.9(72.3) 67.2(77.3) 62.2(71.6) 63.4(73.0)
MLP (100) 80.6 (100.0) 54.0(67.0) 67.5(83.8) 69.9(86.7) 62.5(77.5) 66.2(82.2)
MLP (200x2) 89.2 (100.0) 53.6(60.1) 66.5(74.5) 68.3(76.5) 58.8(65.9) 65.1(73.0)
RF (n=10, d=10) 73.8 (100.0) 38.6(52.2) 67.2(91.0) 69.5(94.1) 68.0(92.1) 67.8(91.8)
RF (n=10, d=20) 86.2 (100.0) 38.6(44.8) 67.2(779) 69.7(80.8) 65.9(76.4) 68.3(79.2)
Avg. 100.0 52.0 79.6 83.2 77.1 79.8
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REAL ACGAN  WGAN BWGAN MMDGAN BMMDGAN
DT (d=10) 96.3 (100.0) 75.8 (78.7) 77.9(80.8) 87.2(90.5) 82.3(85.5) 82.6(85.8)
DT (d=20) 98.4(100.0) 75.4(76.7) 68.3(69.5) 89.6(91.1) 81.3(82.6) 83.8(85.2)
Linear SVM 98.4 (100.0) 75.4(76.7) 68.3(69.5) 89.6(91.1) 81.3(82.6) 83.8(85.2)
MLP (100) 93.6 (100.0) 72.8(77.8) 87.8(93.8) 89.8 (96.0) 82.4(88.0) 84.9 (90.6)
MLP (200x2) 98.7(100.0) 76.8 (77.8) 90.5(91.7) 93.7(94.9) 85.4(86.5) 87.7(88.8)
RF (n=10, d=10) 98.4 (100.0) 76.2 (77.5) 92.1(93.6) 92.5(94.1) 87.9(89.4) 88.7(90.2)
RF (n=10, d=20) 99.8 (100.0) 77.1 (77.3) 93.3(93.6) 95.6(95.8) 89.2(89.4) 90.8 (91.0)
Avg. 100.0 775 84.6 93.3 86.3 88.1

Table 8: Inception score and FID score on CIFAR-10

Inception FID
WGAN 6.00 49.47
BWGAN 6.12 44.93

B.4 SENSORLESS

B.5 CIFAR-10 SCORES
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