
Under review as a conference paper at ICLR 2020

GOTEN: GPU-OUTSOURCING TRUSTED EXECUTION
OF NEURAL NETWORK TRAINING AND PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Before we saw worldwide collaborative efforts in training machine-learning mod-
els or widespread deployments of prediction-as-a-service, we need to devise an
efficient privacy-preserving mechanism which guarantees the privacy of all stake-
holders (data contributors, model owner, and queriers). Slaom (ICLR ’19) pre-
serves privacy only for prediction by leveraging both trusted environment (e.g., In-
tel SGX) and untrusted GPU. The challenges for enabling private training are ex-
plicitly left open – its pre-computation technique does not hide the model weights
and fails to support dynamic quantization corresponding to the large changes in
weight magnitudes during training. Moreover, it is not a truly outsourcing solu-
tion since (offline) pre-computation for a job takes as much time as computing the
job locally by SGX, i.e., it only works before all pre-computations are exhausted.
We propose Goten, a privacy-preserving framework supporting both training and
prediction. We tackle all the above challenges by proposing a secure outsourcing
protocol which 1) supports dynamic quantization, 2) hides the model weight from
GPU, and 3) performs better than a pure-SGX solution even if we perform the pre-
computation online. Our solution leverages a non-colluding assumption which is
often employed by cryptographic solutions aiming for practical efficiency (IEEE
SP ’13, Usenix Security ’17, PoPETs ’19). We use three servers, which can be
reduced to two if the pre-computation is done offline. Furthermore, we implement
our tailor-made memory-aware measures for minimizing the overhead when the
SGX memory limit is exceeded (cf., EuroSys ’17, Usenix ATC ’19). Compared to
a pure-SGX solution, our experiments show that Goten can speed up linear-layer
computations in VGG up to 40×, and overall speed up by 8.64× on VGG11.

1 INTRODUCTION

While deep neural networks (DNN) can produce predictive models with unparalleled performance,
its training phase requires enormous data as input. A single data owner may not possess enough
data to train a good DNN. Multiple data owners, say, financial institutions, may want to collaborate
in training DNNs. Yet, they are often expected to protect the privacy of the data contributors. This
discourages any collaborative training over global-scale data which is otherwise promising (Cheng
et al., 2019). Moreover, to perform prediction using a trained model, queriers need to submit their
own private data (e.g., medical history). Meanwhile, the model owners want to protect the con-
fidentiality of the trained model in the prediction phase as well. The exposure of the (parameters
of a) model (to queriers or a third-party cloud server) may reveal information about its training
data (Fredrikson et al., 2015), deterring the participation of data contributors. Also, the model itself
is of high commercial value. These concerns hinder the deployment of prediction as a service.

An increasingly popular approach to ensure privacy is using trusted execution environment
(TEE) (Cheng et al., 2019; Tramèr & Boneh, 2019) and in particular trusted processors, e.g., In-
tel Software Guard Extension (SGX). When a data provider sends some private data to a server
equipped with SGX, it can initialize an enclave to receive the data in a confidential and authenti-
cated way and subsequently operate on them. Even the untrusted server, who physically owns the
enclave, cannot read or tamper the data inside the enclave. This paper investigates the following
questions: Can we support DNN training (and prediction) by using SGX and untrusted GPU while
still preserving the privacy of all stakeholders? If so, how much speedup do we gain by using GPU?

1

Under review as a conference paper at ICLR 2020

1.1 OUR BASELINE APPROACH: CAFFESCONE

Arnautov et al. (2016) propose SCONE, a secure container mechanism that allows developers to
directly run applications in an SGX enclave with almost zero code change1. We combine SCONE
with Caffe (Jia et al., 2014), an efficient open-source DNN framework, to build our baseline privacy-
preserving DNN framework. CaffeSCONE satifies most of our privacy requirements, in particular,
for the training data and client queries. While TensorSCONE (Kunkel et al., 2019) also employed
SCONE (but with another DNN framework – TensorFlow (Abadi et al., 2016a), it is unfortunately
not open source. The value of our CaffeSCONE implementation is to enable more benchmarking
for insight in possible improvements (eventually achieved by our main result). Our results (referring
to Section 4.2) show that CaffeSCONE’s performance greatly suffer from the enclave’s memory
limit as it needs an inefficient mechanism to handle excessive use of memory not affordable by the
enclave. Also, we found that using more threads and cores cannot improve the performance.

1.2 OUR PROPOSED FRAMEWORK: GOTEN

GPU-powered Secure-Computation By using SGX solely, CaffeSCONE is already orders of
magnitude faster than the state-of-the-art cryptographic solutions (SecureML (Mohassel & Zhang,
2017), MiniONN (Liu et al., 2017), Gazelle (Juvekar et al., 2018), and DiNN (Bourse et al., 2018),
while only SecureML supports training). Nevertheless, in general, CPU (with or without SGX) is not
optimized for costly operations in DNN such as matrix multiplication. Using specialized hardware
such as GPU for such computation is a common practice. However, SGX-enclaves cannot directly
leverage GPU because its security guarantee is bounded within the CPU and fixed memory. It is
unclear how CaffeSCONE (and other works including TensorSCONE, Chiron (Hunt et al., 2018),
and MLCapsule (Hanzlik et al., 2018)) can leverage GPU without trusting it (or losing privacy).

The SGX+GPU mode of our framework, which we call Goten, enables an even more efficient ap-
proach. To the best of our knowledge, no existing work ever explored this possibility on privacy-
preserving training. A recent work Slalom (Tramèr & Boneh, 2019) also uses GPU but it only
offers prediction privacy. We follow the common practice in the cryptographic privacy-preserving
training literature (SecureML, its subsequent work (Wagh et al., 2019), and other prior works (Niko-
laenko et al., 2013a;b)) which employ non-colluding servers. Specifically, our framework uses three
non-colluding GPU-enabled servers, two of them with a trusted processor. This setup appears to
be necessary when the primary goal is to achieve privacy without heavyweight cryptographic tools.
In practice, one can employ cloud service providers who are market competitors and value their
reputations, or involve a government agency especially in healthcare/financial settings.

Taking Full Advantage of the Servers We choose to exploit the server-aided setting fully and em-
ploy one additional server when compared with SecureML. What this server does is to “bootstrap”
the secret sharing and triplets (Beaver, 1991) across the two servers, which SecureML assumes such
a bootstrap has been done in advance in an offline phase. Goten thus achieves a higher throughput
without worrying that the offline preparation will be “exhausted” when the demand reaches its peak,
which is also a hidden problem not addressed by Slalom. It also means Goten provides a “true”
outsourcing solution – the time needed for securely outsourcing the job to the untrusted GPU is less
than that for computing the job locally by the SGX plus any time needed for pre-computation. If
desired, one may easily adapt our framework back to the two-server setting. (See Section 2.2.)

Dynamic Quantization Scheme We quantize the neural network parameters to fixed-point num-
ber format for efficient cryptographic operations (cf., static quantization in Slalom). This process
needs to be implemented carefully for the following reasons. First, the many matrix multiplications
in neural network may scale up the output values quickly, easily exceeding the numeric limit of
the data type. Second, there are functions that map values to a small interval, e.g., softmax() and
sigmoid(), require high precision. To avoid these potential accuracy problems, we developed a data-
type conversion scheme, again, for enjoying “the best of both worlds,” i.e., the benefit of accurate
floating-point operations on trusted processors and efficient fixed-point operations on GPUs. Our
experiment (Section 4) confirms that our framework preserves high accuracy.

1Without SCONE, developing a program using SGX enclaves impose laborious tasks to the developers:
separately writing code for trusted library and untrusted application, defining interfaces between these two
parts, and compiling them with Intel SGX SDK.

2

Under review as a conference paper at ICLR 2020

Memory-aware Implementation A naı̈ve solution of overcoming the memory limit of SGX en-
claves to rely on the Linux’s paging provided by Intel SGX SDK. However, it imposes much per-
formance overhead ranging from 10× to 1000× comparing to unprotected programs (Arnautov
et al., 2016) for exiting the enclave mode and switching back after processing the untrusted mem-
ory. Hence, in our framework, we take extra measures to reduce the memory footprints by looking
into our specific DNN operations and handle any needed memory swapping by the enclave itself.

1.3 TECHNICAL CONTRIBUTIONS

Using both SGX and GPU for privacy-preserving training may sound straightforward, but we stress
that we tackled a number of issues. To better understand the obstacles we solved, here we revisit
how Slalom performs privacy-preserving prediction and why it fails to support training. The core
idea of Slalom can be described in simple terms: first apply static quantization on an input x to
be protected, then outsource the job of computing f(x + r) to GPU by hiding x with a blinding
factor r in Zq (where q is a large prime). Since it focuses on linear layers, f is linear and hence
f(x+ r) = f(x) + f(r). When SGX gets back f(x+ r), it performs “unblinding” using f(r) and
obtains f(x). For such outsourcing to be possible, f(r) should be precomputed. As simple as it
may seem, Slalom needs to minimize the following three kinds of overheads – (i) the untrusted GPU
needs to perform computation over Zq for the security of the blinding trick, (ii) the communication
between TEE and the untrusted GPU, and (iii) loading the precomputed unblinding factor f(r) to
TEE. Looking ahead, we will face even greater challenges regarding (i) and (ii). Slalom addresses
(iii) by assumption – it was done in an offline stage before the TEE needs to process any query. If we
just ask the SGX to compute it, computing f(r) is of the same complexity as f(x). Another way is to
load them on-spot. It is again subjected to the memory limit and incurs the unwanted communication
overhead. More importantly, it is insecure to ask the untrusted environment to compute f(r).

There are five conceptual challenges remain unsolved by Slalom regarding training. 1) Dynamic
quantization: Slalom explicitly left it as one of the open challenges. 2) DNN weights are fixed at
inference time, but it is not for training. This further complicates the dynamic quantization issue
since the weights fluctuate. 3) The pre-computation technique do not apply for training. In more
details, the training function is actually parameterized by a publicly-known weight W , i.e., fW (x)
multiples x with W . Moreover, the weight changes after (a batch of) operations are processed for
changing which makes fW (r) useless for another weight W ′. 4) It is now apparent that Slalom does
not protect the model weight W , which should be protected in private training (and “more private”
prediction). This is also one of the open challenges left explicitly by Slalom. 5) The last one is a
challenge unique to our solution in addressing the other challenges. In their usage, TEE and GPU are
co-located. However, in our settings, we need to propose an outsourcing solution which is efficient
enough even we are subjected to an even higher communication overhead between the servers.

Goten is the first framework that preserve the privacy of not only the prediction queries but the
training data and model parameters with GPU and trusted environment. Our work achieves the
highest efficiency of training and prediction in such privacy setting. This is the also first work which
performs extensive experimental investigations of this possibility. Concretely, in our case study on
VGG, we can speed up a linear layers up to 40×, and improve the performance of VGG11 by 8.64×.

2 SYSTEM MODEL

There are n mutually untrusted data providers who want to jointly train a DNN using their disjoint
training data, but they are not willing to reveal their private data to others. They have already agreed
on a specific DNN architecture. The corresponding code for the training algorithm is assumed to be
genuine after manual or automated verification (Sinha et al., 2016). After training, queriers can use
the resulting DNN to perform prediction such that the result is only revealed to the querier.

2.1 CAFFESCONE

The relationship between servers and the data providers are shown in Figure 1a. The server S
initializes an enclave E with the specified program for training and prediction. The data providers
C1, C2, · · · attest the enclave E, and verify that the enclave is running the intended program. Then
they establish a secure channel with E in order to send their training data to the enclave E. The

3

Under review as a conference paper at ICLR 2020

(a) CaffeSCONE (b) Goten

Figure 1: The Architecture of Goten and CaffeSCONE

enclave E then trains the neural network using the prescribed training algorithm. Once training is
done, the data provider Ci sends his/her prediction query to the enclave E, which then computes the
prediction result according to the trained model parameters θ.

2.2 GOTEN

This framework uses GPU to accelerate the computations of the fully-connected and convolutional
layers. We introduce two additional non-colluding servers. Figure 1b illustrates the architecture.

The three servers S0, S1, and S2 are equipped with GPU and SGX enabled processor. The server
S0 and S1 initialize E0 and E1 respectively. All the enclaves would be attested by each others, the
servers, and the data providers, and then build up secure channels. The server duties are not the
same. S0 and S1 take care of DNN computations. S2 merely provides multiplication triplets for
linear computation, which are independent of the model parameters or the training/prediction data.

The training and prediction phase are similar to those in the pure SGX mode except two differences.
To avoid cumbersome data transfer between the three servers, the data providers only need to send
their data to E0, which is then responsible for forwarding to other enclaves. We also significantly
change the way of matrix multiplication to leverage the computational power of GPU. Instead of
computing it in enclaves, we outsource the computation to GPU and protect the secret using additive
secret sharing. We refer to Section 3.2 for the details of this protocol.

The attacker can compromise any subset of the data providers and at most one of the servers.
Namely, two servers cannot collude with each other. We allow the attacker to control all the soft-
ware (including operating system and hypervisor) of the server, but we assume it cannot launch any
hardware attack on SGX. Denial-of-service or side-channel attacks are also out of the scope.

Our goal is to ensure that even such a powerful adversary cannot learn anything other than the DNN
specification and the data of compromised parties. In particular, the parameters remains private.
CaffeSCONE guarantees the correctness of both training and prediction. Goten does not provide it
as we present it due to page limitation, but we can resort to the trick used by Slalom.

Reducing Non-colluding Servers Our design can be easily modified to use merely 2 servers
with some preparation. The duty of S2 is to produce two random matrices u, v, and the product
z = u ·v, and distribute these matrices to E0 and E1. These enclaves can instead prepare u, v, and z
by themselves, so S2 is no longer needed. Similar tricks are also used by SecureML and MiniONN.
Since matrix computation in enclaves is slower than that in GPU, E0 and E1 should pre-compute
these matrices before the training/prediction process to prevent stalling the GPU Additional storage
and preparation are required for removing S2.

4

Under review as a conference paper at ICLR 2020

Moreover, the third server can also be a group of triplet providers which provide triplets in turns.
In this case, these providers can amortize the computation requirement so they are not necessarily
equipped with expensive GPUs and well-connected with the first two servers.

3 THE DESIGN OF GOTEN

3.1 HIGH-LEVEL IDEA

To improve the performance, we first outsource linear operations to GPU, and apply SGX-aware
chunked operations to reduce the overhead caused by paging. An immediate difficulty of using
GPU is how to preserve privacy because trusted execution environment on GPU does not exist. Our
plan is to apply additive secret sharing to prevent leaking information to the hosts of GPU.

Still, CPU needs to convert data of linear layers into the format of additive secret sharing, and then
convert the result from GPU back into the normal format for non-linear layers. We call these proce-
dures pre-processing and post-processing of outsourcing linear operations. If they are not handled
properly, the processing time could offset the performance gained from GPU. In the following sec-
tions, we will introduce our tricks for reducing the run-time of pre/post-processing, and present our
modified secret sharing protocol that improves performance.

Moreover, not only the computation in layers but also pre/post-processing suffer from page faults.
Hence, our SGX-aware chunked operations are vital for the performance. The high-level idea of
chunked operations is to let the enclave specifies the piece of memory going to use, read and write
the memory without triggering Linux’s inefficient paging.

3.2 GPU-POWERED OPERATIONS VIA OUR OUTSOURCING PROTOCOL

GPU can speed up the computation of linear transformation and convolution by orders of magnitude.
As explained in Appendix A.3, matrix multiplication and convolution occupy≥ 90% of computation
time. Improving its efficiency is critical to the performance.

A trivial way is to encrypt a and b to the enclave and ask it to multiply them directly. Yet, it cannot
leverage the batch-processing advantage of GPU and is inefficient for large scale computation. We
aim to design a protocol which makes the best use of SGX and GPU without the shortcomings of
either of them. Specifically, we leverage the SGX enclave to secure the unprotected computation
environment of GPU, without the enclave performing any expensive decryption beyond the bare
minimum, i.e., two decryptions (for the two operands).

We start with the “bare minimum” operations which let the two enclavesE0 andE1 know the secrets
a and b. The core design principle is to let the enclaves do what they are good for, i.e., generating
cryptographic randomness and using them to one-time pad some values. With the non-colluding
assumption (required by the original protocol (Beaver, 1991)), we choose to fully exploit it and
introduce one additional server to establish the triplets involved in computing u ⊗ v = z. The
triplets generation can be performed by “the initiating client” offline in existing protocols (Mohassel
& Zhang, 2017; Liu et al., 2017), thus, this server can be removed as discussed in Section 2.2.

Figure 2 describes our protocol for outsourcing linear operation of c = a⊗ b. ⊗ can be convolution
(so a and b are tensors) or matrix multiplication (for matrices a and b). Another important usage
of enclaves is to store the same seed for deriving the random factors across all the servers. This
trick forms a confidential channel between two servers very efficiently without AES or public-key
encryption. For example, S2 sends z in the form of z−Rand(rz) toE0 andE1 via insecure channels,
which can be computed quickly. In other words, all instances of “→ Ei : var” in the figure refer to
loading the variable(s) var to Ei directly without encryption.

The steps in line 3 of Figure 2 appear to be working on many more values than the trivial approach
of computing a ⊗ b. Our experiments in Section 4.2 confirms that the performance gain can be as
large as 40×. Below, we discuss the changes we made over the original triplet-based protocol.

Parallelizable Pre-Processing without Communication Our protocol is still based on the exist-
ing secret-sharing based protocol (in Appendix A.4) but with improvement. Recall that the central
idea is to compute a ⊗ b by operating over (e, f), which is a masked version (a, b). In the origi-

5

Under review as a conference paper at ICLR 2020

Secure Outsourcing of Linear Operation ⊗ to GPU

1 : S2 : u← Rand(ru), v ← Rand(rv), z = u⊗ v, 〈z〉1 ← z − Rand(rz)
2 : S2 → E0, E1 : 〈z〉1
for i = 0, 1 in parallel:
3 : Ei : 〈a〉i ← Geni(a, ra), 〈b〉i ← Geni(b, rb), e = a− Rand(ru), f = b− Rand(rv),
〈z〉0 ← Rand(rz),K0→1 ← Rand(rk0),K1→0 ← Rand(rk1) in parallel;

4 : Ei → Si : 〈a〉i, 〈b〉i, e, f,Ki→1−i

5 : Si → Ei : ci = 〈a〉i ⊗ f + 〈b〉i ⊗ e− i · e⊗ f

6 : Si → E1−i : C1−i = ci −Ki→1−i

endfor

7 : E0 : c = c0 + (C0 +K1→0) + 〈z〉0 + 〈z〉1
E1 : c = c1 + (C1 +K0→1) + 〈z〉0 + 〈z〉1

Figure 2: Protocol for Outsourcing Linear Operation ⊗

nal protocol, the shares (〈a〉0, 〈b〉0) and (〈a〉1, 〈b〉1) from the two parties (S0 and S1 here) must be
masked independently by the corresponding one-time pads (〈u〉0, 〈v〉0) and (〈u〉1, 〈v〉1). After this
step, they must interact to produce e and f .

In our protocol, both enclaves know a and b, so they can use the same seed to derive the same
one-time pads u and v (which is in, say, Zm

q) and thus obtain e and f without any interaction. This
saves half of the pre/post-processing and communication cost. This also make e and f no longer
dependent on 〈a〉i and 〈b〉i. Thus, all the steps in line 3 of Figure 2 can be done in parallel. The
run-time of this pre-processing step is then further reduced roughly by 3/4, i.e., the cost is 1/4 of
the original. Furthermore, because E0 and E1 no longer need to interact until the very last step for
result construction, they can also work in parallel.

Reducing Run-time of Share Reconstruction Unlike the original standalone protocol where
each party only needs to learn a share 〈c〉i of c but not c = a ⊗ b itself, it is necessary for our
enclaves to know c because they need to perform the succeeding non-linear operations of non-linear
layers. (In some existing protocols , c is actually recovered “implicitly” via cryptographic means,
say, within a garbled circuit.) A naı̈ve way is to let Si encrypt their respective shares to the other
enclave E1−i. Again, we use the common seed to form a secure channel which lets Si one-time-pad
its own share ci into a ciphertext C1−i for E1−i via the key Ki→1−i derived from the seed. In total,
we reduce pre/post-processing time by roughly 87.5% and halve the communication cost.

Performance Gain for Linear Layers Our outsourcing protocol, while optimized, still imposes
overhead in pre/post-processing and communication between the servers. It is instructive to confirm
how much we gain. Beyond the obvious reliance on the relative performance of the GPU, it turns
out to be crucially relying on the shapes of the input and weight.

We first analyze the case of fully-connected layers. Assume x ∈ Zm×k
q is the input, w ∈ Zk×n

q is
the weight, and y ∈ Zm×n

q is the output, We found that we should maximize min(m, k, n). Since
m, the batch size, is usually small compared to k and n, it is better to be large.

Analysis. We should minimize the run-time ratio of our GPU-powered matrix multiplication scheme
to the vanilla CPU scheme. The forward computation in fully-connected layer is x⊗w = y. The run-
time of our GPU-powered scheme is tpre-proc·(m·k+k·n)+(tpost-proc+tcomm)·(m·n)+tgpu-op·(m·k·n).

The backward computation computes, dx = dy ⊗ w and dw = dyT ⊗ x, where dx, dw, and dy are
the gradient of x,w, and y respectively, and they are of the same size of their counterpart. Similar to
the run-time analysis above, we can derive that the total run-time of both the forward and backward
computation is tgpu-scheme = (2·tpre-proc+tpost-proc+tcomm)·(m·k+k ·n+m·n)+3·tgpu-op ·(m·k ·n).
For our ease, we denote textra = 2 · tpre-proc + tpost-proc + tcomm. Also, the run-time of the vanilla CPU
scheme is tcpu-scheme = 3 · tcpu-op · (m · k · n).

6

Under review as a conference paper at ICLR 2020

Finally, the run-time ratio of these two schemes is

tgpu-scheme

tcpu-scheme
=

textra

tcpu-op
· (1
m

+
1

n
+

1

k
) +

tgpu-op

tcpu-op
.

The last term matches with the intuition that GPU governs the performance gain. The pre/post-
processing and communication time also play an important role if 1/m+ 1/n+ 1/k is large. Note
that the inverse of 1/m+ 1/n+ 1/k is also known as the arithmetic intensity (cud, 2019).

The analysis on convolution layers follows the same principle but is more involved. If we assume
the image size of input and output are the same, we can have a similar result as fully-connected
layers by replacing m, k, and n to Cout · fh · fw, Cin · fw · fh, and B · Ih · Iw. Figure 5a shows
convolution gains speed-up as expected when paging overhead is low.

3.3 DATA TYPES AND DYNAMIC QUANTIZATION

The triplet trick we used operates over fixed-point numbers in Zq , while common neural network
framework operates over float-point numbers. Therefore, Goten has to accommodate the fixed-point
setting so that it can attain superior performance as if using float-point numbers.

The choice of Zq GPU is slow in modular arithmetic, off-the-shield optimized libraries do not
support them. To work on Zq integers, we thus put them as floats as Slalom (Tramèr & Boneh,
2019). This leaves us only 53 significant bits plus a sign bit to represent the integers in linear layers
(where the rest of (64− 53− 1) exponent bits are 0).

To make sure the result of the matrix multiplication or tensor convolution a⊗b does not overflow, we
need q2k < 253, where k is the number of columns of matrix a or the Cin · fw · fw in convolution.

To avoid overflow in Zq , q should be large; but predicting the value of k beforehand is hard. We thus
resort to the heuristics of testing different choices of q over common VGG networks. Based on our
experiments, q = 221 − 9 is the largest value that does not overflow in almost all (≈ 100%) cases.

Challenges in Quantization To compute x⊗f w with floating-point multiplication ⊗f, we need a
quantization scheme to convert floats to fixed-point numbers and vice versa for linear layers. We first
quantize x and w into xQ = Q(x; θx) and wQ = Q(w; θw), where θx and θw are the corresponding
quantization parameters. We then use fixed-point multiplication ⊗Zq

to compute yQ = xQ⊗Zq
wQ,

and derive the result by y = Q−1(yQ; θx, θw) ≈ x⊗f w.

Slalom only supports prediction. Knowing the model, it knows the value distribution of model
parameters. It can then derive the distribution of the input, output, and intermediate values. Picking
a static scaling parameter that minimizes the error in prediction is thus relatively easy. In Slalom,
Q(·; θ) is always parameterized by θ = 28 for all data (inputs and weights) and every computation.
In short, static quantization may not pose a big problem in a prediction-only framework.

Dynamic Quantization for Training Slalom clearly states that quantization for training is a chal-
lenging problem. For training, the range of gradient of the weight may change, hence the output,
and the input of the successive layer. Knowing the value distribution prior to training is hard, so we
cannot determine what parameters for Q is good enough to support training.

Beyond what Slalom did, we need dynamic quantization for training, meaning that it can adapt the
change on the distribution of the model parameters, and hence the intermediate value and gradient.
The (de-)quantization process has to be efficient since it is part of the pre(/post)-processing of our
GPU-powered scheme. An inefficient scheme would reduce or even offset the performance gain.

Our Choice SWALP (Yang et al., 2019) is a training scheme which works in a low-precision
setting. The forward and backward computation are performed in low-precision fixed-point, but the
weights are stored and updated in floats with high-precision.

Suppose bit is the number of bits available for the low-precision computation, and the default value
is 8. For both the weight and the input, SWALP first finds out the maximum absolute value, and
then calculates its exponent in the format of bits, i.e., compute exp = b(log2 ◦max ◦ abs)(data)c.

7

Under review as a conference paper at ICLR 2020

Then, it scales up all the value by that exponent so that the new maximum values are roughly
aligned to 2bit − 2, rounds them up stochastically (Gupta et al., 2015), and clips all the value to
[−2bit − 1, 2bit − 1 − 1], i.e., dataQ = Q(data, exp) = clip(bdata · 2−exp+bit−2e). After the
computation, the resulting values are scaled down accordingly, i.e., y = yQ · 2expx+expw−2·bit+2

Based on the existing SWALP experiment, its accuracy drops by less than 1% when compared to
training in full-precision for VGG16, and the operands are only of 8 bits. Also, finding the maximum
absolute value and scaling up and down the values only requires 3 linear scans. The scaling can be
fused with other pre/post-processing too. Finally, this scheme matches with our expectation that it is
dynamic because it samples the maximum value of the weight and input every iteration. Section 4.2
shows that with this quantization scheme, Goten can train VGG11 to attain high accuracy efficiently.

3.4 MEMORY-AWARE MEASURES

When the allocated memory in enclave access the limit of 128MB, it incurs excessive overhead. We
apply a memory-aware mechanism for handling most operations in enclave to mediate this problem.

A naı̈ve solution is Linux’s paging, which is provided by Intel SGX SDK. However, native paging
is known to be inefficient. As reported in SCONE (Arnautov et al., 2016), memory access can
be 10 − 1000× slower compared to plaintext setting. Eleos (Orenbach et al., 2017) explains that
triggering SGX native paging would make the CPU core exit the enclave mode, which is time-
consuming. The more memory allocated, the more frequent such expensive operations are invoked.

To prevent this expensive operations, our SGX-aware chunked operation restricts the enclave’s mem-
ory space to 128MB so that it would not trigger the nav̈e paging. When Goten needs to allocate
memory more than 128MB, it would directly handling encrypt the chunk of memory and evict it
in untrusted zone, which, unlike the naı̈ve paging, does not leave the enclave mode. When it need
to use memory not in the enclave, it loads the chunk of memory into the enclave and decrypt it.
Section 4.2 shows that our mechanism speed up the computation of non-linear layers by 8.72×.

When implementing operations inside the enclave, we are aware of this mechanism and try to min-
imize the memory access across the boarder between the trusted/untrusted zone. Some ways are
fusing operations that use the same set of memory and independently handling batches in non-linear
layers to prevent excessive use of memory.

Eleos (Orenbach et al., 2017) is also another mechanism for mediating page-fault overhead. It allows
the program to handle page-fault without exiting the enclave, CoSMIX (Orenbach et al., 2019)
further automate the instrument for this paging-handling mechanism. However, its implementation
was release less than a month so we have not compared or integrated with it.

4 EMPIRICAL EVALUATION

For Goten, its SGX part is written in C++ and compiled with Intel SGX SDK 2.5.101.50123, and
we use Pytorch (pyt, 2019) 1.2 on Python 3.6.9 to marshal network communication and operation
on GPU, which run with CUDA 9.0. The C++ code is compiled by GCC 7.4. Also, we reuse some
code of Slalom (Tramèr & Boneh, 2019), including their code of crypgtographicially-secure random
number generation and encryption/decryption, and their OS-call-free version of Eigen, a linear-
algebra library. All the experiments were conducted for at least 5 times, and we report the average
of the results. We uploaded our source code to https://redacted-for-submission.

4.1 SETUP

SGX’s Simulation Mode and Hardware Mode Only limited models of Intel CPU are powered
by SGX, which can run in the regular hardware mode and enjoy the SGX protection. Intel SGX
SDK also provides simulation mode for testing purpose. Its code compilation is almost the same as
hardware mode except that the program is not protected by SGX, which is fine for our purpose since
the DNN training and prediction algorithms are publicly known. In term of performance, the largest
difference between these two mode is related to paging. When the allocated memory in enclaves
exceeds its physical limit, the enclaves in hardware mode may suffer much larger overhead compare
to native programs. In simulation mode, the overhead is little.

8

Under review as a conference paper at ICLR 2020

Experiemental Environment for CaffeSCONE and Goten We evaluate the performance
CaffeSCONE on a computer (which supports SGX hardware mode) equipped with Intel i7-7700
Kaby Lake Quad-cores 4.3GHz CPU and 16GB RAM, using Ubuntu 18.04. For reproducibility and
for the ease of setting up the experiment, we evaluate the performance Goten on 3 Google Cloud
VMs. We specify all VMs to equip CPU with Sky Lake, the latest microarchitecture can be used for
Google Cloud’s VM. Unfortunately, all CPUs on Google VMs do not support Intel SGX’s hardware
mode. Also, all these machines are equipped with 32GB RAM and a Nvidia V100 GPU.

Calibration on experiment results The experiments on the environment of Goten would under-
estimate the performance of programs running in SGX simulation mode because the CPUs have
lower clock rate and older microarchitecture compared to Intel i7-7700.

To make the comparison between these two frameworks fair, we calibrate Goten’s CPU runtime to
CaffeSCONE’s CPU runtime. We measure the runtime of the non-linear layers in the two above-
mentioned environments. We found that the experiment Goten’s environment would overestimate
the runtime on CaffeSCONE’s CPU. Hence, we decide to scale down the runtime of most time-
consuming non-linear layers in Goten according to the data collected. The scaling factor for ReLU
is 0.96, for Batchnorm is 0.56, for Maxpool is 0.85.

Since the runtime in linear layers related to the transfer between CPU and GPU and over the network,
it is hard to calibrate the runtime between on CPU data solely. Also, our data show that the pre/post-
processing CPU time is similar on hardware mode and simulation mode. Hence, we do not calibrate
the runtime of linear layers. Tables 1 and 2 and Fig. 4 are calibrated by this method.

Choice of Dataset and Architecture: CIFAR-10 and VGG11 Both of Goten and CaffeSCONE
are evaluated on CIFAR-10, a common dataset for benchmarking the accuracy. We pick a VGG
architecture with 11 layers and batch normalization layers for our experiments because it is typical
DNN which can attain high accuracy on CIFAR-10. Also, VGG11 is small so CaffeSCONE, a
CPU-only framework, can easily handle it.

4.2 PERFORMANCE ON VGG11

1 2 4 8
Number of cores

0

5

10

15

20

25

30

35

40

45

Th
ro
ug

hp
ut
 (I
m
ag

e/
s)

Batch size = 128, HW Mode
Batch size = 512, HW Mode
Batch size = 128, Sim. Mode
Batch size = 512, Sim. Mode

Figure 3: Training Throughput of CaffeSCONE

0 1000 2000 3000 4000 5000 6000
Running time (s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st
 A
cc
ur
ac
y

CaffeSCONE (Batch Size = 128)
Salifish (Batch Size = 512)

Figure 4: Accuracy convergence in VGG11

Throughput of CaffeSCONE Fig. 3 show the performance of CaffeSCONE with different batch
size, execution mode, number of cores. It shows that hardware mode is about 4× slower than
simulation mode. Also, using more cores does only have slight impact on the performance, or even
harm the performance. To be fair, we pick the peak performance of CaffeSCONE, which is 32
image/s in simulation mode and 8 image/s in hardware mode. Both of the batch sizes are 128.

Training Throughput of Goten The latency of Goten running a forward-backward iteration is
7.4s when batch size is 512. Its throughput is 69 image/s. We achieve 8.6× improvement. Fig. 1
shows the time distribution of linear and non-linear layers. Goten greatly speeds up the linear layers
in VGG11 by 8.59× and non-linear layers by 8.72×, and in total 8.64×

Convergence on Quantized Neural Netowrks Fig. 4 shows that the convergence trajectory of
Goten and CaffeSCONE. For fair comparison, we set the batch size of CaffeSCONE as 128 as a

9

Under review as a conference paper at ICLR 2020

Table 1: Time Distribution on Linear/Non-linear Layers

Linear Layers Non-linear Layers Total
Time (ms) Proportion Time (ms) Proportion Time (ms)

CaffeSCONE (BS=128) 9243 57.7% 6774 42.3% 16017
Goten (BS=512) 4306 58.1% 3106 41.9% 7412

Speed-up 8.59× - 8.72× - 8.64×

Table 2: Attaining accuracy using GPU-powered Scheme

Accuracy 0.90 0.89 0.88 0.87 0.86 0.85
Speed up - 4.93 7.28 7.31 7.31 11.78

typical floats setting which achieves the highest throughput. We run Goten with batch size of 512 to
gain performance. Goten can attain high accuracy on our test data faster than CaffeSCONE. Table 2
shows the speed up which ranges from 4.93× to 11.78×. It shows our quantization scheme does not
have significant impact on training, and it attain a high accuracy in a shorter time. However, Goten
still cannot attain 0.9 accuracy after 200 epochs, while CaffeSCONE can.

(51
2,
64
, 3
, 3
2)

(51
2,
12
8,
64
, 1
6)

(51
2,
25
6,
12
8,
8)

(51
2,
25
6,
25
6,
8)

(51
2,
51
2,
25
6,
4)

(51
2,
51
2,
51
2,
4)

(51
2,
51
2,
51
2,
2)

shape

0

500

1000

1500

2000

2500

3000

3500

4000
Arithmetic Intensity
Speed up (right)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(a) With Low Paging Overhead

(51
2,
64
, 3
, 3
2)

(51
2,
12
8,
64
, 1
6)

(51
2,
25
6,
12
8,
8)

(51
2,
25
6,
25
6,
8)

(51
2,
51
2,
25
6,
4)

(51
2,
51
2,
51
2,
4)

(51
2,
51
2,
51
2,
2)

shape

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Arithmetic Intensity
Speed up (right)

0

5

10

15

20

25

30

35

40

45

(b) SGX Hardware Mode

Figure 5: Speed up vs. Arith. Intensity of GPU-powered Conv. of Shape (B, Cout , Cin , Ihw)

Micro-benchmarks: Speedup of Our GPU Outsourcing Protocol Fig. 5 show that the speed-up
and arithmetic intensity of each convolution layers presented in VGG with CIFAR-10. The shapes
correspond to (the batch size, the number of input channels, the number of output channels, the
height and width of input images). The filter size of all layers are 3× 3.

Fig. 5a shows the the result in simulation, where paging overhead is low. The result confirms with
our analysis in Section 3.2: the higher arithmetic intensity a convolution layer has, the more per-
formance it gains. Furthermore, to have performance gain in our experimental environment, the
arithmetic intensity should be at least 250. Also, we notice that the layer with image size 2 × 2
actually has huge performance gain while it has relatively low arithmetic intensity. We suspect that
it is because Caffe cannot efficient handling input with small image size in CPU.

Fig. 5b shows the speedup in hardware mode, where paging overhead is huge. It shows much high
speed up when there are small the images and many the input channels, and the speed up is not
proportional to the architecture intensity. We suspect that the convolution’s implementation of Caffe
amplify the paging overhead in the above-mentioned situation.

Fig. 1 shows that Goten totally speed up the linear layers in VGG11 by 8.6×,

10

Under review as a conference paper at ICLR 2020

5 CONCLUSIONS

We proposed a new secure neural network framework using trusted processors. Our framework
not only outperforms cryptographic solutions by orders of magnitude, but also resolved the memory
limits issues in the existing state-of-the-art trusted processors approach (Ohrimenko et al., 2016). We
made privacy-preserving training, prediction, and model-outsourcing for very deep neural networks
more deployable in practice by advancing the frontier of the SGX-based machine-learning. For the
first time, we can run a very deep neural network, with privacy, but without any memory issue.

REFERENCES

Deep Learning Performance Guide :: Deep Learning SDK Documentation. https://docs.
nvidia.com/deeplearning/sdk/dl-performance-guide/index.html, 2019.
[Online; accessed 13-Sept-2019].

PyTorch. https://pytorch.org, 2019. [Online; accessed 13-Sept-2008].

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In OSDI, pp. 265–283, 2016a.

Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In CCS, pp. 308–318. ACM, 2016b.

Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. Performance, design,
and autotuning of batched GEMM for GPUs. In ISC, pp. 21–38, 2016.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin, Christian Priebe,
Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell, David Goltzsche, David M.
Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and Christof Fetzer. SCONE: secure linux containers
with intel SGX. In OSDI, pp. 689–703, 2016.

Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-Reza Sadeghi, Guil-
laume Scerri, and Bogdan Warinschi. Secure multiparty computation from SGX. In Financial
Crypt., pp. 477–497, 2017.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pp. 420–
432, 1991.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classification
over encrypted data. In NDSS, 2015.

Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic evalu-
ation of deep discretized neural networks. In CRYPTO, 2018.

Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and
Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In USENIX
Workshop on Offensive Technologies, 2017.

Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz, Christof Fetzer,
Peter R. Pietzuch, and Rüdiger Kapitza. SecureKeeper: Confidential zookeeper using Intel SGX.
In Middleware, pp. 14, 2016.

Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In CCS, pp. 486–497, 2007.

Somnath Chakrabarti. SGX memory oversubscription, 2017. http://caslab.csl.yale.
edu/workshops/hasp2017/HASP17-05_slides.pdf.

Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. Johnson, Ari Juels,
Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In IEEE EuroS&P, pp. 185–200, 2019.

11

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html
https://pytorch.org
http://caslab.csl.yale.edu/workshops/hasp2017/HASP17-05_slides.pdf
http://caslab.csl.yale.edu/workshops/hasp2017/HASP17-05_slides.pdf

Under review as a conference paper at ICLR 2020

Sherman S. M. Chow, Jie-Han Lee, and Lakshminarayanan Subramanian. Two-party computation
model for privacy-preserving queries over distributed databases. In NDSS. ISOC, 2009.

Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint 2016/086, 2016.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In NDSS. ISOC, 2015.

Cynthia Dwork. Differential privacy. In ICALP, pp. 1–12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In EUROCRYPT, pp. 486–503. Springer,
2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitiv-
ity in private data analysis. In TCC, pp. 265–284. Springer, 2006b.

C. Feng. SGX protected memory limit in SGX, 2017. https://software.intel.com/
en-us/forums/intel-software-guard-extensions-intel-sgx/topic/
670322.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In CCS, pp. 1322–1333. ACM, 2015.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. CryptoNets: Applying neural networks to encrypted data with high throughput and
accuracy. In ICML, pp. 201–210, 2016.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive computation
and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In ICML, pp. 1737–1746, 2015.

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin, Michael Backes, and
Mario Fritz. MLCapsule: Guarded offline deployment of machine learning as a service. CoRR
abs/1808.00590, 2018.

Danny Harnik and Eliad Tsfadia. Impressions of Intel SGX performance, 2017. https://link.
medium.com/ZiaueRi94Z.

Susan Hohenberger and Anna Lysyanskaya. How to securely outsource cryptographic computations.
In TCC, pp. 264–282. Springer, 2005.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chiron:
Privacy-preserving machine learning as a service. CoRR abs/1803.05961, 2018.

Intel. Intel Software Guard Extensions (Intel SGX), 2017. https://software.intel.com/
en-us/sgx.

Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-means clustering over
arbitrarily partitioned data. In SIGKDD, pp. 593–599, 2005.

Yangqing Jia. Learning Semantic Image Representations at a Large Scale. PhD thesis, University
of California, Berkeley, USA, 2014.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross B. Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. In ACM International Conference on Multimedia, MM, 2014.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In USENIX Security, pp. 1651–1669, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84–90, 2017.

12

https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/670322
https://link.medium.com/ZiaueRi94Z
https://link.medium.com/ZiaueRi94Z
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

Under review as a conference paper at ICLR 2020

Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof Fetzer.
Tensorscone: A secure tensorflow framework using intel SGX. CoRR abs/1902.04413, 2019.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions via MiniONN
transformations. In CCS, pp. 619–631. ACM, 2017.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In PLDI, pp. 190–200. ACM, 2005.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In IEEE S&P, pp. 19–38. IEEE, 2017.

Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft, and Dan Boneh.
Privacy-preserving matrix factorization. In CCS, pp. 801–812. ACM, 2013a.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In IEEE S&P, pp. 334–
348. IEEE, 2013b.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors. In
USENIX Security, pp. 619–636. Usenix, 2016.

Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: ExitLess OS services
for SGX enclaves. In EuroSys, pp. 238–253. ACM, 2017.

Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silberstein. Cosmix: A compiler-
based system for secure memory instrumentation and execution in enclaves. In USENIX ATC, pp.
555–570, 2019.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Trans. Information Foren-
sics and Security, 13(5):1333–1345, 2018.

Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. SGX-BigMatrix: A practical
encrypted data analytic framework with trusted processors. In CCS, pp. 1211–1228. ACM, 2017.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In CCS, pp. 1310–1321.
ACM, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram K. Rajamani, Sanjit A. Seshia, and
Kapil Vaswani. A design and verification methodology for secure isolated regions. In PLDI, pp.
665–681. ACM, 2016.

Aleksandra B. Slavkovic, Yuval Nardi, and Matthew M. Tibbits. Secure logistic regression of hori-
zontally and vertically partitioned distributed databases. In ICDM, pp. 723–728, 2007.

Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and Sherman S. M. Chow. Privacy-preserving
decision trees evaluation via linear functions. In ESORICS, pp. 494–512, 2017.

Qiang Tang and Husen Wang. Privacy-preserving hybrid recommender system. In AsiaCCS-SCC,
pp. 59–66, 2017.

Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee. Privado:
Practical and secure DNN inference. CoRR abs/1810.00602, 2018.

Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In ICLR, 2019.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction APIs. In USENIX Security, pp. 601–618, 2016.

13

Under review as a conference paper at ICLR 2020

Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving SVM classification. Knowl.
Inf. Syst., 14(2):161–178, 2008.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution environments on
GPUs. In OSDI, pp. 681–696, 2018.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure computation for
neural network training. PoPETs, 2019(3):26–49, 2019.

Boyang Wang, Ming Li, Sherman S. M. Chow, and Hui Li. A tale of two clouds: Computing on
data encrypted under multiple keys. In IEEE CNS, pp. 337–345. IEEE, 2014.

Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. sgx-perf: A performance analysis tool
for Intel SGX enclaves. In Middleware, 2018.

David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. Privately evaluating decision trees
and random forests. PoPETs, 2016(4):335–355, 2016.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and Christo-
pher De Sa. Swalp: Stochastic weight averaging in low-precision training. arXiv:1904.11943,
2019.

Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving SVM classification on verti-
cally partitioned data. In PAKDD, pp. 647–656, 2006.

Yongjun Zhao and Sherman S. M. Chow. Privacy preserving collaborative filtering from asymmetric
randomized encoding. In Financial Crypt., pp. 459–477, 2015.

A PRELIMINARIES

A.1 NEURAL NETWORKS

A neural network gains its predictive power by imitating biological neural networks (Goodfellow
et al., 2016). A (feedforward) neural network can be represented by a sequence of transformations.

This paper focuses on supervised learning — every training data is a data point x associated with
a label y, and the neural networks try to learn the relationship between x and y. Prediction in
supervised learning outputs a label of query x.

We refer the computation for prediction by forward-propagation. For training, gradient descend
is usually employed, where the computation for updating the parameters is called backward-
propagation.

A.1.1 COMMON LAYERS IN NEURAL NETWORKS

Roughly, transformations in a neural network can be divided into two categories: linear transforma-
tion and non-linear transformation.2

For the linear transformation, we have two kinds of layers.
i) Fully-connected layer (a.k.a. dense layer) — It just multiplies a weighting matrix to the input (for
training or prediction).
ii) Convolutional layer — It is similar to the convolution operation except it rotates the kernels
by 180 degrees. The data-structure of inputs, outputs, and kernels are tensors, which are usually
3/4-dimensional.

For non-linear transformation, we have —
i) Activation layer, which applies a non-linear function on each element to mimic the impulse acti-
vation of biological cells.
ii) Pooling layer, which aggregates values in a group after applying a function like max() or mean()

2Some weird layers may appear in some architecture but can be easily implemented using the principle we
introduced.

14

Under review as a conference paper at ICLR 2020

function.
iii) Output layer, which outputs the results in the prediction phase. In the training phase, it computes
a loss value measuring the error between the ground truth and the neural network’s prediction.

A.1.2 COMPUTATIONAL ASPECTS

The linear transformation is the most computationally intensive part (Jia, 2014) when we compute in
plaintext. The same applies to the SGX setting. Looking ahead, we will leverage GPU to accelerate
the computation of linear layers. Looking ahead, we further outsource the linear transformation to
multiple servers by additive secret sharing (Section A.4) to improve efficiency.

In SGX-enclave, the non-linear transformation can be processed in plaintext efficiently. These non-
linear transformations are basically aggregating the output from its previous layer and/or applying
element-wise operations. A simple but efficient way to handle them is to load the entries from
the previous layer to the enclave cache memory one-by-one in a deterministic order and output the
results once it got enough inputs. In this way, the data remains confidential and the memory access
pattern is hidden.

In contrast, without SGX, (cryptographic) solutions either use garbled circuits, resulting in high
computation and communication overhead (SecureML (Mohassel & Zhang, 2017), MiniONN (Liu
et al., 2017), and Gazelle (Juvekar et al., 2018)), restricted choice of the activation layer and pooling
layer (CryptoNet (Gilad-Bachrach et al., 2016)), or dramatic reduction of the size of neural net-
works (DiNN (Bourse et al., 2018)). As a result, these solutions are not compatible with many well-
developed neural network architectures such as AlexNet (Krizhevsky et al., 2017), VGG16/19 (Si-
monyan & Zisserman, 2015), etc.

A.1.3 VERY DEEP CONVOLUTIONAL NETWORK (VGG)

This is a family of very deep neural networks with 9 − 19 layers with parameters (Simonyan &
Zisserman, 2015) and has extraordinary performances on object classification. They have convo-
lution layers with similar setting, e.g., all of the convolution has filters of 3 × 3 and followed by
ReLU and some of them further followed by 2 × 2 max-pooling layers. They are commonly used
neural networks and hence it is worth to study how to improve the performance of neural networks
in privacy-preserving setting.

A.2 INTEL SGX

SGX is the latest Intel hardware-assisted remote secure computing design. Since its seventh gener-
ation (Intel, 2017), Intel introduced a set of instructions and hardware design with which an enclave
can be allocated in the trusted hardware, protecting the privacy and integrity of the data to be pro-
cessed within it.

A.2.1 SECURITY ENCLAVES AND MEMORY LIMIT

In SGX, enclaves are used as secure containers. When the secure software requests a secure con-
tainer, an enclave will be loaded with the code and the data specified by the secure software. The
enclave will isolate itself from the rest of the computer. Then the data owner can verify the integrity
of the enclave by undergoing a standard remote attestation of SGX. Inside an enclave, all the data
will be stored in the main memory in an encrypted and authenticated form when the CPU core is not
processing them. When some specific data is going to be processed, it will be loaded into memory
caches dedicated to a CPU core with SGX protection enabled and then be decrypted.

Although Intel claims that the current SGX supports up to 128MB of memory, at most 90MB is
usable according to Shaon et al. (2017).

A.2.2 GENERIC APPLICATION

The trusted hardware is directly applicable to secure computation. Imagine that a data provider
holding some sensitive data wants to perform some secure computation on a remote server. The data
provider does not trust the server owner and thus he wants that only the server owner can know the

15

Under review as a conference paper at ICLR 2020

pre-defined output. The trusted processor is an efficient solution satisfying these requirements: data
can be processed in plaintext inside the trusted processor but remains unknown and tamper-proof,
even to the server owner. Of course, the data owner needs to trust both the software provider and the
hardware manufacturer.

A.3 GRAPHICS PROCESSING UNIT

A GPU consists of thousands of cores that can perform similar instructions in parallel. If an algo-
rithm is parallelizable, GPU can increase its computation performance by orders of magnitude.

The most computationally intensive part of neural networks can be transformed into matrix computa-
tion, which is well-suited for GPU. Jia (2014) showed that fully-connected layers and convolutional
layers occupy over 95% computational time. Abdelfattah et al. (2016) concluded that GPU can
speed-up matrix multiplication by ≥ 10× compared to multi-core CPU.

A.4 TWO-PARTY COMPUTATION VIA SECRET SHARING

For two servers P0 and P1 holding private input a, b ∈ Zq respectively, where q is a prime, they can
let a third server learn c = a + b ∈ Zq without revealing a, b as follows. P0 chooses a uniformly
random a′ ∈ Zq , then sends 〈a〉1 = a′ to P1, and keeps 〈a〉0 = a − a′. P1 does a similar job:
samples and sends 〈b〉1 = b′ to P0, and keeps 〈b〉0 = b− b′. No one revealed a or b in this process.
Then, P0 computes 〈c〉0 = 〈a〉0 + 〈b〉0 and P1 computes 〈c〉1 = 〈a〉1 + 〈b〉1. At this point, P0 and
P1 both hold (additive) secret shares of c = a+ b. Any third party with both shares {〈c〉i} can learn
c = 〈c〉0 + 〈c〉1.

Beaver (1991) generalized the above method to let P0 and P1 compute secret shares of c = a · b
as follows. Suppose P0 and P1 have already pre-computed additive secret shares of u, v, and z
where u · v = z. Namely, Pi has 〈u〉i, 〈v〉i, and 〈z〉i. Pi masks 〈a〉i, 〈b〉i via 〈e〉i = 〈a〉i − 〈u〉i and
〈f〉i = 〈b〉i−〈v〉i. They then exchange 〈e〉i and 〈f〉i to reconstruct e and f , which is masking a and
b respectively. Finally, with e and f , they compute 〈c〉i = −i(e ·f)+f · 〈a〉i+e · 〈b〉i+ 〈z〉i locally,
where 〈c〉0 + 〈c〉1 = ab. This technique can be further generalized to matrix addition/multiplication
by replacing Zq with Zm×k

q or Zk×n
q . Indeed, this technique can applied to any linear operation,

including convolution.

Using this protocol as-is requires two rounds of communication (for recovering (e, f)) and pre-
computation (of shares of (u, v, z)). Looking ahead, we will illustrate how to reduce the communi-
cation cost and the pre-computation and hence improve the throughput.

In the rest of the paper, we use Rand(rx) to denote a function that takes a random seed rx and
outputs a random element x′ ∈ Zq . Then the (additive) secret share of x held by Pi can be written
as 〈x〉i = Geni(x, rx) = i · x+ (−1)i · Rand(rx).

B RELATED WORK

B.1 CRYPTOGRAPHIC SOLUTIONS

Gilad-Bachrach et al. (2016) proposed CryptoNet. It exploits non-linear functions supported by lev-
elled homomorphic encryption (LHE) and parallel computation to improve the efficiency of neural
network evaluation. However, it only supports limited activation function (x2 or sigmoid(x)) and
pooling function (average pooling). The experiment results of CryptoNet showed that it is roughly
1000× slower than running a similar neural network in plaintext,

Subsequent works (Mohassel & Zhang, 2017; Liu et al., 2017; Juvekar et al., 2018) improve or
extend CryptoNet in various dimensions. SecureML (Mohassel & Zhang, 2017) uses two non-
colluding servers to support both training and prediction for neural networks, but it is slower than
CryptoNet in prediction. MiniONN (Liu et al., 2017) achieves higher prediction accuracy than
SecureML for the same network structure. It is also 5× faster than SecureML for small neural
networks with single instruction multiple data (SIMD) batching technique on HE.

To the best of our knowledge, Gazelle (Juvekar et al., 2018) is the state-of-the-art cryptographic ap-
proach in terms of latency. It performs much better than CryptoNet/MiniONN by delicately choosing

16

Under review as a conference paper at ICLR 2020

the HE scheme with optimized parameters to fit the hardware architecture. Gazelle has much lower
latency than MiniONN/SecureML as its plaintext space is at most 20 bits. However, it is still unclear
whether Gazelle harms the accuracy which is not stated in their paper (Juvekar et al., 2018).

DiNN (Bourse et al., 2018) follows an approach similar to CryptoNet’s. It does not require user
interaction during the evaluation. To the best of authors’ knowledge, it is the state-of-the-art pure-
HE-based approach. Yet, as stressed in the DiNN paper (Bourse et al., 2018), their aim is to show
that a pure-HE approach is possible and can outperform CryptoNet, at the cost of lower accuracy.

In general, all frameworks mentioned above use expensive cryptographic primitives, such as LHE,
GC, and OT, during (training and) prediction, resulting in huge data and computation overheads.
Also, using these primitives usually requires multiple rounds of communication between different
parties.

As a final remark, there are cryptographic solutions that protect the privacy of (mostly the “predic-
tion” phase of) other machine learning algorithms. A non-exhaustive list includes decision trees (Tai
et al., 2017; Wu et al., 2016; Bost et al., 2015), logistic regression (Slavkovic et al., 2007; Bost et al.,
2015), support vector machine (Vaidya et al., 2008; Yu et al., 2006), collaborative filtering (Tang &
Wang, 2017; Zhao & Chow, 2015), and k-means clustering (Bunn & Ostrovsky, 2007; Jagannathan
& Wright, 2005). They are conceivably less powerful than a deep neural network.

B.2 TRUSTED EXECUTION ENVIRONMENT

Ohrimenko et al. (2016) proposed data-oblivious machine learning algorithms using SGX for train-
ing and prediction. Their work also defends against some potential side-channel attacks using obliv-
ious operations. However, their algorithms cannot handle any layer of size exceeding the amount of
usable memory (90MB) in an enclave.

The memory limit has been a huge drawback of SGX. Different efforts have been devoted to re-
solving this issue. Shaon et al. (2017) proposed SGX-BigMatrix. It supports operations on matrices
which size exceed 90MB, but still have very high overhead comparing to optimized libraries for un-
protected matrices. Linux’s SGX supports memory oversubscription for enclaves, but it introduces
overhead for paging, which is reported widely (Weichbrodt et al., 2018; Chakrabarti, 2017; Harnik
& Tsfadia, 2017; Brenner et al., 2016; Arnautov et al., 2016). Intel official forum even reported
examples of 10× to 350× overheads (Feng, 2017). Moreover, based on our experiments, Linux’s
paging introduce up to runtime 24× on matrix multiplications.

Independent of our work, a few recent3 proposals also rely on TEE (Hunt et al., 2018; Tople et al.,
2018) or TEE and GPU (Tramèr & Boneh, 2019). Chiron (Hunt et al., 2018) assumes the data
provider shards training data into n pieces for n enclaves, such that each shard fits in enclave mem-
ory. The authors left the policy for managing insufficient enclave memory as future work. Most
importantly, Chiron requires new SGX features that are not available yet.

Volos et al. (2018) proposed Graviton, an architecture for supporting TEE on GPU with the help
of SGX. As a general purpose TEE, it supports the neural network computation with near-native
performance compared to untrusted GPU. However, they assume that an attacker cannot physically
steal information from the GPU cores, which is questionable because GPU cores, unlike SGX, are
not designed for trusted operation and their security is not well examined.

Tramèr & Boneh (2019) recently proposed Slalom for verifiable and private inference using a
trusted enclave which also outsources some computation to a GPU. Their approach heavily re-
lies on the assumption that the server knows the model’s parameters. It is thus not applicable to
privacy-preserving training. Privado (Tople et al., 2018) allows a model owner to outsource privacy-
preserving DNN inference to an SGX-enabled cloud server. It guarantees that even a powerful cloud
who sees the SGX enclave memory access pattern does not learn model parameters or the user query.
Compare with our solution, Privado does not handle training phase, nor does it leverage untrusted
hardware like GPU for acceleration.

Bahmani et al. (2017) proposed an SGX-based framework for general-purpose secure multi-party
computation. In general, our work can be viewed as a special protocol instance under their frame-

3Our first draft was completed in early ’18 while Volos et al. (2018) is officially published in Oct. ’18. To
the best of our knowledge, they are not yet published after peer-reviews.

17

Under review as a conference paper at ICLR 2020

work, but we provided additional important contribution that we use untrusted GPU to further ac-
celerate computations.

Kunkel et al. (2019) also propose TensorSCONE to port another popular DNN framework Tensor-
Flow to SCONE. Our basic approach is similar to this framework, and we provide our implementa-
tion to public for benchmarking.

Orenbach et al. (2017) proposes Eleos, a memory handling mechanism to reduce performance over-
head due to SGX’s memory page fault. Its main idea is to prevent, when page fault happens, exiting
enclaves because which is an expensive instruction. The experimental results shows that it can re-
duce the paging overhead by 5×. And its successive work CoSMiX (Orenbach et al., 2019) shows
that the paging overhead can be further reduced to 1.3− 2.4×. We assume Goten and CaffeSCONE
employ this memory handling mechanism to handle paging, and we simulate the performance that
does not affected by paging by using simulation mode form Intel SGX SDK.

B.3 DIFFERENTIAL PRIVACY

Another line of research focuses on achieving differential privacy (Dwork, 2006; Dwork et al.,
2006a;b). Abadi et al. (2016b) propose a differentially private stochastic gradient descent algo-
rithm for deep learning. Shokri & Shmatikov (2015) propose collaborative learning, in which data
owners jointly train a deep neural network by exchanging differentially private gradients through
a parameter server instead of directly sharing local training data. Although Shokri & Shmatikov
(2015) makes it hard to tell whether a specific record exists in the victim’s private training set, it
does not prevent an adversary from learning macro-feature of the training set. Phong et al. (2018)
showed that the parameter server in Shokri & Shmatikov (2015) can extract information about the
training set, and proposed to use additive HE to eliminate the leakage during training.

C SECURITY ANALYSIS

C.1 PROTECTION SCOPE

From the perspective of the querier, no one else can learn the prediction query and the corresponding
result. For the model, the most valuable information includes the parameter of the neural network
(e.g., weights and bias of convolutional filters and fully-connected layer), the accuracy according to
the training dataset, and the intermediate results. These explicit parameters of the model would not
be known by any data-provider and server (with protection against side-channel attacks described
shortly afterwards).

We aim for a practical framework instead of a perfectly leakage-free solution. Following the litera-
ture (Juvekar et al., 2018; Mohassel & Zhang, 2017; Liu et al., 2017; Gilad-Bachrach et al., 2016),
we do not protect the hyper-parameters such as the learning rate, the number of layers, the size of
each layer etc. These could be inferred by the querier by timing the interaction with the server or
by the server from the memory access pattern. One may hide these by adding dummy storage and
computation, which is ought to be inefficient.

Side-channel leakage is also out of our protection scope. Specifically, the access pattern in cache-
line may reveal information about the data (Ohrimenko et al., 2016). In our case, max-pooling layers
and the argmax function in the output layer would be exploitable for their branching depending on
the intermediate results. Yet, the existing defence (Ohrimenko et al., 2016) can be easily employed
by changing the assembly code of max() in the enclave, and the computation overhead is less than
2% (Ohrimenko et al., 2016).

Model extraction attacks (Tramèr et al., 2016; Fredrikson et al., 2015) can be launched in a blackbox
environment, namely, the attacker knows nothing about the model parameters and its architecture
but can query the model, whereby he/she duplicates the functionality of the model. We can easily
employ two effective mitigations. First, the training data providers can limit the query rate or set up
a query quota by consensus. Second, we only return the labels of evaluation results, instead of the
confidence values (the values of the output vector) since it is the main attribute being abused by the
attackers (Tramèr et al., 2016).

18

Under review as a conference paper at ICLR 2020

C.2 OPERATIONS INSIDE ENCLAVES

With the use of SGX, the security guarantee is easy to see. In our construction, the data provided
by data providers are either stored in the enclave or sealed on server storage. When data is stored
inside the enclave, by the security guarantee of SGX, no other party is able to gain any information.
When data is stored outside the enclave, we seal the data by an authenticated encryption (AES-
GCM) (Costan & Devadas, 2016), which protects the confidentiality and integrity of a sealed block.
We also authenticate the meta-data, in particular, the identity and the number of executions of the
block, which disallows arbitrary manipulation of the input data by mix-and-match.

Apart from storage, we also perform execution over the data. In our framework, all executions are
data-independent — the executions of neural networks have no branching dependent on the data or
models parameters. We analysis our implementation to be data-oblivious using PinTool[], a tool for
analysis execution trace, to make sure the trace is the same given model parameter, training data, and
prediction queries. The execution view observed by other parties can thus be simulated by without
the actual data.

C.2.1 DATA-OBLIVIOUS OPERATIONS

The host of an enclave can observe the memory access pattern, even in L2 cache level (Brasser et al.,
2017). Hence, we need to ensure algorithms running in enclaves are data-oblivious, meaning that
the trace of executed cpu instruction should be the same even given different input data.

Functions involves branching, e.g. max, min, may arouse concern on data-oblivious because some
optimization of compilers may skip the write instruction if the computed value is equal the original
value. For example, the write in y = max(y, 0) may be skipped if y is indeed large then 0.

Fortunately, we can always use vectorization techniques to avoid such situations. With vectorization
techniques, e.g., SSE and AVX, the vectorized read and write instructions will not be skipped since
they are atomic and hence no branch depending the data value. Even better, such vectorization
techniques are usually automatically employed by common compilers, e.g. GCC, with proper flags,
e.g., -march=native. All we need to do is manually inspecting compiled assemble code or using
trace analysis tools, e.g. PinTool (Luk et al., 2005), for automatic verification.

C.3 OUTSOURCING TO GPUS

The only cryptographic primitive we used in the outsourcing protocol is additive secret sharing,
which is commonly used in the non-colluding server setting (Wang et al., 2014; Mohassel & Zhang,
2017) for privacy-preserving machine learning and also a standard practice in the bigger context of
secure multi-party computation (Hohenberger & Lysyanskaya, 2005; Chow et al., 2009; Demmler
et al., 2015). Its confidentiality holds in the strong information-theoretic sense against any adver-
sary without enough shares. This fits with the non-colluding server setting well.

Here, we prove that our modified triplet multiplication is secure, namely, none of the server S0, S1,
and S2 can gain any information of the contents of a, b, or c = a ⊗ c (the servers can learn their
dimensions). Due to the non-colluding assumption, we only need to prove that the knowledge of
each individual server can be reduced to their counterpart the original protocol.

For S2, it knows u and v, which are random tensors/matrices and contain no information about a, b,
or c. Also, z = u⊗ v derived from u and v contains no extra information.

Speaking at high-level, the extra knowledge of S0 and S1 leaks no meaningful information because
it is all one-time padding.

Comparing the original protocol described in Section A.4 with our protocol described in Figure 2.
in our protocol, S0 has extra knowledge 〈z〉1, c1 + K1→0, and K0→1. Now, we apply the game-
hopping technique to prove that our scheme is reducible to the original protocol. Firstly, since S0

does not know 〈z〉0 in our protocol, we can replace 〈z〉1 by 〈z〉0. Then, since S0 also does not
K1→0, ci +K1→0 can also be replaced by a random matrix/tensor. Likewise, K0→1 is just another
random matrix/tensor so it can be replaced trivially. Now, S0 has the view of S0 in the original
protocol plus two random matrices/tensors.

19

Under review as a conference paper at ICLR 2020

n e t = nn . S e q u e n t i a l (
nn . Conv2d (3 , 64 , 3 , padd ing = 1) ,
nn . BatchNorm2d (6 4) , nn . r e l u () ,
nn . MaxPool2d (2 , 2) ,
nn . Conv2d (6 4 , 128 , 3 , padd ing = 1) ,
nn . BatchNorm2d (1 2 8) , nn . r e l u () ,
nn . MaxPool2d (2 , 2) ,
nn . Conv2d (1 2 8 , 256 , 3 , padd ing = 1) ,
nn . BatchNorm2d (2 5 6) , nn . r e l u () ,
nn . Conv2d (2 5 6 , 256 , 3 , padd ing = 1) ,
nn . BatchNorm2d (2 5 6) , nn . r e l u () ,
nn . MaxPool2d (2 , 2) ,
nn . Conv2d (2 5 6 , 512 , 3 , padd ing = 1) ,
nn . BatchNorm2d (5 1 2) , nn . r e l u () ,
nn . Conv2d (5 1 2 , 512 , 3 , padd ing = 1) ,
nn . BatchNorm2d (5 1 2) , nn . r e l u () ,
nn . MaxPool2d (2 , 2) ,
nn . Conv2d (5 1 2 , 512 , 3 , padd ing = 1) ,
nn . BatchNorm2d (5 1 2) , nn . r e l u () ,
nn . Conv2d (5 1 2 , 512 , 3 , padd ing = 1) ,
nn . BatchNorm2d (5 1 2) , nn . r e l u () ,
nn . MaxPool2d (2 , 2) ,
nn . L i n e a r (5 1 2 , 5 1 2) ,
nn . BatchNorm1d (5 1 2) , nn . r e l u () ,
nn . L i n e a r (5 1 2 , 5 1 2) ,
nn . BatchNorm1d (5 1 2) , nn . r e l u () ,
nn . L i n e a r (5 1 2 , 10)

)

Figure 6: The Architecture of VGG11

Likewise, S1 has extra knowledge of c0 + K0→1 and K1→0. Applying the same principles for
analyzing S0, it can be reduced to S1 in the original protocol.

20

	Introduction
	Our Baseline Approach: CaffeSCONE
	Our Proposed Framework: Goten
	Technical Contributions

	System Model
	CaffeSCONE
	Goten

	The Design of Goten
	High-level Idea
	GPU-powered Operations via Our Outsourcing Protocol
	Data Types and Dynamic Quantization
	Memory-aware Measures

	Empirical Evaluation
	Setup
	Performance on VGG11

	Conclusions
	Preliminaries
	Neural Networks
	Common Layers in Neural Networks
	Computational Aspects
	Very Deep Convolutional Network (VGG)

	Intel SGX
	Security Enclaves and Memory Limit
	Generic Application

	Graphics Processing Unit
	Two-Party Computation via Secret Sharing

	Related Work
	Cryptographic Solutions
	Trusted Execution Environment
	Differential Privacy

	Security Analysis
	Protection Scope
	Operations inside Enclaves
	Data-oblivious Operations

	Outsourcing to GPUs

