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ABSTRACT

Attribution methods provide insights into the decision-making of machine learning
models like artificial neural networks. For a given input sample, they assign a
relevance score to each individual input variable, such as the pixels of an image. In
this work we adapt the information bottleneck concept for attribution. By adding
noise to intermediate feature maps we restrict the flow of information and can
quantify (in bits) how much information image regions provide. We compare
our method against ten baselines using three different metrics on VGG-16 and
ResNet-50, and find that our methods outperform all baselines in five out of six
settings. The method’s information-theoretic foundation provides an absolute frame
of reference for attribution values (bits) and a guarantee that regions scored close
to zero are not required for the network’s decision.

1 INTRODUCTION

Deep neural networks have become state of the art in many real-
world applications. However, their increasing complexity makes
it difficult to explain the model’s output. For some applications
such as in medical decision making or autonomous driving, model
interpretability is an important requirement with legal implications.
Attribution methods (Selvaraju et al., 2017; [Zeiler & Fergus}, 2014
Smilkov et all,[2017) aim to explain the model behaviour by assign-
ing a relevance score to each individual input variable. When applied
to images, the relevance scores can be visualised as heatmaps over
the input pixel space, thus highlighting salient areas relevant for the
network’s decision.

Bits / Pixel

o ) o Figure 1: Exemplary heatmap
Attribution maps can be hard to interpret. If an attribution heatmap  of the Per-Sample Bottleneck.

highlights subjectively irrelevant areas, this might correctly reflect

the network’s unexpected way of processing the data, or the heatmap

might simply be inaccurate. Given an image of a railway locomotive, the attribution map might
highlight the train tracks instead of the train itself. Yet, the low relevance values of the locomotive do
not guarantee that the network will ignore the locomotive for prediction.

We propose a novel attribution method that estimates the amount of information an image region
provides for the network’s decision. We use a variational approximation to upper-bound this estimate
and therefore can guarantee that areas with zero bits of information are not used. Figure [T]shows an
exemplary heatmap of our method. Up to 5 bits per pixel are available for regions corresponding to
the monkeys’ faces, whereas the tree is scored with close to zero bits per pixel. We can thus guarantee
that the tree is not necessary for predicting the correct class, a guarantee to the best of our knowledge
other methods can not provide.

To estimate the amount of information, we adapt the information bottleneck concept
[2000; [Alemi et al,[2017). The bottleneck is inserted into an existing neural network and restricts
the information flow by adding noise to the activation maps. Unimportant activations are replaced
almost entirely by noise, removing all information for subsequent network layers. We developed
two approaches to learn the parameters of the bottleneck — either using a single sample (Per-Sample
Bottleneck), or the entire dataset (Readout Bottleneck).
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We evaluate against ten different baselines using three metrics. First, we calculated the Sensitivity-n
metric proposed by |Ancona et al.|(2018)). Secondly, we quantified how well the object of interest was
localized using bounding boxes and extend the degradation task proposed by|Ancona et al.|(2017). In
all these metrics our method outperforms the baselines consistently. For reproducibility, we share
our source codd’] Our method provides a theoretic upper-bound on the used information while
demonstrating strong empirical performance. This contributes to improving model explainability and
to increasing trust in the attribution results.

To summarize our contributions:

e We adapt the information bottleneck concept for attribution to estimate the information used
by the network. Information theory provides a guarantee that areas scored irrelevant are
indeed not neccessary for the network’s prediction.

e We propose two ways — Per-Sample and Readout Bottleneck — to learn the parameters of the
information bottleneck.

e We contribute a novel evaluation method for attribution based on bounding boxes and we
also extend the metric proposed by|Ancona et al.|(2017) to provide a single scalar value and
improve the metric’s comparability between different network architectures.

2 RELATED WORK

Attribution is an active research topic. Gradient Maps (Baehrens et al., 2010) and Saliency Maps
(Simonyan & Zisserman), 2014) are based on calculating the gradient of the target output neuron w.r.t.
to the input features. Integrated Gradient (Sundararajan et al.l [2017) and SmoothGrad (Smilkov,
et al., [2017)) improve over gradient-based attribution maps by averaging the gradient of multiple
inputs, either in a local neighborhood or over brightness level interpolations of the input image.
Other methods, such as Layer-wise Relevance Propagation (LRP) (Bach et al 2015), Deep Taylor
Decomposition (DTD) (Montavon et al., [2017), Guided Backpropagation (GuidedBP) (Springenberg
et al.,[2014) or DeepLIFT (Shrikumar et al., 2017)) modify the propagation rule. PatternAttribution
(Kindermans et al., [2018]) builds upon LRP by estimating the signal’s direction for the backward
propagation. Perturbation-based methods are not based on backpropagation and treat the model as
a black-box. Occlusion (Zeiler & Fergus, [2014) measures the importance of individual features by
replacing them and then measuring the drop in classification score. Grad-Cam (Selvaraju et al.,|2017)
take the activations of the final convolutional layer to compute relevance scores. They also propose
combine thier method with GuidedBP called GuidedGrad-CAM. Ribeiro et al.| (2016) use image
superpixels to explain deep neural networks. To our the best of our knowledge, we are the first to
estimate the amount of used information for attribution purposes.

Although many attribution methods exist, no common evaluation benchmark is established. Thus,
determining the state of the art is difficult. The performance of attribution methods is highly dependent
on the used model and dataset. Often only a pure visual comparison is performed (Smilkov et al.|
2017; Springenberg et al., 2014} [Montavon et al.,|2017}; [Sundararajan et al., 2017; Bach et al., 2015)).
The most commonly used benchmark is the degragation score (Kindermans et al., 2018}; [Samek
et al.| 20165 /Ancona et al|2017). |Ancona et al.| (2018)) propose the Sensitivity-n score based on the
correlation between degragation and model performance. For the ROAR score (Hooker et al., 2018)),
the network is trained from scratch on the degraded images. While computationally expensive, it
ensures the change in accuracy does not stem from out-of-domain inputs — an inherent problem of
masking.

Adding noise to a signal reduces the amount of information (Shannonl [1948). It is therefore a popular
way to regularize neural networks (Srivastava et al., [2014; |[Kingma et al., [2015} |Gal et al.| [2017).
However, for regularization, the noise is applied independently from the input and therefore no
attribution maps can be obtained. In Variational Autoencoders (VAEs) (Kingma & Welling, [2013),
noise is used to build an information bottleneck that restricts the information capacity of the latent
code. In our work, we construct a similar information bottleneck that can be inserted into an existing
network. Deep convolutional neural networks have been augmented with information bottlenecks
before to improve the generalization and robustness against adversarial examples (Achille & Soatto|
2018 |Alemi et al., 2017).

“https://github.com/attribution-bottleneck/attribution-bottleneck-pytorch


https://github.com/attribution-bottleneck/attribution-bottleneck-pytorch

Under review as a conference paper at ICLR 2020

3 INFORMATION BOTTLENECK FOR ATTRIBUTION

Instead of a backpropagation approach, we will quantify the flow of information through the network
in the forward pass. Given a pre-trained model, we inject noise into a feature map, which restrains
the flow of information through it. We optimize the intensity of the noise to minimize the information
flow, while simultaneously maximizing the original model objective, the classification score. The
parameters of the original model are not changed.

3.1 INFORMATION BOTTLENECK

Generally, the information bottleneck concept (Tishby et al.l 2000) describes a limitation of available
information. Usually, the labels Y are predicted using all information from the input X. The
information bottleneck limits the information to predict Y by introducing a new variable Z. The
information bottleneck then maximizes the information Z shares about the labels Y while minimizing
the information Z contains about X:

maXI[Y;Z]_BI[XaZ]7 (1)

where X, Z] denotes the mutual information and /3 controls the trade-off between predicting the
labels well and using little information of X. A common way to reduce the amount of information is
to add noise (Alemi et al., 2017; [Kingma & Welling| 2013).

For attribution, we inject an information bottleneck into a pretrained network. The bottleneck is
inserted into an early layer to ensure that the information in the network is still local, e.g. for the
ResNet the bottleneck is added after the second ResNet block. In our case, X denote the feature map
at this specific depth of the network. We want to reduce information in X by adding noise. Yet, as
the neural network is already trained, we have to preserve the magnitude and variance of the input to
the following layers. Therefore, we also damp the signal X when increasing the noise, effectively
replacing the signal partly with noise. In the extreme case, when no signal is transmitted, we replace
X completely with noise of the same mean and variance as X. For this purpose, we estimate the
mean p1y and variance 0% of each feature of X empirically over the training data. As information
bottleneck, we then apply a linear interpolation between signal and noise:

Z=MNX)X + (1= \X))e, )

where € ~ N (ux,0%) and A(X) controls the damping of the signal and addition of the noise. The
value of X is a tensor with the same dimensions as X. Given A;(X) = 1 at the feature map location 4,
the bottleneck transmits all information as Z; = X;. Whereas if \; = 0, then Z; = € and thus all
information of X; is lost and replaced with noise. It could be tempting to think that Z from equation 2]
has the same mean and variance as X . This is not the case in general as A\(X) depends on X (an
analysis of this is shown in the appendix [E)).

In our method, we consider an area relevant if it contains useful information for classification. We
therefore need to estimate how much information Z still contains about X. This quantity is the
mutual information I[X, Z] that can be written as:

11X, Z] = Ex[Dx0[P(Z]|X)||P(Z)]], 3)

where P(Z|X) and P(Z) denote the respective probability distributions. We have no analytic
expression for P(Z) since it would be necessary to integrate over the data p(z) = [ p(z|z)p(x)dz
— an intractable integral. It is a common problem that the mutual information can not be computed
exactly but is rather approximated (Poole et al.,|2019j [Suzuki et al., |2008). We resort to a variational
approximation Q(Z) = N (ux,ox ) which assumes that all dimensions of Z are normally distributed
and independent, a reasonable assumption, as activations after linear or convolutional layers tend to
have a Gaussian distribution (Klambauer et al.,|2017). The independence assumption will generally
not hold. However, this will only lead to an overestimation of the mutual information as shown below.
Substituting Q(Z) into the previous equation 3| we obtain:

11X, 7] = Ex[Dxo[P(Z|X)[|Q(2)]] - DkL[Q(2)[|P(Z)] - )

The derivation is shown in appendix [D]and follows the one of [Alemi et al| (2017). The first term
contains the KL-divergence between two normal distributions and can therefore be evaluated easily.
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Figure 2: Principle of the Per-Sample Bottleneck. The mask (green) contains an ¢; for each z; in the
intermediate feature maps (red). Depending on «, more or less information is passed on to the next
layer. The mask is iteratively optimized according to equation @ for each sample individually.
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We will use the first KL-divergence to approximate the mutual information. The information loss
function £ is therefore:
Lr =Ex[DxuL[P(Z]|X)||Q(Z)]].- &)

We know that £; overestimates the mutual information, i.e. £; > I[X, Z] as the second KL-
divergence term Dk1,[Q(Z)||P(Z)] has to be positive. If L is zero for an area, we can guarantee
that no information from this area is used for prediction.

We aim to only keep the information needed for correct classification. Thus, the mutual information
should be minimal while the classification score should remain high. Let L¢ g be the cross-entropy
of the classification. Then, we obtain the following optimization problem:

L=Lcg+BLr, 6)

where the parameter S controls the relative importance of both objectives. A small 3 will result
in more bits of information flowing, whereas a higher S will result in more information getting
discarded.

We propose two ways of finding the parameters A — the Per-Sample Bottleneck and the Readout
Bottleneck. For the Per-Sample Bottleneck, we optimize A for each image individually, whereas in
the readout bottleneck, we train a distinct neural network to predict A.

3.2 PER-SAMPLE BOTTLENECK

For the Per-Sample Bottleneck, we use the bottleneck formulation described above and optimize L for
individual samples — not for the complete dataset at once. Given a sample x, A is fitted to the sample
to reflect important and unimportant regions in the feature space. A diagram of the Per-Sample
Bottleneck is shown in Figure 2]

Parameterization: The bottleneck parameters A have to be in [0, 1]. To simplify optimization, we
parametrize A = sigmoid(c). This allows « to be chosen freely as o € R? without having to
explicitly clamp A to [0, 1] during optimization.

Initialization: For training neural networks, the initialization of parameters matters and has a strong
impact on the training output. In the beginning, we want that all information is retained. Therefore for
all dimensions 7, we initialize o; = 5 and thus \; =~ 0.993 = Z ~ X. At first, The bottleneck has
no practical impact on the model performance. It then deviates from this starting point to suppress
unimportant regions.

Optimization: We use a fixed number of 10 iterations using the Adam optimizer (Kingma & Bal
2014) with learning rate 1 to train the mask «. Although we optimize on a single sample, we use
a minibatch of size 10 with different noise tensors added to the sample to stabilize the training. In
total, we execute the model 100 times to create a heatmap, comparable to other methods such as
SmoothGrad. After the optimization, the model usually predicts the target with probability close to 1
indicating that all negative evidence was removed.

Measure of information: For a measure of importance of each feature in Z, we can simply evaluate
Dx1.(P(Z]X)||Q(Z)) per dimension: It measures where in the network the information flows and is
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First Forward Pass Second Forward Pass

Figure 3: Principle of the Readout Bottleneck. In the first forward pass, feature maps are collected
at different depths. The readout network uses a scaled version of the feature maps to predict the
parameters for the bottleneck layer. In the second forward pass, the bottleneck is inserted and noise
added. All parameters of the analyzed network are kept fixed.

less suppressed after training. To obtain a two-dimensional heatmap m, we sum over the channel
axis: M w) = 250 DKL(P(Zji,n,w) | Xjin,w)) |Q(Zinw)). As convolutional neural networks
preserve the locality in their channel maps, we use bilinear interpolation to match the map to the
spatial dimensions of the input. The bottleneck is inserted into an early layer to ensure that the
information in the network is still local, e.g. for the ResNet the bottleneck is added after the second
ResNet block. Choosing a later layer with lower spatial resolution would also increase the blurriness
of the attribution maps due to the required interpolation.

Enforcing local smoothness: Pooling operations and convolutional layers with stride greater than 1
are ignoring parts of the input. This causes the Per-Sample Bottleneck to overfit to a grid structure
as shown in Appendix [C] To obtain a robust and smooth attribution map, we convolve the sigmoid
output with a fixed Gaussian kernel with standard deviation 0. Smoothing the mask during training
is not equivalent to smoothing the resulting attribution map, as during training also the gradient is
averaged locally. The parametrization for the Per-Sample Bottleneck is:

A = blur(o, sigmoid(«)) . 7

3.3 READOUT BOTTLENECK

In this section, we train a second neural network to predict the mask «. In contrast to the Per-Sample
Bottleneck, this model is trained on the entire training set. In Figure |3 the Readout Bottleneck is
depicted.

The readout concept was first introduced for gaze prediction by |Kiimmerer et al.| (2014). Similarly,
we collect feature map values from different depths in a first forward pass without adding any noise.
As the spatial resolution of the feature maps differ, we interpolate them bilinearly to match the spatial
dimensions of the bottleneck layer. The readout network then predicts the information mask based on
the collected feature maps. In a second forward pass, we insert the bottleneck layer into the network
and restrict the information flow.

Except from this formulation as a function of the readout values, the Readout Bottleneck is identical
to the mechanism of the Per-Sample Bottleneck. The measure of information works in the same way
as for the Per-Sample Bottleneck and we also use the same smoothing. Given a new sample, we can
obtain a heatmap simply by collecting the feature maps and executing the readout network.

The readout network consists of three 1x1 convolutional layers. ReLU activations are applied between
convolutional layers and a final sigmoid activation yields A € [0, 1]. As the input includes the upscaled
feature maps, the field-of-view is large although the network itself only has 1x1 kernels.
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Table 1: Influence of 5 on the information loss £; and the test accuracy. k is the size of the feature
map, i.e. k = hwc. A Readout Bottleneck is inserted into a ResNet-50. Initial: Configuration of the
untrained bottleneck with o = 5. Original: Values for the original model without the bottleneck.

| Original | Initial | 5 =0.01/k | 0.1/k | 1/k | 10/k | 100/k

L]k - 2.500 1.822 0.628 | 0.222 | 0.079 | 0.023
Top-5 Accuracy | 0.928 0.928 0.930 0.928 | 0.917 | 0.870 | 0.505
Top-1 Accuracy | 0.760 | 0.760 0.761 0.756 | 0.735 | 0.660 | 0.302

4 EVALUATION

4.1 EXPERIMENTAL SETUP

As neural network architectures, we selected the ResNet-50 (He et al., 2016) and the VGG-16
Simonyan & Zisserman| (2014), using pretrained weights from the torchvision package (Paszke
et al., 2017; Marcel & Rodriguez, [2010). These two models cover a range of concepts: Different
dimensionality reduction methods (by stride, max-pooling, average-pooling), residual connections,
batch normalization, dropout, low depth (16-weight-layer VGG) and high depth (50-weight-layer
ResNet). This variety makes the evaluation less likely to overfit on a specific model type. They are
commonly used in literature concerning attribution methods. For PatternAttribution on the VGG-16,
we obtained weights for the signal estimators from |Kindermans et al.| (2018).

As naive baselines, we selected random attribution, Occlusion with patch sizes 8x8 and 14x14, and
Gradient Maps. SmoothGrad and Integrated Gradients cover methods that accumulate gradients. With
PatternAttribution, GuidedBP, and LRP, we include three methods with a modified backpropagation
rule. As PatternAttribution and LRP do not support skip connections, we report no results for them on
the ResNet-50. We also include Grad-CAM and its combination with GuidedBP, GuidedGrad-CAM.

For the compared methods, we use the hyperparameters suggested by the original authors with
one exception. For LRP (Bach et al., [2015)), the original hyperparameters produced unsatisfactory
results. With ¢ = 5 and § = —1, we found LRP to yield best visual results. For our methods, the
hyperparameters are obtained using grid search with the degradation metric as objective (Appendix
[B). The readout network is trained over the training set of the ILSVRC12 dataset (Russakovsky et al.
2015) for E = 30 epochs, i.e. the same dataset the original models were trained on.

The optimization objective of the bottleneck is Lo + SL; as given in equation[6] Generally, the
information loss L is larger than the classifier loss by several orders of magnitude as it sums over
height h, width w and channels c. We therefore use £ = hwc as a reference point to select 3 in the
range from 0.01/k to 100/%. A comparison of pre- to post-training accuracy and the estimated mutual
information is shown in Table|l| Notably, for a small 8 < 0.1/k, the bottleneck even improves the
final accuracy slightly as negative evidence in the image can be removed. Naturally, as [ is raised,
less information is transmitted per feature, resulting in a lower accuracy. We evaluate the Per-Sample
bottleneck for 5 = 1/k,10/k, 100/k. The Readout network is trained with the best performing value

B =10/k.

4.2 QUALITATIVE ASSESSMENT

In Figure[d] the heatmaps of all evaluated samples are shown. More samples are shown in Appendix
[A]l Subjectively, both the Per-Sample and Readout Bottleneck identify well areas relevant for the
classification. While Guided Backpropagation and PatternAttribution tend to highlight edges, the
Per-Sample Bottleneck focuses on image regions. For the Readout Bottleneck, the attribution is
concentrated a little more on the object edges. Compared to Grad-CAM, both our methods are more
specific, i.e. less pixels are scored high.

4.3 BOUNDING Box

To quantify how well attribution methods identify and localize the object of interest, we rely on
bounding boxes available for the ImageNet dataset. Bounding boxes may contain irrelevant areas
especially for non-rectangular objects. We restrict our evaluation to images with bounding boxes
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(a) Gradient (b) Saliency  (c) SmoothGrad (d) Int. Grad. (e) GuidedBP  (f) Occlusion-14

(g) Grad-CAM (h) G.Grad-CAM (i) PatternAttr. (G) LRP (k) Per-Sample (1) Readout

Figure 4: Heatmaps of all implemented methods for the VGG-16 (see Appendix@ for more).

covering less than 33% of the input image. In total, we run the bounding box evaluation on 11,849
images from the ImageNet validation set.

If the bounding box contains n pixels, we measure how many of the n-th highest scored pixels are
contained in the bounding box. By dividing by n, we obtain a ratio between 0 and 1. In Table[2} the
results are shown on the right under the bbox task. The Per-Sample Bottleneck outperforms all other
methods on VGG-16 with a margin of 12.9% and on ResNet-50 with 15.1%.

The attribution maps produced by the other methods each differ in their distribution of attribution
scores. Gradient-based methods such as GuidedBP and LRP tend to produce rather sparse attribution
maps, while Grad-CAM and our method yield smoother, dense maps. Sparse methods assign the bulk
of attribution mass to only a few image regions. Since we regard only the top n scored pixels, we
may sample regions outside the bounding box from the remaining low-attribution tail, since even
infinitesimal score differences matter in the ordering process. An alternative metric would be to take
the sum of attribution in the bounding box and compare it to the total attribution in the image. We
found this metric is not robust against extreme values. For the ResNet-50, we found basic Gradient
Maps to be the best method as a few pixels receiving extrem scores are enough to dominate the sum.

4.4  SENSITIVITY-N

Ancona et al.|(2018)) proposed Sensitivity-n as evaluation metric for attribution methods. Sensitivity-n
masks the network’s input randomly and then measures how strong the amount of attribution in the
mask correlates with the drop in classifier score. Given a set 7}, containing n randomly selected pixel
indices, Sensitivity-n measures the Pearson correlation coefficient:

corr (Z Ri(x), Sc(z) — Sc(x[an_o])) , 8)

i€T,

where S, () is the classifier logit output for class ¢, R; is the relevance at pixel ¢ and Tz, =0] denotes
the input with all pixels in 7}, set to zero. As in the original paper, we pick the number of masked
pixels n in logscale between 1 and 80% of all pixels. For each n, we generate 100 different index
sets T" and test each on 1000 randomly selected images from the validation set. The correlation is
calculated over the different index sets and then averaged over all images.

In Figure[3] the Sensitivity-n scores are shown for ResNet-50 and VGG-16. When masking inputs
pixel-wise as in[Ancona et al.| (2018)), the Sensitivity-n score across methods are not well discriminable,
all scores range within the lower 10% of the scale. We therefore ran the metric with a tile size of 8x8
pixels. Occlusion-8x8 performs perfectly as its relevance scores correspond directly to the drop in
logits per 8x8 tile. For all other baselines, we find that the Readout Bottleneck dominates the field
until n = 103 pixels and that the Per-Sample Bottlenecks with 3 = 10/k, 100/k perform best above
n = 103 pixels.
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Table 2: Degradation (deg.): Integral between LeRF and MoRF in the degradation benchmark for
different models and window sizes over the ImageNet test set. Bounding Box (bbox): ratio of the
highest scored pixels within the bounding box. PatternAttribution and LRP do not support ResNet-50.

Model ResNet-50 ResNet-50 VGG-16 ResNet-50 VGG-16
Task deg. 8x8 deg. 14x14  deg. 14x14 | bbox bbox
Random 0.000 0.000 0.000 0.167 0.167
Occlusion-8x8 0.162 0.130 0.256 0.296 0.312
Occlusion-14x14 0.228 0.231 0.399 0.341 0.358
Gradient 0.002 0.005 0.004 0.259 0.276
Saliency 0.287 0.305 0.357 0.363 0.393
GuidedBP 0.492 0.516 0.490 0.388 0.373
PatternAttribution - - 0.454 - 0.404
LRP - - 0.464 - 0.441
Int. Grad. (of Saliency) 0.401 0.424 0.448 0.373 0.396
SmoothGrad (of Saliency) | 0.486 0.502 0.451 0.439 0.399
Grad-CAM 0.536 0.541 0.514 0.465 0.399
GuidedGrad-CAM 0.565 0.577 0.573 0.467 0.418
Per-Sample 8 = 1/k 0.558 0.563 0.557 0.584 0.369
Per-Sample 5 = 10/k 0.585 0.586 0.570 0.618 0.536
Per-Sample § = 100/k 0.584 0.584 0.548 0.618 0.570
Readout 5 = 10/k 0.526 0.526 0.500 0.483 0.482
—— Per-Sample B =10/k
VGG-16 with tile size 1x1 ResNet-50 with tile size 1x1 ResNet-50 with tile size 8x8 Per-Sample 8 = 1/k
1.0 1.0 1.0 — == Per-Sample B =100/k
—-= Grad-CAM
0.8 0.8 1 0.8 1 —— Gradient
si ----- Guided Backpropagation
& 0.6 0.6 0.6 GuidedGrad-CAM
& —-= Int. Grad. (of Saliency)
@ 0.4 0.4 0.4 . LRP
YT S . 024 """ 0.2 AR, W
I N ) PatternAttribution
00----=$&I i 00-@F!—f‘““"’s«—gI F i = o0—_r’’r'_'_'_'_rrm'_'_'_'_"m'_'_'_'_r —— Readout g =10/k
10! 103 10! 103 102 103 0t Saliency
replaced pixels replaced pixels replaced pixels —=- Smoothgrad (of Saliency)

Figure 5: Sensitivity-n scores for ResNet-50 and VGG-16. For the ResNet-50, also tile size 8x8 is
shown. Best viewed in color.

4.5 IMAGE DEGRADATION

As a further quantitative evaluation, we rely on the degradation task as used by /Ancona et al.|(2017));
Kindermans et al.|(2018); [Hooker et al. (2018]); Samek et al.[(2016). Given an attribution heatmap,
the input is split in tiles which are ranked by the sum of attribution values within each corresponding
tile of the attribution. At each iteration, the highest ranked tile is replaced with a constant value, the
modified input is fed through the network, and the resulting drop in target class score is measured. A
steep descent of the accuracy curve indicates a meaningful attribution map.

When implemented in the described way, the most relevant tiles are removed first (MoRF). However,
Ancona et al.|(2017) argue that using only the MoRF curve for evaluation is not sufficient. For the
MOoREF score, it is beneficial to find tiles that disrupt the output of the neural network as early as
possible in the sequence of tiles. Neural networks have been shown to be sensitive to subtle changes
in the input (Szegedy et al.,|2013). Hence, the tiles do not necessarily have to contain meaningful
information to disrupt the network. Therefore,|Ancona et al.[(2017) proposes to invert the degradation
direction, removing tiles ranked as least relevant by the attribution method first (LeRF). The LeRF
task favors methods that identify areas sufficient for classification.

Ancona et al|(2017) measures the drop in target class logits, which may vary in scale for different
models and does not account for scores of other classes. To improve the comparability between
different models, we measure the drop in final target class probability. Furthermore, we scale the
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model output probability p(y|x) such that it becomes independent from the model performance. The
scaled probability s(x) is then:
pylr) —b
- 9

sa) =PI ©)
where 7 is the model’s average top-1 probability on the original samples and b is the mean model
output on the fully degradad images. Both averages are taken over the validation set. A score of 1
corresponds to the original model performance. The score s(x) still depends on the model, as every
model behaves differently on degraded images. Our extension of |Ancona et al.|(2017) is a re-scaling
and thus does not change the ordering of the attribution methods.

Both LeRF and MoRF degradation yield curves as visualized in
Figure[6] measuring different qualities of the attribution method.

In order to obtain a scalar measure of attribution performance £
and to combine both metrics, we propose to calculate the integral 5
between the MoRF and LeRF curves. This scalar can then be  §
interpreted as the average difference of the drop in model accuracy TEJ
when replacing most important and least important tiles first, §
respectively. ¥
=
The results for all implemented attribution methods on the degra- @
dation task are given in Table[2] We evaluated both models on 0 20 40 60 80 100
14x14 tiles. For the ResNet-50, we additonally included 8x8 tiles. X - degragation of x [%]

For the VGG-16, we randomly choose 10000 samples from the
validation set. The ResNet is evaluated on the full validation set.
We show the mean LeRF and MoRF curves of all methods in
Appendix [f| The Per-Sample Bottleneck outperforms all other
methods in the degradation benchmark except for GuidedGrad-
CAM on VGG-16 where it scores comparably (score difference
of 0.003). The Readout Bottleneck achieves a generally lower
degradation scores but still perform competitively.

Figure 6: Mean MoRF and LeRF
for the Per-Sample Bottleneck.
The area between both curves is
the final degradation score.

5 CONCLUSION

We propose two novel attribution methods that return an upper bound on the amount of information
each input region provides for the network’s decision. Our models’ core functionality is a bottleneck
layer used to inject noise into a given feature layer and a mechanism to learn the parametrized amount
of noise per feature. The Per-Sample Bottleneck is optimized per single data point, whereas the
Readout Bottleneck is trained on the entire dataset.

Our method does not constrain the internal network structure. In contrast to several backpropagation-
based methods, it supports any activation function and network architecture. To evaluate our method
we proposed a novel variant of the degradation task to quantify model performance deterioration
when removing both relevant and irrelevant image tiles first. Our Per-Sample Bottleneck and Readout
Bottle both show competitive results on all metrics used, outperforming the state of the art with
significant margin for some of the tasks.

The method’s information-theoretic foundation provides a guarantee that the network does not use
regions of zero-valued attribution. To our knowledge, our attribution methods is the only one to
provide scores with units (bits). This absolute frame of reference allows a quantitative comparisons
between models, inputs and input regions. We hope this contributes to a deeper understanding of
neural networks and creates trust to use modern models in sensitive areas of application.
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A VISUAL COMPARISON OF ATTRIBUTION METHODS

A.1 RESNET-50

Input Grad-CAM GuidedBP  Occlusion-14  Per-Sample Readout

Acorn Windsor tie Lit...lue heron Croquet ball Squirrel monkey Black bear

Tarantula
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A2 VGG-16

Input Grad-CAM GuidedBP PatternAttr.  Per-Sample Readout

Acorn ‘Windsor tie Lit...Iue heron Croquet ball Squirrel monkey Black bear

Tarantula
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B HYPERPARAMETERS

Parameter ResNet-50 VGG-16 Search space

Target layer conv2_.4 conv.8

Optimizer Adam (Kingma & Ba (2014))

Learning Rate n=1 {0.03,0.1,0.3,1, 3,10}

Balance Factor B =10/k {0.001,0.01,0.1, 1,10, 100, 300}
Iterations T=10 {1,3,5,10, 30,100}

Batch Size B=10 {1,5,10, 30}

Smoothing os =1 {0.5,1,2}

Table 3: Hyperparameters for Per-Sample Bottleneck. The layer notations for the ResNet-50 are
taken from the original publication (He et al.,[2016)). The first index denotes the block and the second
the layer within the block. For the VGG-16, conv_n denotes the n-th convolutional layer.

Parameter ResNet-50 VGG-16 Search space
Target layer convl 3 conv.5
Reading out convl_ 3 conv.5

conv2_4 conv_8
conv3_6 conv_1l1l
conv4._3 conv_13

fc fc
Optimizer Adam (Kingma & Ba (2014)))
Learning Rate n=10"" {e-4,e-5,¢e-6}
Balance Factor B =10/k {0.1/k,1/k,10/k,100/k}
Epochs E =10
Batch Size B =16
Smoothing os=1

Table 4: Hyperparameters for the Readout Bottleneck.
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C GRID ARTIFACTS WHEN NOT USING SMOOTHING

Figure 7: Development of Dxk1,(Q(Z|X)||Q(Z)) for layer conv1_3 of the ResNet-50. Red indicate
areas with maximal information flow and semi-transparent green for zero information flow. Top row:
without smoothing the mask exhibits a grid structure. Bottom row: smoothing with o5 = 2. The
smoothing both prevents the artifacts and reduces overfitting to small areas.

D DERIVATION OF THE APPROXIMATION OF MUTUAL INFORMATION

For the mutual information I[ X, Z], we have:
I[X, Z] = Ex [Dxr[P(Z]X)||P(2)]] (10)

:/ () (/ p(@)p(z]) log ((|))dz>d (1)
/ / x,2)log I %d dz (12)
/ / T,z log / / z, z) log 2 dzdx (13)
/ / (%, 2 log |))dzdx+/zp(z) (/X p(z|z)d >log Ej; dz  (14)

=Ex [Dxi[P (ZlX)llQ( )] = Dx[Q(2)[|1P(2)] (15)

E MEAN AND VARIANCE OF Z

The \(X) linearly interpolate between the feature map X and the noise e ~ N (ux, 0% ), where px
and o are the estimated mean and standard derivation of X.

Z=XMX)X+ (1= XAx))e (16)
For the mean of Z, we have:

E[Z] = E[MX)X] + E[(1 — A(X))e] > substituting in definition of Z
= EAX)X]+E[1 - ANX)]E[¢e] > independence of A and ¢
=cov(M(X), X))+ ENX)]E[X] + E[1 — M(X)]E[e] >cov(A, B) =E[AB] — E[A]E[B]
~ cov(A(X), X) + El¢] >Ele] = px ~ E[X]
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As A(X) and X are multipled together, they form a complex product distribution. If they do not

~
~

correlate, E[Z] ~ Ele]

E[X].

A similar problem araises for the variance:
Var[Z] = E[Z?] — E[Z]?
= E[(MX)X + (1 — A(X)e)?] — (cov(MX), X) + E[e])®
The multiplication of A(X') and X causes in general the variance of Z and X to not match: Var[Z] #

Var[X]

F MORF AND LERF DEGRADATION PATHS
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Figure 8: MoRF and LeRF paths averaged over the ImageNet test dataset for the ResNet-50 network

using 8x8 tiles.
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Figure 9: MoRF and LeRF paths averaged over the ImageNet test dataset for the ResNet-50 network
using 14x14 tiles.
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Figure 10: MoRF and LeRF paths averaged over the ImageNet test dataset for the VGG-16 network
using 14x14 tiles.
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