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ABSTRACT

Despite the remarkable development of recent deep learning techniques, neural
networks are still vulnerable to adversarial attacks, i.e., methods that fool the neu-
ral networks with perturbations that are too small for human eyes to perceive.
Many adversarial training methods were introduced as to solve this problem, using
adversarial examples as a training data. However, these adversarial attack meth-
ods used in these techniques are fixed, making the model stronger only to attacks
used in training, which is widely known as an overfitting problem. In this paper,
we suggest a novel adversarial training approach. In addition to the classifier, our
method adds another neural network that generates the most effective adversarial
perturbation by finding the weakness of the classifier. This perturbation gener-
ator network is trained to produce perturbations that maximize the loss function
of the classifier, and these adversarial examples train the classifier with a true la-
bel. In short, the two networks compete with each other, performing a minimax
game. In this scenario, attack patterns created by the generator network are adap-
tively altered to the classifier, mitigating the overfitting problem mentioned above.
We theoretically proved that our minimax optimization problem is equivalent to
minimizing the adversarial loss after all. Beyond this, we proposed an evalua-
tion method that could accurately compare a wide-range of adversarial training
algorithms. Experiments with various datasets show that our method outperforms
conventional adversarial training algorithms.

1 INTRODUCTION

Deep learning has shown the impressive performance in all areas of artificial intelligence, such as
image classification and speech recognition (Hinton et al., 2012; Krizhevsky et al., 2012). These ad-
vances lead to a broad application of deep neural networks in various real-life tasks. There are still,
however, severe security issues such as adversarial examples, which hinder the use of machine learn-
ing system until a complete defense is constructed against multiple adversarial attacks. Adversarial
examples are data samples that are close to real data samples, which cause a given neural network to
misclassify. The basic idea of adversarial examples is to find a sample that increases the loss value
of a neural network in the neighborhood of training data (Szegedy et al., 2014). The perturbation on
the original training data is so small that it makes the adversarial examples indistinguishable from
the original examples.

Many authors proposed methods that make neural networks robust to adversarial examples (Papernot
et al., 2016; Goodfellow et al., 2015; Szegedy et al., 2014; Miyato et al., 2016). One of the methods
is an adversarial training, which re-trains the neural network with adversarial examples generated
by adversarial attacks. Adversarial training with powerful attacks would guarantee robustness, but
the recent fatal attack methods (Szegedy et al., 2014; Papernot et al., 2016; Carlini & Wagner, 2017;
Moosavi-Dezfooli et al., 2016) require high computational complexity because of their iterative
optimization. Therefore, they are not compatible with adversarial training. Methods that quickly
produce adversarial examples, such as fast gradient sign (Goodfellow et al., 2015) or projected
gradient descent (Kurakin et al. (2017); Madry et al. (2018)), have been used for practical adversarial
training. While the above adversarial training methods are empirically successful, they might be
susceptible to future attackers, and this makes the defense procedure useless. If an algorithm for
generating an adversarial example is fixed in adversarial training, the network could overfit to the
specific algorithm.

1



Under review as a conference paper at ICLR 2020

In this paper, we introduce a novel adversarial training framework that increases the robustness
against various adversarial attacks. Stemming from GAN framework, we devised a method in which
the classifier network and a perturbation generator network are alternately trained. To be more spe-
cific, the generator network generates a perturbation image that maximizes the loss function of the
classifier network, and the classifier network is trained through the corresponding adversarial image
with the true label. Through this minimax optimization between the two networks, the classifier
network can improve robustness against many different attacks, as the attack pattern of the gen-
erator network is constantly modified depending on the classifier network. This procedure can be
used in practical adversarial training since adversarial perturbations can be produced by a forward-
propagation. We generalized Madry et al. (2018)’s research on adversarial loss to theoretically
support our technique, and we also proposed a method that can fairly evaluate the performance of
adversarial training algorithms.

2 RELATED WORKS

The goal of our work is to construct defensive mechanisms to adversarial attacks. To alleviate the
security problem, the adversarial robustness of neural networks has been studied in the literature.
One of the intuitive ways to increase robustness is to re-train with adversarial examples, which are
called adversarial training. This method uniformly smoothen the ground-truth label decision region
close to the original data points. In the context of smoothness, there exists adversarial examples that
hold very low confidence on the ground-truth label in the vanilla decision region before applying
robust optimization.

Szegedy et al. (2014) first proposed a method to generate adversarial examples. They use box-
constraint L-BFGS optimization to find the examples. This holds the exact formulation of adver-
sarial examples, but because of its exhausted optimization procedure, it is not suitable for practical
adversarial training. Goodfellow et al. (2015) introduced an algorithm that quickly generates ad-
versarial examples by using one-step gradient update, which is called fast gradient sign method.
In addition, they first proposed a realistic adversarial training method which injects the adversarial
examples into the training data. This method is not strong enough to generate high-quality exam-
ples and is far from robust optimization. Kurakin et al. (2017) suggested an iterative version of fast
gradient method (FGM) attack called Projected Gradient Descent (PGD), which is much closer to
the optimal adversarial examples. Adversarial training can be formulated with the robust optimiza-
tion problem which minimizes the loss of the optimal adversarial examples in the ε-ball of all the
original data points. This gives rise to the following minimax game, which is the main theoretical
background of our work:

min
θ
ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
. (1)

They approximated the above minimax game by PGD based adversarial training to reduce compu-
tational complexity issue. The gradient descent based adversarial examples for robust optimization
is not adaptive. Therefore, those neural networks are vulnerable to other types of adversarial attacks
(Athalye et al., 2018).

Several works studied the methods that generate stronger adversarial attacks(Athalye et al., 2018;
Lee et al., 2017; Papernot et al., 2017; Moosavi-Dezfooli et al., 2016; Dong et al., 2018; Song
et al., 2018). Carlini & Wagner (2017) pin-points that defensive distillation network (Papernot et al.
(2016)) is not practical in that it exploits gradient masking, so they devised a powerful attack algo-
rithm that avoids this problem. In an attempt to eliminate the gradient masking problem of softmax
function, they adopted logitsZ in objective function, and discovered an appropriate adversarial noise
for each image utilizing line-search technique. However, most of these works have high computa-
tional cost, so they are difficult to be applied to adversarial training.

There are many other defense methods that are not based on adversarial training (Li et al., 2019;
, Junbo). The above robust optimization problem can be generalized as convex outer adversarial
polytope, which relaxes the activation function as a convex form to prevent misclassification (Wong
& Kolter, 2018). Certified defense algorithms guarantee at least a certain bounds of the proper label
probability distributions against adversarial examples (Cohen et al., 2019; Liu et al., 2019; Raghu-
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Figure 1: Adversarial Robustness with Perturbation Generating Network: Conventional convolu-
tional neural network is used as the classifier. The perturbation generator network receives a one-
hot encoded label as input, which is processed with fully connected and up-convolutional layer,
concatenates with the gradient image and the original image, and finally generates an adversarial
perturbation.

nathan et al., 2018). In addition, some researchers recently studied the theoretical backgrounds of
adversarial robustness (Dohmatob, 2019; Wang et al., 2018; Roth et al., 2019).

3 PROPOSED METHOD

3.1 NOTATIONS

We denote a labeled training set by (x, y) ∼ Pdata, where x ∈ RH×W×C represents input images
with height H , width W , and channel C, and y ∈ {1, 2, . . . ,K} is a label for an input x. We use
two neural networks in the proposed method. One is a standard K-class classifier network F (x;θ)
which is defined by:

F : RH×W×C → RK , F (x;θ) = [F (x;θ)1, Fθ(x;θ)2, . . . , F (x;θ)K ]T (2)

Where F (x;θ) represents the class probability vector computed using the softmax function. The
other is a perturbation generating network G(∇xF,x, y;φ), which is defined by:

G :
(
RH×W×C ,RH×W×C ,R

)
→ RH×W×C (3)

Note that G(∇xF,x, y;φ) represents the perturbation of the input image x, where ∇xF =
∇xF (x;θ)y denotes the gradient of class probability of the true label with respect to the input
images x.

3.2 ADVERSARIAL TRAINING WITH GENERATIVE MODEL

The entire procedure of our algorithm is shown in Figure 1. Goodfellow’s work on GAN inspired us
to make the classifier and the perturbation generator compete with each other. Classifier F defines
the network we are aiming to train and increase the robustness, and the perturbation generator G is
the network which produces the perturbations that maximize the loss function of the classifier. The
classifier network is trained with adversarial images produced by the generator network with the true
label. The generator network assigns image x, label y, and a gradient image ∇xF as inputs, which
is trained to maximize the loss function of the classifier. In other words, F and G play the following
two-player minimax game:

Ex,y∼Pdata min
θ

max
φ

[
Loss(x+G(∇xF,x, y;φ), y;θ)− cL‖G(∇xF,x, y;φ)‖22

]
(4)

By the time this minimax game is complete, the classifier will have been trained with various attacks
produced by the generator with the enhanced robustness against powerful adversarial attacks, while
the generator will no longer find any vulnerability in the classifier, therefore only producing random
noises. In Equation (4), cL is a hyper-parameter that adjusts the ratio between two cost functions. If
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Figure 2: Adversarial Robustness with Gaussian Normal Distribution. Left: The red curve indicates
our target Gaussian normal probability function with mean 0 and variance σ2. The blue dotted
curve indicates the classifiers class probability of the label in accordance with the L2 norm of the
perturbation. As the training progresses, the classifiers class probability converges to the target
function, ensuring the robustness of the network. Right: Conceptual illustration of the adversarial
training. By minimizing the loss function on the region with large adversarial loss, the network
becomes increasingly robust against adversarial attacks.

cL is very low, it will only find trivial solutions with extremely large perturbation power, and if cL
is very high, it will only generate zero-perturbation images. Therefore, it is crucial to determine an
appropriate cL. The theoretical meaning of cL will be discussed in the following section.

3.3 THEORETICAL BACKGROUND

Madry et al. (2018) has presented the following adversarial loss instead of the conventional loss in
his paper.

ρmadry(θ) = E(x,y)∼Pdata max
δ∈S

[Loss(x+ δ, y;θ)] = E(x,y)∼Pdata max
δ∈S

[
log (

1

F (x+ δ;θ)y
)

]
(5)

This signifies that among the given training data points, it finds the data point that has the max-
imum loss against perturbation from the allowed perturbations set S, and minimizes that specific
loss. In other words, it trains Classifier F to satisfy F (x + δ;θ)y = 1 for all δ in S in allowed
perturbations set S, which is only feasible when S is a very small norm ball. However, since our
perturbation generator network can create perturbations with any size of power, merely applying the
above adversarial loss would generate only the trivial perturbations with extremely high power. In
order to extend the allowed perturbations set S to all possible perturbations, we assume that optimal
F (x + δ;θ)y has a normal distribution over L2 norm of the δ as shown in Figure 2. To be more
precise, we want to train Classifier F to satisfy F (x + δ;θ)y = pn(‖δ‖2), where n ∼ N (0, σ2)
and pn is the Gaussian distribution function with 0 mean and σ2 variance, and our adversarial loss
corresponding to Equation (5) is as follows:

ρours(θ) = Ex,y∼Pdata max
δ∈S

[
log

pn(‖δ‖2)

F (x+ δ;θ)y

]
= Ex,y∼Pdata max

δ∈S

[
log

e−
1

2σ2
‖δ‖22

√
2πσ

− logF (x+ δ;θ)y

]

= Ex,y∼Pdata max
δ∈S

[
− 1

2σ
‖δ‖22 − logF (x+ δ;θ)y − log

√
2πσ

]
= Ex,y∼Pdata max

δ∈S

[
Loss(x+ δ, y;θ)− cL‖δ‖22 − C

]
(6)

Suppose δ∗ is defined as δ∗(F,x, y) = argmax
δ

[
Loss(x+ δ, y;θ)− cL‖δ‖22 − C

]
. then,

min
θ
ρours(θ) = Ex,y∼Pdata min

θ

[
Loss(x+ δ∗(F,x, y), y;θ)− cL‖δ∗(F,x, y)‖22 − C

]
≈ Ex,y∼Pdata min

θ
max
φ

[
Loss(x+G(∇xF,x, y;φ), y;θ)− cL‖G(∇xF,x, y;φ)‖22 − C

]
(7)

G would converge to δ∗, assuming G has sufficiently high capacity and ∇xF provides enough in-
formation on the classifier F , and the constant value C could be ignored since we are only interested
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in finding the parameter θ of the classifier. We can derive the Equation (4), with cL = 1
2σ . The opti-

mal point for F and G would be the point where Loss(x+ δ, y;θ) ≤ cL‖δ‖22 +C in all data points,
and here we can find the classifier network F that has the improved robustness against adversarial
examples.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We used CIFAR-10 and CIFAR-100 for our datasets, to verify the robustness of our trained network.
We normalized the pixel value of the image to [0,1] prior to network training. This section only
presents the results from CIFAR-100. The experiment with CIFAR-10 showed similar results, and
interested readers can refer to the appendix for its results.

The model architecture and parameters for CIFAR are given in Appendix A. We used conventional
ConvPool-CNN as the classifier network, and the generator network was designed to efficiently use
gradient images, images, and labels. One might assume that hyperbolic tangent function should
be used for the final activation function of the generator network. However, if a hyperbolic tangent
function is used for generating the perturbation image, the adversarial image created must be clipped
again to the proper value of the image, i.e. 0 <= xi + δi <= 1 for all i. This is known as a
box-constraint problem, which might cause the network to get stuck in extreme regions (Carlini &
Wagner, 2017). Therefore, we practiced the following technique proposed by Carlini & Wagner
(2017) to avoid the clipping problem.

xadv =
1

2
(tanh(tanh−1(2x− 1) +G(∇xF,x, y;φ)) + 1) (8)

For our baseline for comparison, we used a naive network trained only with clean examples. For
our control group, we set Goodfellow et al. (2016)’s adversarial training with fast gradient method
(FGM), and Madry et al. (2018)’s adversarial training with Projected Gradient Descent (PGD). For
attack methods, we used FGM, Momentum Iterative Method (MIM), DeepFool, and Carlini-Wagner
(C&W), and evaluated the robustness of the network through the accuracy of the adversarial exam-
ples and the mean and median value of the L2 norm of the perturbaion generated by each attack.
All the attacks and adversarial training methods above are L2-bounded. Detailed evaluation method
will be discussed in section 4.2.

All of our experiments used a single RTX 2080 ti GPU with Cleverhans adversarial examples library
(Papernot et al., 2018) to construct adversarial attacks, build defenses, and make comparison more
effectively.

4.2 EVALUATION METHOD

We applied the following metric suggested by Carlini & Wagner (2017), in order to fairly evaluate
the robustness of the network for various adversarial attacks.

ρ :=
1

|D|
∑
xk∈D

‖∆xk‖2, where D is a successful adversarial example set (9)

The above ρ represents the mean value of L2 norm of the perturbation derived from the success-
ful adversarial examples from the attack, the same value as the area under the curve in Figure 3.
Although ρ can be measured for any attack methods, it is best to measure ρ for the most powerful
attack. Thus, we used ρcw for Carlini-Wagner L2 attack on all of our experiments as the evaluation
metric for robustness of the network.

However, it is not sufficient to use only the above metric in evaluating the robustness of the adversar-
ial training algorithm. In most adversarial training process, there are some parameters which could
adjust the trade-offs of the accuracy of benign examples and the adversarial examples (ε for FGM,
PGD adversarial training, cL for our algorithm). The above ρcw tends to increase as the accuracy of
the benign examples decline, as it can be shown in Figure 3. In an extreme case, if the network clas-
sify almost all the images as a single class, benign accuracy (the accuracy of clean examples) would
converge to 1% (for CIFAR-100), but the ρcw would spike. This trade-off occurs during the training
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Figure 3: Trade-off relationship between benign accuracy and the adversarial robustness. Left:
Perturbation power-accuracy graph for FGM adversarial training with various epsilon against CW
attack. The bigger the epsilon, the more robust the network to adversarial attacks, but less benign
accuracy. Right: The network with FGM adversarial training tend to overfit easily because of its
fixed attack algorithm. As the training progresses, the benign accuracy rises, whereas the adversarial
robustness declines.

process as well. Figure 3 illustrates how benign accuracy increases, and ρcw decreases during the
training process. Thus, for fair comparison of the robustness of the networks, it is desirable to match
the accuracy of the benign examples before comparing ρcw.

To better compare the performance of different adversarial algorithms, we must first train the models
by adjusting hyper-parameters for each adversarial training, calculate benign accuracy and ρcw for
each trained model, and then draw a graph with the calculated values, connecting each relevant data
point. Naturally, the structure of the classifier used for each adversarial training must be identical.
We will call this graph robustness-curve. Figure 5 displays the robustness-curves for FGM adver-
sarial training, PGD adversarial training, and our algorithm. It should be noted that the method with
outer curve is a better adversarial training algorithm since ρcw is higher at the same benign accuracy

4.3 DEFENSE PERFORMANCE ON VARIOUS ATTACKS

Based on the methods introduced in 4.2, we compared the robustness of the network trained by
our suggested technique with that trained by the conventional adversarial training methods. FGM
attack, MIM attack, DeepFool, and Carlini-Wagner Attack were used as attack methods. In white-
box attacks, adversarial examples were generated through direct access to the model’s gradient,
while in black-box attack, accuracy was measured through the adversarial examples produced by an
independently trained network. Table 2 exhibits the robustness of the network when all the benign
accuracy values of the adversarial networks are balanced to that of the naive network, and Figure
4 displays three perturbation L2 power (x) - accuracy (y) graphs for C&W attack, with the benign
accuracy for each adversarial networks set to 68%, 66%, and 63%, respectively.

FGM and MIM are attack methods that find the adversarial examples that can maximize the loss
function of the classifier network on fixed L2 norm of perturbation power, so the higher the accuracy
of the adversarial examples, the more robust the network. On the other hand, DeepFool and C&W
attack find the adversarial examples with the lowest L2 norm of perturbation power that can fool the
network; therefore, the robust network would have higher mean and median values of the adversarial
perturbation power.

As you can see from Table 2, our algorithm outperforms the other adversarial training algorithms
against all the attack methods. In white-box attacks, our algorithm showed the highest accuracy of
adversarial examples against FGM and MIM attacks, and the highest power of adversarial perturba-
tions by DeepFool and Carlini-Wagner. Also, in black-box attacks, our method proved to classify the
adversarial examples with greater accuracy compared with the other adversarial training algorithms.
According to Table 2, FGM adversarial training and PGD adversarial training show a very similar
performance. This is because minimal ε was applied to match the benign accuracy of the baseline
network. Since a neural network is locally linear, this minimal ε would make PGD and FGM gen-
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Table 1: The comparison of the performance of the conventional adversarial training algorithms and
our algorithm with ε = 0.02 and cL = 50. Benign accuracy of all defenses were balanced out with
that of the baseline network before the comparison. Column 3, 6: Prediction accuracies of White-
Box attack and Black-Box attack for each attack algorithms. Column 4: MEAN L2 norm of the
adversarial perturbation (ρ, which is defined in Equation (9)). Column 5: Median L2 norm of the
adversarial perturbations.

DEFENSE ATTACK ACCURACY
W-BOX

MEAN L2

W-BOX
MEDIAN L2

W-BOX
ACCURACY

B-BOX
BENIGN

ACCURACY
TRAINING TIME

(SEC/EPOCH)

Baseline

FGM 0.1173 0.4982 0.5 0.3843
MIM 0.0167 0.4998 0.5 0.2913

Deepfool 0.1108 0.0994 0.0626 0.6688 0.7002 8.18
C&W 0 0.0791 0.0503 0.6659

Average 0.0612 0.2941 0.2781 0.5025

Goodfellow et al. (2015)

FGM 0.2213 0.4987 0.5 0.5211
MIM 0.1068 0.4999 0.5 0.5115

Deepfool 0.1084 0.1669 0.1089 0.6902 0.6993 25.1248
C&W 0 0.1334 0.0867 0.6894

Average 0.1091 0.3247 0.2989 0.603

Madry et al. (2018)

FGM 0.2139 0.4987 0.5 0.5164
MIM 0.1000 0.4999 0.5 0.5014

Deepfool 0.1053 0.1625 0.1061 0.6906 0.7000 175.8571
C&W 0 0.1305 0.0851 0.6880

Average 0.1048 0.3229 0.2978 0.5991

Ours

FGM 0.3906 0.4988 0.5 0.6428
MIM 0.3444 0.4999 0.5 0.6456

Deepfool 0.1034 0.3184 0.2064 0.6958 0.7004 51.7681
C&W 0 0.2617 0.1674 0.6961

Average 0.2096 0.3950 0.3435 0.6701
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Figure 4: The comparison of the robustness of the defense methods with various benign accuracy.
To properly compare the robustness of the networks, the benign accuracy of the networks needs
to be balanced out. The graph displays three different curves, each representing the accuracy of
the perturbation power with respect to the L2 norm of Carlini-Wagner attack with different benign
accuracy of 68%, 66%, and 63%, respectively.

erated adversarial examples to be almost identical. As you can see from Figure 4 and Figure 5, as ε
increases, Madry’s method shows a more robust performance compared with Goodfellow’s method.

Training speed is also a crucial issue in adversarial training. The proposed algorithm is slower than
FGM because it trains the generator after finding the gradient image, while FGM immediately uses
the gradient image to train the classifier. On the other hand, our algorithm is faster than Madry’s
which use PGD (multi-step gradient descent) to find the adversarial image. Note that the more
iteration steps of PGD, the larger the speed-gap between Madry’s and our algorithm we get.

4.4 VARYING HYPER-PARAMETERS

As mentioned in Section 4.2, adversarial training algorithms have a trade-off relationship between
benign accuracy and ρcw. Figure 5 visualizes the relationship with a plot consisting of the data
points of benign accuracy and ρcw, which are collected by using various hyper-parameters for each
adversarial training. For FGM and PGD Adversarial training, the data points with higher ρcw are
models trained with bigger ε, while for our algorithm, the data points with larger ρcw are models
trained with lower cL. It should be noted that the robustness-curve is an appropriate indicator for
performance evaluation of the adversarial training algorithms, since it displays a comprehensive set
of ρcw with corresponding benign accuracy. As demonstrated in Figure 5, our algorithm outperforms
all the other adversarial training algorithms under all benign accuracy.
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Figure 5: Robustness-curve: A plot showing the relationship between benign accuracy and ρcw by
changing the hyper-parameters of each adversarial training algorithm. Left: For FGM and PGD
adversarial training, each data point was acquired through changing ε, whereas for our algorithm,
each data point was acquired through changing cL. The outer curves are considered more robust
adversarial algorithms. Right: Robustness-curves for our algorithm under different capacities of the
classifier. It shows that the classifier is still underfitting in terms of adversarial robustness.

Furthermore, we plotted the robustness-curve by proportionally increasing the number of filters in
each convolutional layer of the classifier. As can be observed in the second plot of Figure 5, the
robustness-curve moves to the right as the capacity of the model increases, which means that the
classifier may still be underfitted. In other words, the classifier trained with only clean examples
tend to overfit easily to the training data with even a low capacity, whereas the classifier trained with
various adversarial examples tend to underfit instead even with higher capacity networks. Although
we were not able to deal with higher capacity due to the limits of the current hardware technology, it
is expected that a far greater network capacity may be needed to achieve a human-level robustness.

5 CONCLUSION

This study proposed a novel adversarial training method that boosts the robustness of a deep neural
network against adversarial attacks. Based on a GAN framework, the classifier network and the
generator network play a two-player minimax game, which improves the robustness of a classifier
against adversarial examples. In generating adversarial examples, we use a trainable perturbation
generator network instead of a fixed function as in most of conventional adversarial training meth-
ods. this method tend to overfit less, and strengthens the robustness against many different kinds
of attacks. Our proposed method is far more robust than existing adversarial training techniques.
Since it computes adversarial examples through one-step inference, it is also more advantageous in
training speed, compared to other techniques that use multiple steps in inner maximization.

Our experiment with CIFAR datasets have also proved the advantage of our approach, as the network
trained by our method showed improved robustness and the state-of-the-art performance against
various attacks with different noise power. Although the proposed approach compares favorably
with other methods, it is believed that there is still room for improvement. One future direction is to
study a generator network which is most effective for adversarial training.
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APPENDIX

A MODEL ARCHITECTURE

Classifier Network Generator Network Parameter
Input: x (32× 32× 3) Input: y (10 or 100) Optimizer Adam

3× 3 Conv 64 Dense 1024 Learning Rate 0.0005
3× 3 Conv 128 Concatenate with y Batch Size 128
2× 2 AvgPool Dense 8192 Adv Coefficient 1.0
3× 3 Conv 128 Reshape 8× 8× 128 PGD iter 10
3× 3 Conv 256 Concatenate with y (reshape) Dropout -
2× 2 AvgPool 3× 3 Upconv 128, stride=2 Weight Decay 0
3× 3 Conv 256 Concatenate with y (reshape) Ema decay 0.998
3× 3 Conv 512 3× 3 Upconv 128, stride=2 Max Epochs 200
2× 2 AvgPool Concatenate with [x,∇xF ] FGS attack eps 0.5

3× 3 Conv 10 or 100 3× 3 Upconv 128, stride=1 MIM attack eps 0.5
GlobalAvgPool 3× 3 Upconv 3, stride =1 MIM attack iter 100

Softmax DF attack iter 100
Output: 10 or 100 class probabilities Output: 32× 32× 3 perturbation CW attack iter 100

B PERFORMANCE FOR CIFAR-10

Table 2: The comparison of the performance of the conventional adversarial training algorithms and
our algorithm with ε = 0.1 and cL = 50.

DEFENSE ATTACK ACCURACY
W-BOX

MEAN L2

W-BOX
MEDIAN L2

W-BOX
ACCURACY

B-BOX
BENIGN

ACCURACY
TRAINING TIME

(SEC/EPOCH)

Baseline

FGM 0.2934 0.4989 0.5 0.4979
MIM 0.0939 0.5 0.5 0.3633

Deepfool 0.0518 0.2129 0.1844 0.8527 0.9189 8.28
C&W 0 0.1742 0.1596 0.8611

Average 0.1098 0.3465 0.336 0.6438

Goodfellow et al. (2015)

FGM 0.6335 0.4994 0.5 0.8428
MIM 0.5543 0.5 0.5 0.851

Deepfool 0.056 0.5135 0.4502 0.9119 0.918 25.1424
C&W 0 0.4196 0.3919 0.9116

Average 0.3109 0.4831 0.4605 0.8793

Madry et al. (2018)

FGM 0.6259 0.4994 0.5 0.8369
MIM 0.5426 0.5 0.5 0.8468

Deepfool 0.0566 0.4977 0.437 0.9104 0.9172 175.2541
C&W 0 0.4091 0.382 0.91

Average 0.3062 0.4765 0.4547 0.8760

Ours

FGM 0.6534 0.4994 0.5 0.8501
MIM 0.5958 0.5 0.5 0.8568

Deepfool 0.0557 0.5102 0.4483 0.9127 0.9186 52.1851
C&W 0 0.4365 0.4062 0.912

Average 0.3262 0.4865 0.4634 0.8829
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Figure 6: Robustness-curve. Left: Varying hyper-parameter, Right: Varying capacity
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