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ABSTRACT

One of the most fundamental organizational principles of the brain is the sepa-
ration of excitatory (E) and inhibitory (I) neurons. In addition to their opposing
effects on post-synaptic neurons, E and I cells tend to differ in their selectivity
and connectivity. Although many such differences have been characterized exper-
imentally, it is not clear why they exist in the first place. We studied this question
in deep networks equipped with E and I cells. We found that salient distinctions
between E and I neurons emerge across various deep convolutional recurrent net-
works trained to perform standard object classification tasks, and explored the
necessary conditions for the networks to develop distinct selectivity and connec-
tivity across cell types. We found that neurons that project to higher-order areas
will have greater stimulus selectivity, regardless of whether they are excitatory or
not. Sparser connectivity is required for higher selectivity, but only when the re-
current connections are excitatory. These findings demonstrate that the functional
and structural differences observed across E and I neurons are not independent,
and can be explained using a smaller number of factors.

Deep neural networks have become powerful tools to model the brain (Yamins & DiCarlo, 2016;
Kriegeskorte, 2015). They have been used to successfully model various aspects of the sensory
(Yamins et al., 2014; Kell et al., 2018), cognitive (Mante et al., 2013; Wang et al., 2018; Yang et al.,
2019), and motor system (Sussillo et al., 2015). Deep networks have been particularly effective at
capturing neural representations in higher-order visual areas that remain challenging to model with
other methods (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014).

Demonstrating that these models can mimic the brain in some respects is only a starting point in the
process of advancing neuroscience with deep learning. Once some relationship between artificial
and biological networks is established, the model can be dissected to better understand how certain
biological computations are mechanically implemented (Sussillo & Barak, 2013). Although notori-
ously difficult to interpret, deep networks are still much more accessible than the brain itself. This is
how deep networks can help address the “how” question. On top of that, deep networks can be used
in a normative approach to answer the “why” question. Suppose we found that a certain architecture,
objective function (dataset), and training algorithm could together lead to a neural network matching
some features of the brain. Then we can ask why the brain evolved such features by testing which el-
ement of the architecture, dataset, and training is essential for such features to evolve in the artificial
networks. For example, Lindsey et al. (2019) showed early layers of a convolutional neural network
can recapitulate the center-surround receptive field observed in retina, but only when followed by an
information bottleneck similar to the one that exists from retina to cortex. This finding demonstrates
how realistic biological constraints can be used to explain the emergence of known properties of the
brain.

Despite the many successes of applying deep networks to model the brain, standard architectures
deviate from the brain in many important ways. Recently, neural networks that incorporate funda-
mental structures of the brain are becoming increasingly common (Kar et al., 2019; Miconi et al.,
2018; Song et al., 2016). One fundamental structural principle of the brain is the abundance of re-
current connections within any cortical area. Cortical neurons receive a substantial proportion of
their inputs from other neurons in the same area (Harris & Shepherd, 2015). Convolutional recur-
rent networks trained on object classification tasks can perform comparably to purely feedforward
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networks with similar numbers of parameters, while being able to better explain temporal responses
in higher visual areas (Nayebi et al., 2018; Kar et al., 2019).

One of the most fundamental organizational principles of the cortex is the separation of excitatory
(E) and inhibitory (I) neurons (Dale, 1935; Eccles et al., 1954). Dale’s law states that each neuron
expresses a fixed set of neurotransmitters, which results in either excitatory or inhibitory downstream
effects. In addition to the difference in their immediate impacts on post-synaptic neurons, E and I
neurons differ in several other important ways. There are several times (4-10x) more E neurons
than I neurons (Hendry et al., 1987). Neurons that project to other areas, the so-called “principal
neurons”, are all excitatory in the cortex (Bear et al., 2007). In the mammalian sensory cortex, E
neurons are overall more selective to stimuli than I neurons in the same area as extensively reported
in mice (Kerlin et al., 2010; Znamenskiy et al., 2018) and to a lesser extent in other species (Wilson
et al., 2017). Finally, E neurons are more sparsely connected with each other, with a connection
probability of around 10% (Harris & Shepherd, 2015), compared to I neurons, which target almost
all neighboring E neurons (Pfeffer et al., 2013).

It is not clear whether these differences across excitatory and inhibitory neurons serve computa-
tional purposes. It is also unknown whether these differences are all independent properties, each
contributing to the computation, or if some differences are natural results of the others. To answer
these questions, we first trained many variants of deep convolutional recurrent neural networks on
classical object classification tasks. Across all variants, three structural principles are built in: Dale’s
law, the abundance of excitatory neurons, and the role of excitatory units as principal neurons. How-
ever, other observed properties of biological E-I circuits are not hardwired, and therefore could only
evolve under the pressure of performing the task. We found that functional and structural differences
across E and I neurons emerged through training. The development of these characteristics allows us
to address the “why” question by removing the built-in differences across E and I neurons and mon-
itoring whether specific functional and structural properties still emerge. Our anonymized code is
available at https://anonymous.4open.science/repository/d0ae905f-4171-42b0-94b5-abf03d6414aa.

1 MULTI-CELL CONVOLUTIONAL RECURRENT NETWORKS

The networks we use to model the visual cortex consist of 2 layers of purely feedforward, convo-
lutional processing, followed by 2 or 3 layers of recurrent processing (Figure 1). The feedforward
layers correspond loosely to retina and thalamus, while the recurrent layers correspond to cortex.
Each recurrent layer consists of excitatory and inhibitory neurons (channels).

We examined many variants for the recurrent layer. For brevity, here we focus on two representative
architectures. The first one, which for convenience we refer to as the StandardEI model, consists of
recurrently connected E and I channels:

CurrE = WX→E ∗Xt +WE→E ∗ Et−1 −WI→E ∗ It−1 + bE

CurrI = WX→I ∗Xt +WE→I ∗ Et−1 −WI→I ∗ It−1 + bI

Et = fE ◦ Et−1 + (1− fE) ◦ σc(CurrE)

It = fI ◦ It−1 + (1− fI) ◦ σc(CurrI)
(1)

Xt is the input from the previous layer, Et and It are the activity of the excitatory and inhibitory
neurons. CurrE and CurrI are the input currents for E and I neurons respectively. Batch normaliza-
tion is applied to CurrE , and we tested variants where batch normalization is also applied to CurrI .
fE and fI are forget gates, implemented as σ(f̃) where σ is the sigmoid function and f̃ is a trainable
1-d tensor with the same size as the number of channels. Dale’s law is implemented by setting all
relevant weight matrices WE→·,WI→· to be non-negative using an absolute function, W = |W̃ |,
where the trainable variable is the non-sign-constrained weight matrix W̃ . bE and bI are bias terms.
We found that task performance drops substantially if a rectified linear function is used to impose the
sign constraint instead. Only excitatory neurons in each recurrent layer makes long-range connec-
tions to the next layer, making them the principal neurons (PN). In comparison, inhibitory neurons
are all interneurons (Int), making within-layer connections.

In the brain, E and I neurons can be further divided into many subtypes that differ in their inputs,
output targets, and gene expression (Markram et al., 2004). Two major types of inhibitory neurons
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Figure 1: Convolutional recurrent network with multiple cell types. The Standard model for
CIFAR10 starts with two layers of regular convolutional processing, followed by 2 layers of re-
current processing. Each recurrent layer consists of three types of cells. The excitatory principal
neurons (PN) output non-negative connection weights and target the next area. Output-gating (OG)
and input-gating (IG) neurons are inhibitory and only target neurons within the same area.

account for 60% of all inhibitory neurons in the cortex (Rudy et al., 2011). The first type expresses
the molecule Somatostatin (SST) and inhibits dendrites of E neurons, the structure that receives
inputs from other neurons. The second type expresses the protein Parvalbumin (PV) and inhibits
soma of E neurons, where outputs are generated. Experimental evidence suggested that these input-
and output-controlling inhibition can function like subtractive or multiplicative gates (Lee et al.,
2012; Wilson et al., 2012). As was previously pointed out (Costa et al., 2017), this motif in which
principal neurons–those that can project to other areas–are recurrently controlled by multiple gates
is reminiscent of the design of common recurrent units in machine learning, including Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho
et al., 2014) networks.

Motivated by these findings, we introduced a convolutional recurrent layer with two distinct types of
inhibitory interneurons (Int), which we refer to as the Standard model. These two types of neurons
control/gate the input and output of the excitatory neurons respectively, and are referred to as the
input-gating (IG) and output-gating (OG) neurons. Taken together, Standard model is described by

ft = σf (WX→f ∗Xt +WPN→f ∗ PNt−1 + bf ),

IGt = σc(WX→IG ∗Xt +WPN→IG ∗ PNt−1 + bIG),

it = σi(WIG→PN ∗ IGt + bi),

OGt = σc(WX→OG ∗Xt +WPN→OG ∗ PNt−1 + bOG),

ot = σo(WOG→PN ∗ OGt + bo),

Ct = ft ◦ Ct−1 + (1− it) ◦ σc(WX→PN ∗Xt +WPN→PN ∗ PNt−1 + bc),

PNt = σc(Ct − ot).

(2)

Here IGt,OGt,PNt are the activity of the input-gating, output-gating, and principal neurons. Ct
is the pre-activation values (or membrane potential) of the principal neurons, corresponding to the
cell state in LSTM. Batch normalization is applied to Ct. IG and OG neurons inhibit PNs through
inhibitory currents it and ot. ft stands for the forget gate, similar to LSTM. All neurons are rectified
linear units (ReLU), σc = max(x, 0). The nonlinearity of the gate variable is the sigmoid function
for multiplicative and forget gates (σi, σf ), and ReLU for subtractive gates (σo). ∗ stands for con-
volution, while ◦ stands for element-wise multiplication. The Standard model is closely related to
LSTM in its use of forget, input, and output gates. However, in LSTM, there is only a single type of
neurons, the principal neurons, from which the input/output gates are directly generated.

2 REPRODUCING FUNCTIONAL AND STRUCTURAL DIFFERENCES ACROSS
CELL TYPES

In this section, we will show that several experimentally-observed functional and structural dif-
ferences across excitatory (PN) and inhibitory (Int) neurons can naturally emerge in E-I networks
trained on image classification tasks. These results will be illustrated mainly in the Standard model,
however, they hold for all variants of E-I networks tested, including the StandardEI model.
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Figure 2: Model excitatory neurons have higher orientation selectivity and natural image se-
lectivity than inhibitory neurons. (a,b) The average gOSI (a), orientation skewness (b), and image
skewness (c) for each type of neurons in the Standard networks. Error bar is the 95% confidence
interval computed with bootstrapping across 5 networks.

We trained the Standard model on the image classification datasets CIFAR10 (Krizhevsky & Hinton,
2009) and ImageNet (Deng et al., 2009). We used common training techniques including momentum
(Polyak, 1964) and L2 regularization. For CIFAR10, regularization coefficient is 0.0002, the initial
learning rate is 0.1 and decays 10-fold at epochs 100, 150, and 200, in all 250 epochs. The network
consists of two convolutional feedforward layers of 16, and 32 channels each, followed by two
recurrent layers. The first recurrent layer contains 64 PN, 16 IG, and 16 OG channels. For each
type of neurons, the number of channels is doubled in the second recurrent layer. The network is
unfolded for 4 time steps, and the classification output is read-out from the final time step using a
fully connected linear layer. For all conditions, we trained 5 networks with different random seeds.
The network reaches approximately 85% test accuracy on CIFAR10, comparable to convolutional
networks of similar depth (Hinton et al., 2012). See Appendix for more details and hyperparameters
for ImageNet.

We ask whether training leads to qualitative differences between excitatory and inhibitory neurons
in the network, as observed in the brain. In mouse cortex, inhibitory neurons are functionally less
selective than excitatory neurons (Kerlin et al., 2010; Znamenskiy et al., 2018), meaning that they
tend to respond to different stimuli with similar values. We first measured the selectivity to static
oriented gratings for excitatory and inhibitory neurons (Figure 8a). The selectivity is quantified in
two ways. First, we computed the global Orientation Selectivity Index (gOSI) for each neuron j
(Wörgötter & Eysel, 1987),

gOSIj =
∣∣∣ M∑
k=1

rj(θk)ei2θk/

M∑
k=1

rj(θk)
∣∣∣, (3)

where rj(θk) is the j-th neuron’s response to the k-th grating stimulus at orientation θk. gOSI is
close to 1 when the neuron is highly selective to orientation. For each type of neurons, we report the
average gOSIs across all channels in the center of the convolutional layer. The second measure of
selectivity is the skewness of the distribution of responses to various stimuli (Samonds et al., 2014).
The skewness γj for neuron j is defined as

γj =
1
M

∑M
k=1(rj,k − r̄j)3

[ 1
M

∑M
k=1(rj,k − r̄j)2]3/2

, (4)

where rj,k is the j-th neuron’s response to the k-th stimulus, and r̄j is the average response. The
skewness is higher if a neuron is strongly selective to a small number of stimuli. For both gOSI
(Figure 2a) and orientation skewness (Figure 2b), the selectivity is substantially higher for excitatory
neurons (PN) compared to inhibitory neurons (IG, OG), in both recurrent layers (areas 3 and 4).
Next, we measured the selectivity to natural images. We computed the skewness of responses to
all images in the test set of CIFAR10. Again, excitatory neurons in both areas 3 and 4 have higher
selectivity to natural images than inhibitory neurons (Figure 2c).

Another major qualitative difference between excitatory and inhibitory neurons in the brain is the
higher density of I-to-E connections (i.e., Int-to-PN) compared to E-to-E (i.e., PN-to-PN). In our
network, we found that the distribution of all recurrent connection weights is multi-modal (Figure
3a), with a group of strong connections and many much weaker connections. To assess the connec-
tion density, we chose a threshold at exp(−10), and quantified the proportion of connection weights
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that exceed this threshold. This threshold is chosen to separate the strongest mode from the weaker
modes in the distribution of all weights (Figure 3a). The distribution of PN-to-PN connections is
spread out (Figure 3b), leaving a substantial proportion of connections below the threshold. In con-
trast, the distributions of both IG-PN and OG-PN connection weights are mostly concentrated above
the threshold (Figure 3c,d), leading to higher connection density (Figure 3e). Therefore, sparser
excitatory connectivity emerged in the network after training, in agreement with biological observa-
tions.

Figure 3: Model excitatory neurons are more sparsely connected. (a-d) The distribution of con-
nection weights for all recurrent connections (a), and for the PN-to-PN (b), OG-to-PN (c), and
IG-PN connections (d) in area 3 of one standard network. Blue line: the threshold used to compute
the proportion of strong connections, namely those that exceed the threshold. (e) The connection
density (proportion of strong connections) for three types of excitatory and inhibitory connections
across area 3 and 4.

The findings above are summarized in Figure 4, which also includes results from the StandardEI
model, and from networks trained on ImageNet. The emergent differences across E and I neurons
are in qualitative agreement with experimental estimates. To test the generality of these results,
we trained networks with subtractive or multiplicative gates (Figure 9a), networks that structurally
interpolate between the Standard and StandardEI models (Figure 9b), and networks with or without
batch normalization or dropout (Figure 9c). In all variations of networks that reached accuracy
above 80%, the excitatory neurons are more selective and less connected.

Figure 4: The E-I differences emerge across network variations and datasets. The E-I differ-
ences are summarized using the difference in image skewness between principal neurons (PN) and
interneurons (Int), and the difference in connection density between Int-to-PN and PN-to-PN con-
nections. Light circles: individual networks. Dark circles: average. Experimental estimates are
derived from Znamenskiy et al. (2018), Song et al. (2005), and Packer & Yuste (2011) (Appendix
D).

By monitoring the orientation selectivity, image selectivity, and connection density throughout the
training process, we found that the differences across excitatory and inhibitory cells emerged early
on (Figure 5). Even though excitatory and inhibitory neurons started out with similar selectivity
(close to 0), and similar connectivity (close to 1), the differences across cell types become substantial
after 5-30 epochs. These functional and structural differences remain stable throughout training,
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Figure 5: The E-I differences emerge early in training. The orientation skewness (a), image
skewness (b), and connection density (c) for areas 3 (top) and 4 (bottom) throughout training.

even as the training performance continues to improve (Figure 10). Together, these results argue
that there exists a strong optimization pressure to differentiate the selectivity and connectivity of
excitatory and inhibitory neurons.

3 WHY DO EXCITATORY AND INHIBITORY NEURONS HAVE DISTINCT
SELECTIVITY AND CONNECTIVITY?

We have shown that neural networks with excitatory and inhibitory neurons develop different selec-
tivity and connectivity, qualitatively reproducing long-standing findings in the brain. Now we ask
why these differences emerge.

The emergent differences across our model E and I neurons can only be explained by their built-in
structural asymmetry. We have incorporated three major forms of asymmetry that exist in the brain.
First, there is an asymmetry in numbers. Excitatory neurons are 4 to 10 times more abundant than
inhibitory neurons in the brain. In all models tested so far, there are more excitatory than inhibitory
neurons in each area. Second, there is an asymmetry in projection targets. In the cortex, all principal
neurons are excitatory. Meanwhile, all inhibitory neurons are interneurons, meaning that they only
connect to other neurons within the same area. Third, there is by definition an asymmetry in action.
Excitatory neurons excite other neurons while inhibitory neurons inhibit. When the activation func-
tion of a neuron is rectified and non-saturating (for example, ReLU), excitatory inputs to the neuron
can move it into a responsive regime, where inhibitory inputs can make a neuron non-responsive.
In this section, we will remove individual asymmetry, and test which one led to the observed dif-
ferences in selectivity and connectivity. In the Standard model, there is an additional asymmetry
because inhibitory neurons use multiplicative gates to control inputs and outputs of excitatory neu-
rons. This asymmetry is not presented in the StandardEI model. Therefore, we will present results
based on variations of both the Standard and the StandardEI model trained on CIFAR10.

Asymmetry in numbers In our Standard model, the ratio between the number of OGs(IGs) and
PNs is 1:4. It is conceivable that excitatory neurons can afford to be more selective to orientations
and images because there are more of them. To test this hypothesis, we independently varied the
numbers of E and I channels in the recurrent layers. The number of E or I channels ranges from 2
to 256 in area 3. Area 4 always has the doubled number of channels. We found that the number
of E, but not I, channels have a strong influence on both image selectivity (Figure 6a, left) and
connection density (Figure 6b, left) of E neurons. In contrast, the inhibitory selectivity is consistently
low, regardless of the number of E or I channels (Figure 6a, right). The inhibitory connection
density depends moderately on the number of E and I channels, decreasing with a larger number of
I channels (Figure 6b, right).
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Figure 6: Selectivity and connectivity in networks with various numbers of excitatory and
inhibitory channels. (a) The image skewness of principal neurons (PN, left) and interneurons (Int,
right) for networks of various numbers of excitatory and inhibitory channels. (b) The connection
density of PN-PN connections and Int-PN connections for various networks. Results from areas 3
and 4, and from two types of interneurons are combined. All networks shown have accuracy above
60%.

Even though excitatory neurons become more selective and less connected when there are more
of them, the asymmetry in numbers alone does not explain the emergent E-I differences. When
the number of excitatory and inhibitory channels are the same and both high, excitatory neurons
still have higher selectivity and sparser connectivity. Similar to selectivity and connectivity, task
accuracy depends mainly on the number of excitatory channels (Figure 11), meaning that it is not
necessary to have a high number of inhibitory channels in these networks. This potentially explains
why there are 4-8 times less inhibitory neurons than excitatory neurons in the brain.

Asymmetry in projection In both the cortex and all networks tested so far, principal neurons are
exclusively excitatory. Here, we decoupled this relationship by training InhPN networks, where
long-range connections originate from inhibitory, instead of excitatory, neurons. We do so by flip-
ping the sign of all local recurrent connections. The connections from principal neurons to the next
layer are kept excitatory, because we had difficulty training networks with inhibitory long-range pro-
jections past 80% accuracy. InhPN networks can still achieve accuracy similar to that of the standard
network. However, the now-inhibitory principal neurons (PN) remain more selective to orientation
and natural images compared to the now-excitatory interneurons (Int) (Figure 7, green). This result
argues that higher selectivity is not a property inherent to excitatory neurons. Whichever type of
neurons serves as the principal neurons would demand higher selectivity, presumably because the
principal neurons need to carry detailed stimulus information to the next layer.

Interestingly, in the InhPN networks, the connectivity among inhibitory principal neurons (PN)
become dense despite maintaining high selectivity (Figure 7, green). This result is in stark contrast
with the sparser connectivity needed for highly selective excitatory neurons in the Standard model
(Figure 6). We speculate that these seemingly contradictory results could potentially be understood
in the context of recurrently connected ReLU neurons. When a ReLU neuron is highly selective,
typically, it is strongly activated by only a small subset of stimuli. If this selectivity is supported
by recurrent excitatory connections, then a neuron only needs to receive inputs from a small set
of excitatory neurons with similar preferred stimuli. Meanwhile, if the selectivity is supported by
recurrent inhibition, then a neuron needs to receive inputs from nearly all other neurons, except
for the small subset of neurons with similar preferences. Therefore, recurrent connections between
highly selective inhibitory neurons should be dense, instead of sparse.

Asymmetry in action The namesake difference between excitatory and inhibitory neurons is the
sign of their connection weight values. All connections stemming from an excitatory (inhibitory)
neuron are constrained to be non-negative (non-positive). We can release this constraint on the
sign of connection weights, while keeping other E-I asymmetries. Such NoConstraint networks
achieve slightly better accuracy compared to the Dale’s law-obeying networks. In the NoConstraint
networks, the formerly-excitatory principal neurons (PN) developed higher selectivity compared to
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Figure 7: Removing asymmetry between excitatory and inhibitory neurons. Difference in con-
nection density against difference in image selectivity for areas 3 (a) and 4 (b) for the original
networks (blue), their InhPN variants (green), and NoConstraint variants (orange). Light symbols:
individual networks; dark symbols: average. Circle: Standard model and its variants; triangle:
StandardEI and its variants.

the formerly-inhibitory interneurons (Int) (Figure 7, orange), consistent with our previous finding
that principal neurons have higher selectivity regardless of the sign of their outputs.

Again consistent with previous results, in the NoConstraint networks, the principal neurons no
longer have sparser connectivity, instead, they are almost fully connected (Figures 7, 14). This re-
sult again indicates that the link between connectivity and selectivity depends crucially on whether
Dale’s law is applied. In a network without Dale’s law, a neuron can receive inputs from all other
neurons and remain selective, as long as the inputs from most neurons cancel out, leaving this neuron
effectively driven by a small set of inputs.

4 DISCUSSION

We have shown that recurrent neural networks equipped with excitatory and inhibitory cells are
capable of capturing several important features of the brain, including higher selectivity and sparser
connectivity among excitatory neurons. These qualitative features emerged from the pressure to
perform the task, suggesting that these qualities are indeed beneficial to task performance. This
allows us to study what aspects of the network give rise to this distinction between excitatory and
inhibitory neurons. We found that the higher selectivity of excitatory neurons is mainly driven
by their role as the principal neurons that transmit information to upper layers. When Dale’s law
is obeyed, a higher selectivity necessitates sparser connectivity among excitatory neurons. Our
findings predict that if a brain area contains inhibitory principal neurons, these neurons should be
more selective than interneurons of the same area.

Optimization algorithms like stochastic gradient descent combined with large datasets are highly
effective at tuning connection weights to perform tasks. However, it remains unlikely to observe a
specific set of desired structural principles emerge naturally through training. We designed our stan-
dard networks to obey Dale’s law. Theoretically, connectivity respecting Dale’s law could emerge
out of training, but has not been demonstrated, to the best of our knowledge. There are at least three
possibilities: (1) the optimization algorithm is not strong enough to discover this solution because
it remains a exponentially small part of the solution space (1/2N ) of the entire solution space, N
being the number of connection weights). Similarly, it would be difficult for a ResNet structure
(He et al., 2016) to develop from training a vanilla 100+ layer deep feedforward network. (2) The
task we used is not appropriate for the emergence of Dale’s law. It is conceivable that Dale’s law
is beneficial to some tasks that have yet been identified. (3) Finally, it is possible that Dale’s law is
a result of a compromise that the brain has to strike due to its biological nature, and is irrelevant to
general computing machines. Understanding the nature of the computational benefit of Dale’s law
(if any) would be a major achievement in computational neuroscience, and may shed light on better
designs of artificial neural networks.
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A ADDITIONAL DETAILS OF THE MODELS

Our models consist of two feedforward layers and two recurrent layers for CIFAR10. Convolutions
in the feedforward layers are regular convolutions. In the recurrent layers, we use depth-separable
convolution, where a spatial convolution is applied on each channel separately and then followed
by a point-wise convolution that mixes channels (Chollet, 2017). Depth-separable convolution is
used because using regular convolution for recurrent connections leads to substantially lower (of-
ten around chance-level) and less stable accuracy on ImageNet in our networks. When training on
CIFAR10, networks with regular convolution can still reach around 85% accuracy, but we observed
a greater variability across networks with different random seeds. Kernel size is 3x3 for all convo-
lutions. To measure the connection density, the 4-d convolution matrix of size [3, 3, channels in,
channels out] is recovered from the spatial and point-wise convolution kernels, and then averaged
over the first two spatial dimensions. This would give us a channel-to-channel weight matrix, with
a total of channels in×channels out connection weights. The results are similar when we do not
average across space and instead analyze the 3×3×channels in×channels out connection weights.
Density is quantified as the proportion of connection weights that exceed a chosen threshold. We
picked a threshold exp(−10) that separates the strong mode from the weaker modes in the distri-
bution of all connection weights. The precise value of the threshold does not impact our qualitative
results. Max pooling is applied on the output of each layer. Pooling stride is 1 for the first feedfor-
ward layer, and 2 for other layers.

For ImageNet, the L2 weight regularization coefficient is 0.0001. The regularization strengths are
taken directly from the official Tensorflow ResNet models for CIFAR10 and ImageNet. We found
that, without weight regularization, the connection probability of both excitatory and inhibitory
connections become close to 1, far from experimentally-observed values. The initial learning rate is
1 and decays 10-fold at epochs 30, 60, 80 and 90, in all 100 epochs. Height and width of input images
are resized and cropped to 128 pixel. The network consists of two convolutional feedforward layers
of 64, and 128 channels each, followed by three recurrent layers. The first recurrent layer contains
256 PN, 64 IG, and 64 OG channels. For each type of neurons, the number of channels is the same
in the second recurrent layer and doubled in the third recurrent layer. Batch-normalization is applied
to the cell state Ct. The network is unfolded for 5 time steps, and the classification output is read-
out from the final time step using a fully connected linear layer. For all conditions, we trained 5
networks with different random seeds. The network reaches approximately 55% test accuracy on
ImageNet.

B COMPUTING ORIENTATION SELECTIVITY

A static oriented grating is a two-dimensional sinusoidal wave G(x, y) satisfying:
G(x, y) = cos{k[−(x− x0)sinθ + (y − y0)cosθ] + φ},

where θ is the orientation, k is the spatial frequency, φ is the phase and (x0, y0) is the center location.
We generate a total of 432 gratings (Figure 8a) using 18 orientations (10◦ apart), 6 spatial frequencies
(1, 2, 3, 4, 6, 8) and 4 phases (90◦ apart).

We present each grating image to a network, and each neuron’s preferred orientation, spatial fre-
quency and phase is chosen when the neuron has the maximal activity (averaged over time step). At
its preferred spatial frequency and preferred phase, the global Orientation Selectivity Index (gOSI)
is computed based on all orientations. Unlike gOSI, the orientation skewness is computed based on
all 432 grating images.

C MODEL VARIANTS

We tested a number of model variants to test the generality of our findings. The results are summa-
rized (Figure 9) in the same style as Figure 4.

C.1 READOUT AND GATING

In our Standard model, the logits are read out from the last time step of the final recurrent layer (area
4). We also trained networks where the logits are read out from the final recurrent layer’s activity
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summed across all time steps. In Figure 9a, We denote the former structure as ”LastT”, and the latter
structure as ”SumT”.

Apart from multiplicative (Mul) input gates and subtractive (Sub) output gates in the standard net-
work, we implemented other combinations of gating mechanisms. In Figure 9a, a network is named
as “Readout InputGateOutputGate”. For example, our Standard model is named ”LastT MulSub”
in this plot.

C.2 TRANSITIONING FROM Standard TO StandardEI

Figure 9b contains a set of models in transition from our Standard to StandardEI model.
NoOG ECurrBN removes the output gate of our Standard model and moves the batch normaliza-
tion from cell state Ct to the input current of PN neurons. Based on NoOG ECurrBN, we obtained
NoOG ECurrBN SSub by changing the multiplicative input gate into a simplified subtractive cur-
rent. By furthering simplifying the forget gate structure to be the same as the StandardEI model, and
adding recurrent structure for IG neurons, we get the NoOG ECurrBN SSub SFG RecurrI model,
which is equivalent to the StandardEI model.

C.3 BATCH NORMALIZATION AND DROPOUT

In Figure 9c, we tested various networks with or without batch normalization or dropout. In our
Standard model, removing the batch normalization on cell states (NoPNCellBN) or replacing it with
a dropout function (PNCellDrpt) (keep probability equals to 0.9) retains the performance above 80%
and the E-I differences in both selectivity and density (Figure 9c).

For the Standard model with gating neurons, adding batch normalization for IG (AddIGCurrBN)
or OG neurons (AddOGCurrBN) increases selectivity for the batch-normalized inhibitory neu-
rons. Nevertheless, the inhibitory selectivity remains lower than that of PNs. The same trend
is observed when batch normalization is added to inhibitory neurons in the StandardEI model
(EI CurrBN ICurrBN), or when dropout is added to output-gating neurons in PNCellDrpt (PN-
CellDrpt AddOGDrpt).

D EXPERIMENTAL ESTIMATES OF E-I DIFFERENCES IN SELECTIVITY AND
CONNECTIVITY

Here we intend to estimate the experimentally-observed differences in selectivity and connectivity
across E and I neurons. Znamenskiy et al. (2018) recorded from mouse V1 responses to gratings.
They quantified the response skewness of PV+ and PV- neurons (their Fig. 1b). PV, i.e. parval-
bumin, is expressed only in a major subtype of inhibitory neurons. The difference between PV-
and PV+ skewness is about 2.1. Song et al. (2005) measured the connection probability of pairs of
excitatory neurons in rat V1. For pairs of cells with intersomatic distance lower than 100 microns,
the connection probability is about 11% (their Fig. 2b). Packer & Yuste (2011) recorded from L2/3
of mouse barrel cortex (S1), and found that the connection probability from PV+ to pyramidal cells
with intersomatic distance less than 200 microns is around 42% (their Fig. 4f). The last two results
are obtained from different areas, species, and using different methodologies, so the quantitative
value of the estimation is not to be trusted. However, the qualitative difference is robust.

E CLASSIFICATION PERFORMANCE DURING TRAINING

The classification performance of the Standard model on CIFAR10 increases rapidly in the first 10
epochs, and continues to improve after 150 epochs of training. The E-I difference in selectivity
also increases rapidly in the first 10 epochs (Figure 5a,b), while the difference in connection density
plateaus at about epoch 50 (Figure 5c).
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F PERFORMANCE OF NETWORKS WITH VARIOUS NUMBERS OF EXCITATORY
AND INHIBITORY CHANNELS

The performance of networks with various numbers of excitatory and inhibitory channels is summa-
rized (Figure 11) in the same style as Figure 6. The performance depends mainly on the number of
excitatory (PN) channels, rather than the number of inhibitory (Int) channels. All networks shown
in Figure 11 and Figure 6 have accuracy above 60%.

G PERFORMANCE OF THE InhPN AND NoConstraint NETWORKS

The performance of the standard, InhPN and NoConstraint networks is summarized in Figure 12.
Such NoConstraint networks achieve slightly better accuracy compared to the standard Dales law-
obeying networks.

H DETAILED COMPARISON BETWEEN THE STANDARD MODEL AND ITS
VARIANTS

The Standard model is compared to its InhPN variants (Figures 13) and the NoConstraint variants
(Figure 14).

I DETAILED ANALYSIS OF THE StandardEI MODEL

The StandardEI model shows similar qualitative trends (Figure 15) as the Standard model used in
the main text (Figures 2, 3).
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Figure 8: Model excitatory neurons have higher orientation selectivity than inhibitory neurons.
(a) A total of 432 gratings, using 18 orientations (10◦ apart), 6 spatial frequencies (1, 2, 3, 4, 6, 8)
and 4 phases (90◦ apart). (b) The orientation tuning curves of example PN, OG, and IG neurons from
area 3 of one Standard network. The number in each panel indicates the neuron’s global Orientation
Selectivity Index (gOSI).

Figure 9: The E-I differences emerge across a range of network variations. (a-c) The E-I dif-
ferences are summarized using the difference in image skewness between principal neurons (PN)
and interneurons (Int), and the difference in connection density between interneuron-to-PN and
PN-to-PN connections, in the same way as Figure 4. (a) Models with different readout and gat-
ing mechanisms. The Standard model is denoted here as the LastT MulSub model. (b) Models
in transition from the Standard model to the StandardEI model. The latter is denoted here as the
NoOG ECurrBN SSub SFG RecurrI model. (c) Models with variations of batch normalization or
dropout. All model variants develop the E-I differences. Results are combined from areas 3 and 4.
Light circles: individual networks. Dark circles: average.

Figure 10: The classification accuracy during training. The learning rate is decayed at epoch 100,
150, and 200.
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Figure 13: Detailed comparison between the Standard model and InhPN network. Comparing
gOSI (a), orientation skewness (b), image skewness (c), and connection density (d) for areas 3 (left)
and 4 (right) between the Standard model and the InhPN network.
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Figure 14: Detailed comparison between Standard model and NoConstraint network. Compar-
ing gOSI (a), orientation skewness (b), image skewness (c), and connection density (d) for areas 3
(left) and 4 (right) between Standard model and the NoConstraint network. In the NoConstraint
model, the OG-PN connectivity is close to zero, suggesting that OGs are only weakly participating
in the computation.
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Figure 15: Detailed analysis of the StandardEI model.
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