
A Proofs

We begin our discussion by the following result regarding the derivatives:

Lemma A.1. The following holds under Assumption 1:

1. Given λ ∈ Rm so that
∑m
i=1 λi = 1 and λi ≥ 0, we denote Fλ =

∑m
i=1 fi and Gλ =

‖∇Fλ‖2. Then the gradient satisfies

g>λ∇Gλ ≥ c1Gλ, ‖∇Gλ‖2 ≤ c22Gλ.
And for any α > 0, the Laplacian satisfies

∆Gλ ≤
c1
2α
Gλ + 2Md

where M = c23α/c1 + c22.

2. If G∗(x) = ‖g∗(x)‖2 is C1, then

‖∇G∗(x)‖ ≤ c2‖g∗(x)‖, g∗(x)>∇G∗(x) ≥ c1G∗(x).

Proof. Claim 1. Note∇Gλ = 2∇2Fλgλ and that

1

2
c1I � ∇2Fλ =

m∑
i=1

λi∇2fi �
1

2
c2I.

We immediately obtain the first result regarding∇Gλ. Next, we check the components of derivatives:

[∇Gλ]i = 2
∑
j

[∇2Fλ]i,j [gλ]j ,

so
∆Gλ =

∑
i

[∇2Gλ]i,i

= 2
∑
i

∑
j

[∂3i,i,jFλ][gλ]j + 2
∑
i

∑
j

(∂i,jFλ)2

≤ 2c3
√
d‖gλ‖+ 2d‖∇2Fλ‖2

≤ c1
2α2
‖gλ‖2 + 2c23dα/c1 + 2dc22.

Claim 2. Consider an arbitrary vector v, we need to show for small enough ε,
−εc2‖g∗(x)‖ ≤ G∗(x+ εv)−G∗(x) ≤ εc2‖g∗(x)‖.

To do so, let β = λ(x), γ = λ(x+ εv). Then by Taylor expansion, there is a w such that

G∗(x+ εv)−G∗(x) ≤ Gβ(x+ εv)−Gβ(x) = εv>∇Gβ(x) +
1

2
ε2v>∇2Gβ(w)v.

Note that ∇Gβ(x) = 2∇2Fβ(x)gβ(x) and ∇2Fβ � 1
2c2I . Letting v = ∇Gβ/‖∇Gβ‖, ε → 0, we

find that
lim
ε→0

1

ε
(G∗(x+ εv)−G∗(x)) ≤ ‖∇Gβ(x)‖ ≤ c2‖g∗(x)‖.

Likewise, we have

G∗(x+ εv)−G∗(x) ≥ Gγ(x+ εv)−Gγ(x) = εv>∇Gγ(x) +
1

2
ε2v>∇Gγ(w)v.

From this we find that

lim
ε→0

1

ε
(G∗(x+ εv)−G∗(x)) ≥ −‖∇Gγ(x)‖2 ≥ −c2‖g∗(x)‖.

The second part can be obtained if we let v = g∗(x), and note that

G∗(x+ εv)−G∗(x) ≤ Gβ(x+ εv)−Gβ(x) = −2εv>∇2Fβv +
1

2
ε2v>∇2Gβ(w)v.

Since∇2Fβ � 1
2c1I , divide both sides with ε and let ε→ 0, we find that

g∗(x)>∇G∗(x) ≤ −c‖g∗(x)‖2 = −cG∗(x).
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Proof of Theorem 3.1. Define (x) = g∗(x) + α∇ log ρ∗(x). Applying Stein’s identity, we have

φ∗ρ∗(·) = Ex∼ρ∗ [g∗(x)k(x, ·)− α∇xk(x, ·)]
= Ex∼ρ∗ [(g∗(x) + α∇x log ρ∗(x)) log k(x, ·)]
= Ex∼ρ∗ [(x)k(x, ·)]
= [ρ∗](·).

Therefore, as ρ∗ is the fixed point of (4), we have

∇x ·
(
[ρ∗](x)ρ∗(x)

)
= ∇x ·

(
φ∗g∗(x)ρ∗(x)

)
= 0.

Then we have ∫
∇x ·

(
[ρ∗](x)ρ∗(x)

)
h(x)dx = 0.

Using integration by parts, we have∫
([ρ∗](x)ρ∗(x))>∇h(x)dx = Eρ∗ [∇h(x)>k(x, y)(x)] = 0.

And hence
〈[ρ∗], ∇h[ρ∗]〉H = E(x,y)∼ρ∗×ρ∗ [∇h(x)>k(x, y)(x)]

=

∫
([ρ∗](x)ρ∗(x))>∇h(x)dx

= −
∫
∇x ·

(
[ρ∗](x)ρ∗(x)

)
h(x)dx

= 0.

As a remark, using the Krylov–Bogoliubov existence theorem (see Corollary 11.8 of [6]), fixed
points to (4) exist as long as one can show {ρt, t ≥ 0} is tight. Tightness of {ρt, t ≥ 0} can often
be established if we have a uniform upper bound for ‖g∗[ρt]‖

2
H, assuming g is coercive and smooth.

Such an upper bound can be found in Theorem 3.2. On the other hand, there is no guarantee to the
uniqueness of ρ∗. In fact, the non-gradient component of g∗ can set up a divergence-free rotation,
along which ρt will form a limit-cycle. This is different from the Langevin dynamics.

Proof of Theorem 3.2. Simply note that by the fact that ρ∗ is a fixed point of (4),

0 = −
∫
∇ · (φ∗ρ∗ρ∗)(x)G∗(x)dx

=

∫
φ∗ρ∗(x)>∇G∗(x)ρ∗(x)dx

=

∫ ∫
k(x, y)∇G∗(x)>(g∗(y) +

α

σ2
(y − x))ρ∗(x)ρ∗(y)dxdy. (11)

Then note that k(x, y) = 0 if ‖y − x‖ ≥ mdσ. And if ‖y − x‖ ≤ mdσ, we apply Lemma A.1 claim
2,

∇G∗(x)>(g∗(y) +
α

σ2
(y − x))

= ∇G∗(x)
∗(x)+∇G(x)>(g∗(y)−g∗(x)+ α

σ2
(y−x))

≥ c1G∗(x)− (L+ α/σ2)‖∇G∗(x)‖‖y − x‖

≥ 1

2
c1G

∗(x)− 1

2c1
(L+ α/σ2)2m2

dσ
2. (12)

Therefore, (11) leads to∫
G∗(x)ρ∗(x)k(x, y)ρ∗(y)dxdy ≤ 1

2c21
(L+ α/σ2)2m2

dσ
2

∫
ρ∗(x)k(x, y)ρ∗(y)dxdy.
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To reach our first claim, simply note that G∗(x) +G∗(y) ≥ 2g∗(x)>g∗(y), then because k(x, y) =
k(y, x),∫

G∗(x)ρ∗(x)k(x, y)ρ∗(y)dxdy ≥
∫
g∗(x)>g∗(y)ρ∗(x)k(x, y)ρ∗(y)dxdy = ‖g∗[ρ∗](x)‖2H.

For the second claim, we use inequality (12) again,

d

dt
EρtG∗(X) =

∫
∇ · (φ∗ρtρt)(x)G∗(x)dx

= Ex,y∼ρt [−g∗(y)k(x, y)∇G∗(x) +∇yk(x, y)∇G∗(x)]

= Ex,y∼ρt [−g∗(y)k(x, y)∇G∗(x) + α(
x− y
σ2

)>∇G∗(x)k(x, y)]

≤ Ex,y∼ρt [−
1

2
c1G

∗(x)k(x, y) +
1

2c1
(L+ α/σ2)2m2

dσ
2k(x, y)]

≤ Ex,y∼ρt [−
1

2
c1g
∗(x)(g∗(y))(x, y) +

1

2c1
(L+ α/σ2)2m2

dσ
2k(x, y)]

= −1

2
c1‖g∗[ρt](x)‖2H +

1

2c1
(L+ α/σ2)2m2

dσ
2‖1[ρt]‖

2
H

Therefore

min
s≤t
−1

2
c1‖g∗[ρs](x)‖2H +

1

2c1
(L+ α/σ2)2m2

dσ
2‖1[ρs]‖

2
H

≤ 1

t

∫ >
s=0

(
−1

2
c1‖g∗[ρs](x)‖2H +

1

2c1
(L+ α/σ2)2m2

dσ
2‖1[ρs]‖

2
H

)
ds ≤ 1

t
Eρ0G∗(x).

Proof of Theorem 3.3. Since ρ∗ is a fixed point of (8), we find that

0 = ∇ · (g∗(x)ρ∗ + α∇ρ∗(x)) = ∇ · ((x)ρ∗(x)).

Then for any h(x), we find our first claim using integration by parts

0 =

∫
h(x)∇ · ((x)ρ∗(x))dx

= −
∫
∇h(x)>(x)ρ∗(x)dx.

Next we check the KL-divergence

d

dt
KL(ρt || ρ∗) =

∫
(∇ log ρ∗(x)−∇ log ρt)

>(g∗(x) + α∇ log ρt(x))ρt(x)dx

=

∫
(∇ log ρ∗(x)−∇ log ρt)

>(−α∇ log ρ∗(x)− α(x) + α∇ log ρt(x))ρt(x)dx

= −αF (ρt||ρ∗)− α
∫

(∇ log ρ∗(x)−∇ log ρt)
>(x)ρt(x)dx.

Finally, we note that if we denote h(x) = ρt(x)/ρ∗(x), then∫
(∇ log ρ∗(x)−∇ log ρt)

>(x)ρt(x)dx = −
∫

(∇ log h(x))>(x)h(x)ρ∗(x)dx

= −
∫
∇h(x)>(x)ρ∗(x)dx = 0.

Therefore we have our second claim.
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Proof of Theorem 3.4. We will only prove Claim 2. Then Claim 1 comes as a result when t→∞.
Note that ρt is the density of the diffusion process

dxt = −g∗(xt)dt+
√

2αdwt

where wt is the Brownian motion. Next, we let λ∗(x) be the solution to problem (2) and λt = λ∗(xt).
Note that when applying the infinitesimal generator of xt to G∗

LG∗(xt) : = lim
ε→0

1

ε
(E(G∗(xt+ε)|xt)− (G∗(xt)))

= lim
ε→0

1

ε
(E(G∗(xt+ε)|xt)− (Gλt(xt)))

≤ lim
ε→0

1

ε
(E(Gλt(xt+ε)|xt)− (Gλt(xt)))

= LGλt(xt).

To continue, we use the Itô’s formula and Lemma A.1 Claim 1,

LG∗(xt) ≤ LGλt(xt) = −〈Gλt(xt), gλt(xt)〉+ α∆Gλt(xt)

≤ −1

2
c1G

∗(xt) + 2αMd.

So by Dynkin’s formula formula

EG∗(xt) ≤ exp(−1

2
c1t)EG∗(x0) + 4αMd/c1.

Next we investigate moment generating functions

Vλ(x) = exp(bGλ(x)), V ∗(x) = exp(bG∗(x))

Then for a ≥ 0, we have that

LV ∗(xt) ≤ LVλt(xt)
= b〈∇Gλt , gλt〉Vλt(xt) + αb(b‖∇Gλt‖2 + ∆Gλt)Vλt(xt)

≤ (−c1bGλt + αb2c22Gλt + c1
2 bGλt + 2αbMd)Vλt(xt)

When
b ≤ c1

4αc22
,

we have a further upper bound

LV ∗(xt) ≤ (−c1b
4
Gλt(xt) + 2αbMd)Vλt(xt)

= (−c1b
4
G∗(xt) + 2αbMd)V ∗(xt).

To continue, we note that if G∗(xt) ≥ 16αMd/c1, then

LV ∗(xt) ≤ −αbMdV ∗(xt).

If G∗(xt) ≤ 16αMd/c1, then

LV ∗(xt) ≤ −αbMdV ∗(xt) + 3αbMdV ∗(xt) ≤ −αbMdV ∗(xt) + 3α2bMd exp(16αbMd/c1).

Therefore, in both cases, we have that

LV ∗(xt) ≤ −αbMdV ∗(xt) + 3αbMd exp(16αbMd/c1).

So by Dynkin’s formula, we find that

EV ∗(xt) ≤ exp(−αbMdt)EV ∗(x0) + 3 exp(16αbMd/c1).
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B Additional Experiment Details

We provide additional experiment settings and details in this section.

B.1 Algorithm Configuration

We use Adam [14] optimizer for MOO-SVGD in all the experiments. The learning rate is set
differently for each task. An important aspect of MOO-SVGD is the choice of kernel. In standard
SVGD, the authors use the RBF kernel, which measures the similarity between the particle xi and
xj and penalize the pairs with small distances. However, in MOO, we want the objective vectors of
the particles, F (xi), to be diverse. A large distance between xi and xj does not necessarily imply
a large distance between F (xi) and F (xj). Therefore, we apply the RBF kernel on the function

values, yielding k(xi, xj) = exp
(
− ||F (xi)−F (xj)||2

h2

)
, where h is a hyperparamter called bandwidth.

We use the median trick as in [20] and set h = c×med, where med is the median of the pairwise
distances of {F (xi)} and c is a small constant chosen from {10−2, 10−3, . . . , 10−8}. For each task,
c is chosen to maximize the resulting HV indicator.

For our experiment, we adopt the setting in [23]. The experiment is performed on the Adult Income
dataset, which contains 30,162 training samples and 15,060 test samples. It is a binary classification
problem, whose prediction target is whether the income of a person is higher than 50,000 dollars per
year. Following [23], we randomly sample a subset of 5,000 data points from the training set as our
training set. Each data point has a 86-dimensional feature.

B.2 ZDT Problems

ZDT problems are 30-dimensional optimization problems. Assume the variable is x =
(x1, x2, . . . , x30). All of problems are constructed in the following way,

min f1(x),

min f2(x) = g(x) · h(f1(x), g(x)),

s.t. 0 ≤ xi ≤ 1, i ∈ {1, 2, . . . , 30}.
(13)

f1(x), g(x) and h(f1(x), g(x)) are different for different problems. The Pareto front of ZDT problems
can be analytically solved. To deal with the constraint, we perform projected gradient descent, which
means that we clip value of the variable back to [0, 1]30 after each gradient descent step.

ZDT1 ZDT1 problem is defined by the following functions,

f1(x) = x1, g(x) = 1 +
9

29

30∑
i=2

xi, h(f1, g) = 1−
√
f1/g. (14)

The Pareto optimal solutions can be characterised by,

0 ≤ x∗1 ≤ 1 and x∗i = 0 for i ∈ {2, . . . , 30}. (15)

ZDT2 ZDT2 problem is defined by the following functions,

f1(x) = x1, g(x) = 1 +
9

29

30∑
i=2

xi, h(f1, g) = 1− (f1/g)2. (16)

The Pareto optimal solutions can be characterised by,

0 ≤ x∗1 ≤ 1 and x∗i = 0 for i ∈ {2, . . . , 30}. (17)

ZDT3 ZDT3 problem is defined by the following functions,

f1(x) = x1, g(x) = 1 +
9

29

30∑
i=2

xi, h(f1, g) = 1−
√
f1/g − (f1/g)sin(10πf1). (18)

The Pareto optimal solutions can be characterised by,

S = [0, 0.0830] ∪ [0.1822, 0.2577] ∪ [0.4093, 0.4538] ∪ [0.6183, 0.6525] ∪ [0.8233, 0.8518]

and x∗i = 0 for i ∈ {2, . . . , 30}. (19)
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Hyper-parameter Configuration for MOO-SVGD For ZDT1 and ZDT2, we use a learning rate
of 5e− 4, and optimize the particles for 10,000 steps. The bandwidth constant c = 1e− 6 and α = 1.
For ZDT3, we use a learning rate of 5e− 5, and optimize the particles for 10,000 steps.

Hyper-parameter Configuration for MOO-LD For all three ZDT problems, we use a step size of
0.1, and a temperature α = 0.01. We sample 200,000 solutions and remove the dominated solutions
from the solution set. The noise is zero in the first 20,000 steps to accelerate the process of reaching
the Pareto front.

B.3 MaF1 Problem

Assume x = (x1, x2, . . . , xd) is a d-dimensional vector. The objectives for MaF1 are as follows,

f1(x) = (1− x1x2) (1 + g(x)) , f2(x) = (1− x1 (1− x2) (1 + g(x)) , f3(x) = x1 (1 + g(x)) ,

where g(x) =

d∑
3

(xi − 0.5)2, and 0 ≤ xi ≤ 1, i ∈ {1, 2, . . . , d}.

(20)
In our experiments, we set d = 10. We perform projected gradient descent during optimization.

Hyper-parameter Configuration for MOO-SVGD We use a learning rate of 5e−3, and optimize
the particles for 10,000 steps. The bandwidth constant c = 1e− 2 and α = 0.5. We use 100 particles.
We remove the dominated particles from the obtained solution set after convergence.

Hyper-parameter Configuration for MOO-LD We use a step size of 1e− 3, and a temperature
α = 0.05. We sample 200,000 solutions and remove the dominated solutions from the solution set.
The noise is zero in the first 400 steps to accelerate the process of reaching the Pareto front.

The reference point for computing hypervolume indicator is [1.0, 1.0, 2.0].

B.4 Trade-off Between Accuracy and Fairness

In Adult Income dataset 2, each data point in the dataset has 14 features, including categorical features
and numerical features. We expand all the categorical features into one-hot vectors, and normalize
the numerical features to [−1, 1], resulting in 86-dimensional features.

Hyper-parameter Configuration for MOO-SVGD We initialize our optimizer with a learning
rate of 0.1, and optimize the particles for 5,000 steps. We decrease the learning rate to 5e− 2, 1e−
2, 5e− 3 at the 500-th, 2000-th, and 3000-th step, respectively. The bandwidth constant c = 1e− 11
and α = 1. We use 10 particles.

C Additional Experiment Results

We provide additional experiment results and visualization in this section.

C.1 ZDT Problems in 300 seconds

We provide the results of ZDT problems in 300 seconds, an extended time limitation. Moreover, we
add Bayesian-optimization algorithms for comparison, including DGEMO [25], USEMO-EI [1] and
MOEA/D-EGO [39]. See Fig. 7. Note that direct comparison between white-box and bloack-box
methods is unfair. The comparison here can just show gradient-based methods are more efficient
when the functions are known, but generally white-box and black-box algorithms have different
application scenarios.

C.2 Training Dynamics

We provide the training dynamics of ZDT problems of PF-SMG, MOO-LD and MOO-SVGD for
better understanding of the algorithms. See Fig. 12, Fig. 13 and Fig. 14.

2https://archive.ics.uci.edu/ml/datasets/adult
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Figure 7: Runtime Comparison on ZDT Problems in 300 seconds

C.3 Final results with different hyperparameters

We showcase the influence of different bandwidth and temperature by visualizing the final solution
set of MOO-SVGD. See Fig. 8 and Fig. 9.

D Discussion on Hypervolume Indicator & Its Optimization

Obviously, the HV indicator (Eq. (10)) can also be used as an objective function for optimizing
solution sets. For example, [25, 7] greedily add new points to obtain the highest expected HV
improvement. However, the landscape of the HV indicator is piece-wise constant (similar to the
0-1 loss in classification) and is difficult to optimize with gradient descent. Particularly, for all
the dominated points in the solution set, their gradient is zero. Only the non-dominated points get
non-zero gradients. Consequently, most of the particles will not be updated, and the solution set
cannot cover the Pareto front. See Fig. 10.

(a) 1e-2 (b) 1e-4

(c) 1e-6 (d) 1e-8

Figure 8: Solution Set of MOO-SVGD with Dif-
ferent Bandwidth

(a) 1e-2 (b) 1e-1

(c) 1 (d) 1e1

Figure 9: Solution Set of MOO-SVGD with Dif-
ferent temperature

(a) ZDT1 (b) ZDT2 (c) ZDT3

Figure 10: Direct Optimization with Hypervolume

E Discussion on Hypervolume Indicator Gradient Ascent (HIGA)

HIGA [36] is also a gradient-based algorithm for find the whole Pareto front. To assign gradients to
the dominated points (and hence enables gradient-based optimization), each particle in their algorithm
simply ignores the other particles that dominate it. We implement HIGA by ourselves, and find that it
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has a number of drawbacks compared with our method empirically: (1) the result of HIGA depends
on the choice of the reference point (See Fig. 11(b) ), which need to be specified by the user based
on an estimation of function range beforehand; in particular, if a particle excesses the range of the
reference point, it would receive no gradient (See the two points at the top of Fig. 11(a) Iteration
1000). (2) We found that in HIGA, the particles can overlap on the Pareto front (See Fig. 11(a)). In
comparison, in this case MOO-SVGD will move the particles apart with the repulsive force. HIGA is
converged in all the experiments.

(b) Results of HIGA on ZDT3 with two different reference points
(Left: [1.2, 6.0], Right: [1.5, 8.0]).(a) Results of HIGA on ZDT2 in different iterations (reference point: [1.2, 6.0])

Iteration 0 (Initialization) Iteration 100 Iteration 200 Iteration 1000

Figure 11: Experiment Results of HIGA on ZDT. Please zoom in to see the details.

(a) ZDT1

(b) ZDT2

(c) ZDT3

Figure 12: Optimization dynamics of MOO-SVGD

(a) ZDT1

(b) ZDT2

(c) ZDT3

Figure 13: Optimization dynamics of MOO-LD
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(a) ZDT1

(b) ZDT2

(c) ZDT3

Figure 14: Optimization dynamics of PF-SMG

F Discussion on Pareto hypernet methods

(a) ZDT1 with network A (b) ZDT2 with network A (c) ZDT3 with network A (d) ZDT3 with network B

𝑓 ! 𝑓 ! 𝑓 ! 𝑓 !
𝑓" 𝑓" 𝑓" 𝑓"

Figure 15: COSMOS on ZDT Problems. Network A is a two-layer ReLU network with 150 hddien neurons.
Network B is a three-layer ReLU network with 60 neurons in each hidden layer.

We provide more discussion on Pareto hypernet methods and provide additional results of COSMOS
with different network structures (including the original results on ZDT problems) in Fig. 15. From
the ZDT experiments in the main text we find that:

(1) These methods still need to assign preference vectors manually (even though it is not needed
theoretically if the network could be trained to be perfect), and a uniform assignment may not cause
a uniform Pareto front, as we show in ZDT1 (Fig. 15 (a)) and ZDT2 (Fig. 15 (b)). In comparison,
MOO-SVGD can generate an uniform Pareto front as we show in the paper.

(2) The methods based on hypernets may be limited by the optimization of the function approximator.
In ZDT3 (Fig. 15 (c)), several points are not on the real Pareto front. In contrast, we show both
theoretically and empirically that MOO-SVGD converges to the Pareto front.

We also find that: (3) Choosing appropriate hypernet structure can be tricky. In Fig. 15 (c) and Fig. 15
(d), we use a two-layer neural network and a three-layer neural network with similar number of
parameters (4,800 vs. 5,520). We train both networks to convergence and find that they yield very
different results. Note that MOO-SVGD only maintains 1,500 parameters to store the solutions in
this setting.

G What causes the sub-optimal empirical performance of MOO-LD?

We assume there are two reasons for its empirically worse performance: (1) it requires longer burn-in
time to effectively draw sample, and (2) the objectives in the experiments are non-convex. We run
additional experiments to validate our conjectures. Results are shown in Fig. 16.
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MOO-LD

(a) MOO-LD with different 
number of samples on ZDT 1

MOO-SVGD
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MOO-LD
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𝑓"

MOO-SVGD
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(b) 30-dimensional convex problem (c) 100-dimensional convex problem

Figure 16: Additional Experiments with MOO-LD

For (1), we run MOO-LD for 5 million iterations on ZDT1. We observe that the algorithm is slowly
making progress with more iterations. See Fig. 16(a).

For (2), in the main text, we show that MOO-LD works on par with MOO-SVGD on a 1d toy example
with convex objectives f1(x) = x2 and f2(x) = (1− x)2. We generalize the problem to dimensions,
with f1(x) = 1

d

∑d
i=1 x

2
i and f2(x) = 1

d

∑d
i=1(1 − xi)2. The results are shown in Fig. 16(b) and

Fig. 16(c). We observe that MOO-LD still provide comparable Pareto front as MOO-SVGD even on
100-dimensional MOO problem. This verifies our theory which claims that MOO-LD converges to
the true Pareto front for convex objectives, and also suggests the potential of MOO-LD. We leave the
improvement of MOO-LD to high-dimensional non-convex problems to future works.

23


