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Abstract

Knowledge models endeavor to improve repre-
sentation and feature extraction capabilities while
keeping low computational cost. Firstly, existing
embedding models in hypercomplex spaces of
non-Abelian group are optimized. Then a method
for fast quaternion multiplication is proposed
with proof, with which path semantics are com-
puted and further integrated with the attention
mechanism based on the idea semantic extrac-
tion of relation sequences could be regarded as
a multiple rotational blending problem. A depth-
wise atrous circular convolution framework is
set up for better feature extraction. Experiments
including Link Prediction and Path Query are
conducted on benchmark datasets verifying our
model holds advantages over state-of-the-art mod-
els like Rotate3D. Moreover, the model is tested
on a biomedical dataset simulating real-world ap-
plications. An ablation study is also performed to
explore the effectiveness of different components.

1 INTRODUCTION

Knowledge Graph (KG) is composed of structured fact
triples. Entities in the triples are represented as nodes in
the graph and the relations between head and tail entities
are represented as edges connecting the nodes. KGs are
widely applied in areas such as question answering [Hao
et al., 2017] and personalized recommendation [Guo et al.,
2020]. However, existing KGs are incomplete and contain
noise. One of the ideas is to embed entities / relations into
low-dimensional vector spaces and apply KG completion
techniques to predict missing facts. For example, in RotatE
[Sun et al., 2019] relations are mapped as rotations and the
distances between the head vectors after rotations and the
tail vectors are utilized to determine whether triple facts

are true. However, different KGs contain various propor-
tions of multiple relation modes including Symmetry, Anti-
symmetry, Inversion and Composition. Different models
are capable of learning representations for different modes
and so far there is no perfect embedding solution.

Most of existing embedding models learn representations
in the two smallest domains of Divisor Algebra, R and C.
With Quaternion algebra H and Octonion algebra O mod-
els could develop higher expressivity with less parameters;
what’s more, the characteristic of non-commutative law in
non-Abelian groups helps to model the compositional rela-
tion mode. Three-dimensional (3D) and four-dimensional
(4D) spatial embeddings with quaternions are adopted in
Rotate3D [Gao et al., 2020] and QuatE [Zhang et al., 2019]
respectively. Subsequent models enhance expressivity by
adding entity / relation-specific quaternions or increasing
embedding dimensions; larger parameter scales as well as
limited feature extraction capabilities leave space for im-
provement.

Semantic information carried by relation paths between en-
tity pairs helps to determine the validity of triples in knowl-
edge inference. Many models employ frameworks includ-
ing Recurrent Neural Network (RNN) [Jozefowicz et al.,
2015], Long Short-Term Memory (LSTM) [Greff et al.,
2016][Zhou et al., 2016] and Gated Recurrent Unit (GRU)
[Lu and Duan, 2017] to merge vector sequences while the
computational efficiency could be further boosted.

ConvE [Dettmers et al., 2018] performs 2-dimensional
(2D) reshaping on concatenation matrices to enhance inter-
actions and extracts deep non-linear features with Convolu-
tional Neural Network (CNN). InteractE [Vashishth et al.,
2020] adopts an optimized reshaping strategy as well as
the circular convolution. In order to capture rich features
of complex relations, inspired by neurons with different
sizes of receptive fields, Atrous Convolution [Chen et al.,
2017] expands the fields for larger interaction spaces while
maintaining parameter scales. Moreover, introduction of
the attention mechanism to integrate features extracted by

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<chen.xinyuan@s.unikl.edu.my>?Subject=Your UAI 2022 paper


kernels with various sizes helps to stabilize model perfor-
mance. The strategies above are jointly applied in our study.

APAC (A Knowledge Representation Model based on the
Non- Abelian groups, Path Semantics and Depth-wise
Atrous Circular Convolution) is proposed and main work
includes:

1. A hypercomplex embedding model with improved score
function and loss function designs is brought forward based
on state-of-the-art (SOTA) quaternion models, in which
Quaternion algebra, a Hamilton group with the smallest or-
der is employed to learn multiple relational modes between
entities. Embedding is also extended to the octonion space.

2. Based on the idea of multi-hop reasoning in Rotate3D,
a fast multiplicative calculation method for quaternion se-
quences is proposed with proof for rapid feature mergers of
relational paths which are then integrated with the attention
mechanism.

3. A depth-wise atrous circular convolution framework is
set up to enhance the feature extraction capability.

4. Experiments including Link Prediction and Path Query
are carried out on benchmark and industry datasets to verify
model effectiveness. Ablation study is further performed
(see supplementary materials).

2 RELATED WORK

Embedding models could be roughly divided into
translation/rotation-based distance models and similarity-
based semantic models.

TransE [Bordes et al., 2013], a distance model, maps the
relations to translation vectors. TransE holds that if a triple
is valid, the head vector after translation should be close to
the tail, denoted as

h+ r ≈ t, (1)

where h, r, t are the vector representations of the head en-
tity, the relation and the tail entity respectively. L1 / L2
distance between vectors is taken as the score of the triple
and a margin-based loss function is applied. With simple
structure TransE achieves brilliant performance; however,
it lacks the ability to learn symmetric relational representa-
tions. Most subsequent models improve by adding dimen-
sions or expanding mapping spaces [Wang et al., 2014][Lin
et al., 2015] followed by initiatives employing sparse ma-
trix decomposition [Ji et al., 2016] to reduce the number
of parameters. RotatE models relations as 2D rotations
from head to tail entities in complex spaces with Hadamard
product and normalized constraints. The calculation com-
plies with the commutative law. Therefore, RotatE may not
perform well on non-commutative relational modes (e.g.,
Adam’s father’s wife is not Adam’s wife’s father).

RESCAL [Nickel et al., 2015], an early semantic model,

calculates the factorization of third-order adjacency ten-
sors as triple scores. RESCAL holds strong expressivity but
high complexity makes it difficult to train. DistMult [Yang
et al., 2014] represents the relations as diagonal matrices
to simplify calculations, capable of learning the symmet-
ric and inverse modes. ComplEx [Trouillon et al., 2016]
further extends the embedding to complex spaces to en-
hance the learning ability for anti-symmetric patterns. Her-
mitian product is used to calculate triple scores and reduce
the number of parameters; however, it is still difficult for
ComplEx to learn the non-commutative pattern. Lacroix
et al. [2018] upgrade ComplEx with L3 regularization and
a multi-class log loss.

Since hypercomplex spaces of non-Abelian groups hold
strong expressivity and quaternion / octonion calculations
are rather efficient, some models expand mapping spaces
with them in recent years. Hyperbolic spaces are also taken
into consideration [Chami et al., 2020].

QuatE represents relations as rotations in 4D spaces with
quaternions to provide more degrees of freedom while
avoiding Gimbal Lock. QuatE first calculates the Hamil-
ton product between the head quaternion Qh and the unit
relation quaternion Ŵr , and then calculates the inner prod-
uct of the result with the tail quaternion Qt so as to ob-
tain the triple score. Compared with real/complex space
models, QuatE could also learn symmetric (set the coef-
ficients of imaginary parts to 0), anti-symmetric (conju-
gate quaternion), and inverse (coefficients set to -1) rela-
tion modes while enjoying larger spaces, less parameters
and lower computational cost. On such basis, QuatDE [Gao
et al., 2021], QuatRE [Nguyen et al., 2020] and DualE [Cao
et al., 2021] further enhance the expressivity by increasing
dimensions or adding quaternions, though limiting model
scalability.

Most models above ignore rich semantic information con-
tained in relation paths [Wang et al., 2016]. Lao et al.
[2011] generate paths with the Random Walk algorithm
and verify path values in knowledge inference. However,
early studies take paths as atomic features, leading to huge
feature matrices [Shang et al., 2019]. Neelakantan et al.
[2015] and Das et al. [2016] decompose the paths into rela-
tion sequences and input them into RNN, reducing com-
putational cost with parameter sharing. Nonetheless, the
possibility that multiple paths to different extents associate
with the candidate relations is ignored [Xie et al., 2017]. To
solve this, Jiang et al. [2017] introduces the attention mech-
anism. Rotate3D models path-based multi-hop reasoning
as multiple rotations and in our study a calculation method
for fast rotation blending and integration is proposed.

Another vital indicator of knowledge representation mod-
els is feature extraction capability besides expressivity and
computational overhead. Parameters in CNN are much less
than those in fully connected neural networks and are



widely employed in Natural Language Processing in re-
cent years. Compared with distance models, 2D convo-
lution in ConvE is able to enhance interactions between
entities/relations and extract richer features for embed-
ding learning [Balažević et al., 2019a]. However local
features are partly lost since ConvE leaves out transla-
tional/rotational attributes. Vashishth et al. [2020] believe
that both the distance and semantic models could only cap-
ture shallow features, so they propose Checkered Reshap-
ing and Circular Convolution to improve interactions. On
this basis, Wang et al. [2021] suggest the multi-size atrous
convolution combined with the attention mechanism could
bring similar effects.

Therefore, in our model hypercomplex embedding is em-
ployed with optimization. Path semantics are extracted and
integrated by fast rotational blending calculation and the at-
tention mechanism. Also a depth-wise atrous circular con-
volution is defined to facilitate feature extraction.

3 APAC FRAMEWORK

As is shown in Figure 1. , APAC learns entity / rela-
tion embeddings in hypercomplex spaces. A fast relational
path multiplication calculation is designed and the attention
mechanism is introduced to integrate path semantics. The
feature extraction capability is further enhanced with the
depth-wise atrous circular convolution.

3.1 HYPERCOMPLEX EMBEDDING

Relation representations as rotations of 3D vectors in 3D
subspaces of 4D spaces with quaternion embedding could
effectively model multiple relational modes. QuatE’s in-
ner product score function is mostly used to solve logistic
regression problems while distance-based score functions
with L1 / L2 norm and margin-based normalized loss func-
tions perform better with noise. Therefore, the Hamilton
product between the head Qh and the relation r is firstly
calculated, and then the distance between the result and the
tail Qt is computed. The score function for quaternions is
denoted as

ϕ(h, r, t) = ∥h⊗ r − t∥. (2)

Accordingly, the loss function is defined as

L = − log σ(γ − ϕ(h, r, t))−∑m
i=1 p

(
h′
i, r, t

′
i

)
log σ

(
ϕ
(
h′
i, r, t

′
i

)
− γ

)
+ λ1∥Q∥22+

λ2∥R∥22
,

(3)
consulting the self-adversarial negative sampling in Ro-
tatE, where σ is the Sigmoid function, γ is the margin
with a slack coefficient [Nayyeri et al., 2020],

(
h′
i, r, t

′
i

)
refers to the ith invalid triple, m is the total number of
invalid triples, λ1,λ2 are the coefficients for L2 norm en-

Figure 1: Framework of APAC.



tity/relation constraints, p
(
h′
i, r, t

′
i

)
=

exp βf(h′
i,t

′
i)∑m

i=1 exp βf(h′
i,t

′
i)

calculates the probability distribution of negative sam-
pling, β is the sampling temperature, and f

(
h′
i, t

′
i

)
=

−ϕ
(
h′
i, t

′
i

)
.

Similarly, the score function and loss function for octonions
is defined similarly.

Since overall constraints are already imposed on Q and
R, the unit constraint on the relational quaternions seems
unnecessary, compressing the entity rotation spaces and
weakening expressivity. L1 normalization helps to generate
sparse representations and only retain key features so as to
reduce noise interference, but data could be left out on valu-
able channels. It is found that L2 constraint performs better
in experiments.

3.2 EXTRACTION AND INTEGRATION OF PATH
SEMANTICS

Following the path query solution proposed by Gao et al.
[2020] based on multi-hop reasoning, in our study the
multi-hop reasoning is regarded as continual Hamilton
products of relational sequences taking advantages of the
non-commutative characteristic of quaternions. For such
calculation, a fast path feature extraction and the integra-
tion method is proposed.

Firstly, multiple paths are generated between entities with
Random Walk and encoded as quaternion relation se-
quences. Length of path is defined as the number of rela-
tions in the path. Allow different length but set an upper
threshold. Path feature extraction could be taken as multi-
ple rotational blending. The operation space for rotations is
non-linear and it is not right to directly add the rotational
quaternions together.

Theorem 1: For a quaternion sequence,
q1, q2, . . . qi, . . . , qn, i = 1, 2, . . . , n, the continual
Hamilton product could be calculated as

qresult = e
∑n

i=1 log q′ki = e
∑n

i=1 k log q′i . (4)

Please see Appendix A for Proof and Illustration. Path
score is denoted as

Ψi(h, t) = ∥h⊗ r1 ⊗ r2 ⊗ . . .⊗ rn − t∥p , p = 1, 2.
(5)

In order to reduce noise and extract key features, the atten-
tion mechanism is introduced to integrate path representa-
tions. denoted as

Ψ′
i(h, t) =

exp (ϕi(h, t))∑
s exp (ϕi(h, t))

, (6)

in which s is the path set. The Softmax function is em-
ployed to normalize path scores. Structured representation

Figure 2: Stacked (left), Alternate (middle) and Checkered
Reshaping (right).

Figure 3: Ordinary Convolution (left) and Circular Convo-
lution (right).

from path semantics of the tail entity is

W t =
∑
s

ψ′
i(h, t) ◦ h. (7)

3.3 DEPTH-WISE ATROUS CIRCULAR
CONVOLUTION

In this part the checkered reshaping and the depth-wise
atrous circular convolution are combined to improve the
model’s capability in feature extraction.

The reshaping function is defined as π : Hk × Hk →
Hm×n, where m × n = 2k. The comparison of stacked,
alternate and checkered reshaping is shown in Figure 2.
. Vashishth et al. [2020] argue that entity/relation inter-
actions could be divided into two types, heterogeneous
and homogeneous, denoted as Nhet (π, k) and Nhomo (π, k),

Nhet (π, k)+Nhomo (π, k) = 2

(
k2

2

)
, Nhet (Ωc(π), k) is

with greater value in exploring entity/relation association.
They prove that the proportion of Nhet(π, k) is the highest
with the checkered reshaping. Therefore, such strategy is
applied.

Comparison between the ordinary convolution and the cir-
cular convolution is shown in Figure 3. . Vashishth et al.
[2020] believe Nhet (Ωc(π), k) ≥ Nhet (Ω0(π), k) where
Ωc is the circular convolution and Ω0 is the ordinary convo-
lution. The former is employed in our study, defined as

[I ⋆ ω]u,t =

⌊p/2⌋∑
i=−⌊p/2⌋

⌊p/2⌋∑
j=−⌊p/2⌋

I [u−i]m,[t−j]nωi,j , (8)

where I ∈ Hm×n,ω ∈ Hp×p and ⌊·⌋ is the floor func-
tion. The depth-wise convolution extracts feature informa-
tion channel by channel before mergers.



Figure 4: Convolution Kernels with Different Void Rates.

Wang et al. [2021] suggest that while single-size kernels
benefit from parameter sharing and low computing over-
head, their receptive fields are limited. On the contrary, the
multi-size circular convolution with the attention mecha-
nism could better extract critical features, so in this study
the atrous convolution is employed. with the equivalent ker-
nel size defined as

p′ = p+ (p− 1)(α− 1), (9)

where p is the size of a standard kernel, and α is the void
rate. Holes are filled with 0, so the receptive field is en-
larged with same number of parameters and same compu-
tational cost. Convolution kernels with different void rates
are shown in Figure 4. . Given the number of kernels of
each size C and feature matrix is π (Pk), features extracted
by the jth (j = 1, 2, , C) kernel of the ith (i = 1, 2, 3) size
are denoted as

V = f
(
π (Pk) conv(ω

j
i ) + bi

)
, (10)

where bi is the bias and V 1,V 2,V 3 ∈ RC×2m×n.

In order to reduce noise and highlight key features, the
attention module is introduced to adaptively adjust the
weights of features from various kernels. With convolution
the score function is modified, denoted as

ϕ(h, r, t) = ∥ conv(h, r) ◦ (h⊗ r)−
conv(r, t) ◦ t∥ . (11)

where ◦ denotes the Hadamard product and ⊗ denotes the
Hamilton product. The loss gradient of entity/relation em-
beddings could propagate bi-directionally through the con-
volution or hypercomplex multiplications.

4 EXPERIMENTS

4.1 LINK PREDICTION

Given an entity and a relation, the missing entity is pre-
dicted. The higher the ranking of correct triples in the can-
didate set are, the stronger the prediction capability of the
model is. Mean Reciprocal Rank (MRR) and the propor-
tion of correct entities / triples in the top N candidates
(Hits@N ,N = 1, 3, 10) are selected as metrics. The higher
the score, the better. Bernoulli method [Wang et al., 2014]
is adopted to randomly replace entities to create invalid

Table 1: Dataset Statistics for Link Prediction.

Dataset Entity Relation Degree Train Set Val. Set Test Set

WN18RR 40943 11 2.2ś3.6 86,835 3034 3134
FB15k-237 14541 237 19.7ś30 272,115 17535 20466
YAGO3-10 123182 37 9.6ś8.7 1,079,040 5000 5000

triples. Filtered strategy is employed [Bordes et al., 2013].
Head and tail predictions are regarded as one task and the
scores are combined.

Experiments are conducted on three benchmark datasets:
WN18RR [Dettmers et al., 2018], FB15k-237 [Toutanova
and Chen, 2015] and YAGO3-10 [Mahdisoltani et al.,
2014]. WN18RR and FB15k-237 remove inverse relations
to fix the high-score flaw. The relations in the YAGO3-
10 dataset are mostly descriptive attributes about human.
Some relations are with hierarchical structure, such as hy-
pernym (WN18RR), part-of (FB15k-237) and playsFor
(YAGO3-10). Dataset statistics are shown in Table 1, in
which the degrees reflect the relational complexity of the
datasets [Dettmers et al., 2018].

The following models are used as baselines: 1. TransE:
Results from Ruffinelli et al. [2019]. 2. RotatE: Results
from Sun et al. [2019]. 3. Rotate3D: Results from Gao
et al. [2020]. 4. DistMult, ComplEx and ConvE: Re-
sults from Dettmers et al. [2018]. 5. ComplEx-N3: Re-
sults from Lacroix et al. [2018]. 6. QuatE: Results from
Zhang et al. [2019]. We also make our own implementa-
tion and run on YAGO3-10, etc. (Codes are released on
https://gitee.com/tkgc/APAC.) 7. ROTE/ATTE: embedding
models in hyperbolic spaces, ATTE combining rotation
and reflection while ROTE only containing rotation. Re-
sults from Chami et al. [2020]. 8. TuckER: a SOTA se-
mantic model with TuckER Decomposition. Results from
Balažević et al. [2019b]. 9. CoKE: A SOTA path model
employing Transformer to encode semantics. Results from
Wang et al. [2019].

The Training details are in Appendix B. Results are shown
in Table 2 taking a 5-time average. Results in bold indi-
cate the best performance while those in italics are the sec-
ond. APACq and APACo denote quaternion and octonion
embedding respectively. It is obvious that the overall per-
formance of APAC is better than mainstream models and
APACq is significantly better than APACo at many indica-
tors.

On WN18RR, the simplest dataset, Rotate3D and QuatE
achieve best results while APACq secures the highest
MRR and good Hits@1 Score. On the complex dataset
FB15k-237, the advantages of APACq are more clear with
highest MRR and Hits@1, 3. the Hits@1 score is 3.3%
higher than that of QuatE while the Hits@10 score is catch-
ing up. On Yago3-10, the largest dataset, there is no com-
parison with Rotate3D (no available code), but APACq



Table 2: Link Prediction Results.

Model WN18RR FB15k-237 YAGO3-10
MRR Hits@1 3 10 MRR Hits@1 3 10 MRR Hits@1 3 10

TransE 0.228 - - 0.520 0.313 - - 0.497 - - - -
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.495 0.402 0.550 0.670

Rotate3D 0.489 0.442 0.505 0.579 0.347 0.250 0.385 0.543 - - - -
DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419 0.340 0.240 0.380 0.540
ComplEx 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428 0.360 0.260 0.400 0.550

ComplEx-N3 0.470 - - 0.540 0.350 - - 0.540 0.490 - - 0.680
QuatE 0.482 0.436 0.499 0.572 0.366 0.271 0.401 0.556 0.502 0.428 0.543 0.674
ROTE 0.463 0.426 0.477 0.529 0.307 0.220 0.337 0.482 0.381 0.295 0.417 0.548
ATTE 0.456 0.419 0.471 0.526 0.311 0.223 0.339 0.488 0.374 0.290 0.410 0.537

TuckER 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
CoKE 0.484 0.450 0.496 0.553 0.364 0.272 0.400 0.549 - - - -
ConvE 0.460 0.390 0.430 0.480 0.316 0.239 0.350 0.491 0.520 0.450 0.560 0.660
APACq 0.501 0.447 0.487 0.535 0.378 0.280 0.407 0.548 0.518 0.461 0.558 0.696
APACo 0.479 0.435 0.488 0.539 0.353 0.269 0.384 0.511 0.527 0.422 0.546 0.620

achieves highest or close to highest scores at all metrics,
Hits@1 score 7.7% higher than that of QuatE and Hits@10
score higher than that of QuatE. APACo performs well at
MRR and Hits@3. Comparison with Rotate3D and QuatE
demonstrates that APAC holds strong learning ability for
complex relational patterns which may come from the in-
tegration of path semantics or the depth-wise atrous cir-
cular convolution combined with the attention mechanism.
Compared with TransE, DistMult, ComplEx, ROTE, ATTE
and TuckER, APACq and APACo perform better indicat-
ing the effectiveness of hypercomplex embedding. APACq

also holds certain advantages over CoKE, the SOTA con-
text semantics model, verifying the forces of hypercomplex
embedding and feature extraction methods. ConvE does not
perform great due to the simple reshaping strategy. Follow-
up experiments focus on APACq.

4.2 PATH QUERY

To verify model capabilities for modeling the composition
pattern path query (multi-hop reasoning) is carried out fol-
lowing Rotate3D. Given the starting entity h and the path
p, entities that h can reach via p are predicted and ranked.
Two datasets provided by Guu et al. [2015] are employed,
coming from WordNet and Freebase respectively. Dataset
statistics are shown in Table 3. The same settings includ-
ing the negative sampling and filtering strategy by Gao
et al. [2020] are adopted. The average quantile (MQ) and
Hits@10 are used as metrics. The higher the score, the bet-
ter. Two training strategies are employed: only triples (de-
noted as Single) and all paths (Comp).

Best performance is achieved when the embedding dimen-
sion d = 500, batch size 512, learning rate lr = 0.0005,
margin γ = 8 and other parameters same as on YAGO3-
10.

Compare APAC with Bilinear [Guu et al., 2015], TransE,
CoKE, RotatE and Rotate3D under the Single strategy,
with ROP [Yin et al., 2018], using RNN to model paths),
CoKE, RotatE and Rotate3D under the Comp strategy. Rel-
evant results are from Gao et al. [2020] and the results are
shown in Table 4, Table 5. It can be seen that except for
the MQ score on WordNet, APACq-Single wins on all met-
rics in its group. APACq-Comp also achieves the highest or
second highest scores for each indicator, and scores higher
than APACq-Single, which is another proof APACq pos-
sesses the learning ability for the composition pattern and
the ability to integrate path semantics. CoKE relies heavily
on contexts, so it’s a draw for CoKE and APACq-Comp un-
der the Comp strategy. However, APACq-Comp performs
much better under the Single strategy.

4.3 APPLICATION ON INDUSTRY DATASET

Domain-specific KGs are helpful for promoting knowledge
application and the industry development. Apply our model
to a biomedical dataset ogbl-biokg 1 containing 5 entity
types including diseases, drugs, side effects, proteins and
their functions as well as 51 relation types. The statistics is
shown in Table 6. ogbl-biokg is collected from diversified
sources with complex relation modes and broad confidence
differences for facts, challenging models for extracting rela-
tion features and modeling knowledge uncertainty (another
future plan). Random divisions of the train/val./test sets are
made with proportions 94%, 3% and 3% respectively. Since
the entity relations are rather dense and simply replacing
the head or tail entity probably brings false negatives, re-
place the head and the tail entities at the same time to gen-
erate invalid samples with the ratio set to 1:1.

Best performance is achieved when the embedding dimen-

1https://ogb.stanford.edu/docs/linkprop/#ogbl-biokg



Table 3: Dataset Statistics for Path Query.

Dataset Entity Relation Train Set Val. Set Test Set Train Paths Val. Paths Test Paths

WordNet 38551 11 110,361 2602 10462 2129539 11277 56477
Freebase 75043 13 316,232 5908 23733 6266058 27163 109557

Table 4: Path Query Results (Triple Training).

Model WordNet Freebase
MQ Hits@10 MQ Hits@10

Bilinear-Single 0.847 0.436 0.580 0.259
TransE-Single 0.837 0.138 0.862 0.454
CoKE-Single 0.731 0.157 0.730 0.367
RotatE-Single 0.937 0.479 0.833 0.453

Rotate3D-Single 0.941 0.494 0.894 0.547
APACq-Single 0.932 0.502 0.904 0.583

Table 5: Path Query Results (Path Training).

Model WordNet Freebase
MQ Hits@10 MQ Hits@10

ROP-Comp - - 0.907 0.567
CoKE-Comp 0.942 0.674 0.948 0.764
RotatE-Comp 0.947 0.653 0.901 0.601

Rotate3D-Comp 0.949 0.671 0.905 0.621
APACq-Comp 0.960 0.719 0.933 0.723

sion d = 500, 1000, batch size 512 and the learning rate
lr = 0.0001, other parameters same as on YAGO3-10.

Compare APACq with TransE, DistMult, RotatE, QuatE,
PairRE [Chao et al., 2020] and AutoSF+ [Zhang et al.,
2021b]. The latter two are specially designed for modeling
complex relations. PariRE introduces relationship-specific
pair vectors for representation while in AutoSF+ an adap-
tive score function is proposed, pruning the search spaces
with filters and predictors and replacing the greedy algo-
rithm in AutoSF [Zhang et al., 2020]with Evolutionary
Search.

Results are shown in Table 7. APACq performs best with
slight differences between dimensions 500 and 1000, show-
ing strong feature extraction capability under low dimen-
sions. Translation / rotation models that only extract shal-
low features do not perform great and increasing dimen-
sions does not bring obvious improvement. A similar sit-
uation occurs with QuatE. Compared with the semantic
models, APACq holds obvious advantages. Compared with
PariRE and AutoSF+, APACq upgrades performance with-
out adding embedding or expanding the search spaces,
which verifies the effectiveness of path semantic integra-
tion and our convolution framework.

It is worth noting that although additional path calculation
and convolution operations are introduced, with the phased
parallel training strategy, it only takes 1.5 hours for APACq

to surpass QuatE’s best performance under dimension 500,
which is only about 1/5 of the training time for the latter,
indicating that our model improves feature extraction capa-
bility while boosting computing efficiency.

5 CONCLUSION

Compared with embedding models in real / complex
spaces, a knowledge representation model with stronger ex-
pressivity and feature extraction capabilities is proposed
with hypercomplex embedding, path semantic integration
combining fast quaternion rotation blending and the atten-
tion mechanism, and the depth-wise atrous circular convo-
lution. Low computational cost of quaternion multiplica-
tion, parameter sharing in CNN and phased parallel train-
ing strategy ensure rapid taking effect of the model on
large datasets. Future work includes further improving on
learning complex composition modes, applying Kronecker
product to expand embedding spaces with high efficiency
[Zhang et al., 2021a] and modeling knowledge uncertainty
/ time validity, etc.

A PROOF AND ILLUSTRATION OF
THEOREM 1

Proof. For q1 ⊗ q2 q2 ⊗ q1, bisect the angles respectively,

q′
1 = q

1
2
1 , q

′
2 = q

1
2
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1
2
1 ∗ q

1
2
2 ∗ q

1
2
1 ∗ q

1
2
2 and

q
1
2
2 ∗ q

1
2
1 ∗ q

1
2
2 ∗ q

1
2
1 . Parts of the two calculations are the

same. Further k-sect q1, q2. The greater the value of k is,
the higher the proportion of same calculations is. When
k → ∞, the middle parts of the two calculations converge
while the head and tail parts tend to be close to unit quater-
nions with weakening influence, leading to stable results.
According to Alexa [2002], the limit exists, so we have

lim
k→∞

(
q

1
k
1 ∗ q

1
k
2

)k

= lim
k→∞

(
q

1
k
2 ∗ q

1
k
1

)k

. (12)

For the Trotter product formula

eA+B = lim
N→∞

(
e

A
N ∗ eB

N

)N

, (13)



Table 6: Dataset Statistics for ogbl-biokg.

Dataset Diseases Drugs Side Effects Proteins Functions Total Entities Train Set Val. Set Test Set

ogbl-biokg 10687 10533 9969 17499 45085 93773 4.76M 162k 162k
11.40% 11.23% 10.63% 18.66% 48.08% 100% 94% 3% 3%

Table 7: Dimensions and MRR on ogbl-biokg.

Model Dimension MRR

TransE 2000 0.7452
RotatE 1000 0.7989

DistMult 2000 0.8043
ComplEx 1000 0.8095

QuatE 500 0.7712
QuatE 1000 0.7954
PairRE 2000 0.8164

AutoSF+ 1000 0.8309
AutoSF+ 2000 0.8320
APACq 500 0.8526
APACq 1000 0.8578

Figure 5: Rotations under Different k-sections.

replace e
A
N , e

B
N with q

1
k
1 , q

1
k
2 . With elog q = q, we have

lim
n→∞

(
q

1
k
1 ⊗ q

1
k
2

)k

= elog q1+log q2 (14)

(The formal proof of isomorphism between quaternions
and matrices is saved for future work). It can be seen that
the limit operation is equivalent to find the sum of the log-
arithms of the two quaternions and compute the exponenti-
ation of the result. The calculation cost is constant. Further
extend such operation to a quaternion sequence and we get
(4). When the special case of coaxial rotational blending
(on the same plane) occurs, the result could be seen as a
quaternion formed by adding all rotational angles together.

Illustration. Rotations represented by quaternions q1, q2 un-
der different k-sections are shown in Figure 5. . The axes
in 3D spaces are in red, blue and green respectively and the
black arrow is the vector calculated by the axis and the an-
gle. It can be seen that when k = 8, the result is close to
the result when k → ∞.

B MODEL TRAINING DETAILS

Experiments are conducted on a Lenovo SR590 server with
the hardware configuration including 20 core Xeon * 2

(CPU), 16G * 8 Memory, 1.2TB * 3 SAS disks (in RAID5
mode) and Tesla P100 * 2 (computing cards).

Adam optimizer (Adaptive Estimates of Lower-Order Mo-
ments) is adopted and optimal parameters are determined
with Grid Search. The hyperparameter pool and opti-
mal parameters could be found on the project homepage.
Dropouts are added before and after convolution and af-
ter the full connection layer, numbered 1, 2 and 3 respec-
tively. Following Gao et al. (2020), relation-specific biases
are applied. The batch normalization strategy is employed
to reduce the scaling effect caused by hypercomplex multi-
plications and control the normalizing rate. It is found that
with the batch normalization models converge faster and
perform more stable than with the unit quaternion. Early
stop strategy is activated when the MRR increase in the
last 10 epochs on Val. Set is less than 10-2. In other exper-
iments the optimizer and training strategies are the same
unless declared differently.
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