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1. Introduction
To meet rising energy demands while ensuring

sustainability and reducing environmental impact,
there is a major shift toward clean energy generated
from renewable sources like solar and wind. These
distributed energy resources are increasingly inte-
grated into existing power grids, withmicrogrids en-
abling the local integration and consumption of re-
newable energy [1]. A microgrid typically includes
photovoltaic (PV) panels, energy storage systems
(ESS), and diesel generators (DG) and is often con-
nected to the main grid for energy exchange. The
Energy Management System (EMS) optimizes oper-
ational costs by scheduling power generation, stor-
age, and distribution [2].
EMS faces challenges in managing microgrid en-

ergy due to uncertainties in renewable energy gen-
eration and load demand, compounded by the need
to commit energy exchange plans with the main
grid a day in advance [3, 4]. This is particularly
difficult due to the long-horizon optimization. To
address this, previous work has adopted hierarchi-
cal approaches in EMS [5, 4], splitting the problem
into two stages and using optimization methods like
Model Predictive Control (MPC) or learning-based
Deep Reinforcement Learning (DRL). Although DRL
adapts better to uncertain environments than MPC
[2, 4], it relies on black-box neural network (NN)
policies that hinder interpretability by energy scien-
tists and do not meet the requirements for trustwor-
thy policies in safety-critical energy systems [6, 7].
To address these challenges, programmatic policies,
such as decision trees (DTs) or domain-specific pro-
grams have gained significant attention in DRL, as
they can be easily formulated and understood by
energy experts, and because they generate policies
which are amenable to verification [8, 9], unlike NN
policies. Additionally, their well-defined structure
allows seamless injection of domain knowledge.
Learning programmatic policies within the DRL

framework is however challenging due to their dis-
crete, non-differentiable nature, which hinders gra-
dient descent-based training. As a result, there is
growing interest in Differentiable Programmatic Re-
inforcement Learning (∂PRL), with prior attempts
such as [10, 11] that rely on smooth approximations,
which impact performance. A recent work, DTSem-
Net [12], proposed a novelmethod to overcome these
limitations, demonstrating the ability to learn hard
DT policies with performance comparable to NN
policies in benchmark DRL environments. The po-
tential of ∂PRL in the energy management of micro-
grids, however, has not been explored before.
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Fig. 1: Hierarchical operation in a microgrid.

This work explores application of ∂PRL, particu-
larly DTSemNet as a potential replacement for NN-
based policies in EMS. By leveraging ∂PRL, we aim
to retain the uncertainty handling of DRL while en-
suring transparency and verifiability of microgrid
controllers. We integrate DTSemNet in the con-
troller of a hierarchical operation framework in mi-
crogrid, as studied in [4], where a high-level plan-
ning agent plans energy commitments and a low-
level controller agent optimizes real-time dispatch.
DTSemNet, as the low-level controller, achieves per-
formance comparable toNN-based controllerswhile
ensuring a trustworthy microgrid EMS.

2. Hierarchical Operation in Microgrids
A grid-connected microgrid must establish a day-

ahead energy exchange plan/commitment with the
grid operator to ensure stability of the main grid.
This energy exchange commitment, denoted as tu-
ple P = (P 1

g , P
2
g , . . . , P

T
g ), represents the power

exchange commitments for the next T time steps,
where P t

g is the scheduled power exchange at fu-
ture time step t. At t = 1, the microgrid commits
to this plan, which is reevaluated after T steps (e.g.,
at midnight). During real-time operation, the mi-
crogrid strictly follows the pre-determined grid ex-
change commitments while dynamically adjusting
DG power setpoints (P t

dg) and ESS setpoints (P t
ess)

based on actual solar generation (P t
pv) and load de-

mand (P t
l ) at each time step t. The goal is to de-

termine the optimal day-ahead commitment, P∗,
and the optimal real-time operation setpoints for DG
power, (P t

dg)
∗, and ESS power, (P t

ess)
∗, that mini-

mizes operational cost. However, due to uncertain-
ties in weather conditions and load demand, this
long-horizon optimization problem is challenging to
solve. To address this, we adopt a two-level hierar-
chical approach similar to [4]: the high-level plan-
ner agent optimizes the day-ahead grid commitment
to determineP∗, while the low-level controller agent
ensures adherence to this plan and computes the op-
timal DGpower setpoints, (P t

dg)
∗, and ESS power set-

points, (P t
ess)

∗, at each time step, as shown in Fig. 1.
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The following describes these components:

Planning: The planning agent uses multi-scenario
Stochastic Programming (SP), an MPC method that
considers various solar generation and load demand
scenarios. This ensures the microgrid meets com-
mitments under different conditions and generates
a commitment plan, P∗, for the next T time steps.
Here, we use hourly steps with T = 24, re-planning
every 24 hours.

Control: With the commitment plan P∗ set by
the planning agent, the low-level controller ensures
real-time adherence to it while adapting to devia-
tions in solar generation P t

pv and load demand P t
l .

The control policy π(P t
pv, P

t
l ;P

∗) determines the DG
power setpoint at each time step t. The policy is
learned using the DRL method SAC [13], and it out-
puts a continuous DG setpoint, while the ESS set-
point is basedon the remaining energy requirement.

3. ∂PRL for Real-Time Control
Programmatic policies are those that can be rep-

resented using a domain-specific language (DSL)
[14], which is defined by energy experts. It is defined
as a pair (T , θ), where T specifies the discrete pol-
icy architecture, and θ represents continuous lear-
able parameters [15]. The structure of T follows a
context-free grammar based on the DSL, as shown
in Fig. 2. Let X ∈ Rn denote the input and Y ∈ Rm

the output to the programmatic policy, where n and
m are the dimension on input and output space, re-
spectively. The program expression is constructed
using non-terminals T and C, which define the com-
putation. Here, the branch condition C and the leaf
node expression L are defined as the differentiable
functions fθ(X ) ∈ R and gθ(X ) ∈ Rm, respec-
tively. These functions are defined according to the
requirements of the energy domain. The program
expression T evaluates to an output (i.e., an action
in DRL) for a given input (i.e., a state in DRL) with
Y := JT K(X ).

T ::= L | if C then T else T
C ::= fθ(X ) ≥ 0

Fig. 2: DSL Grammar for programmatic policies.

Learning programmatic policies is challenging
because they do not support direct gradient-based
optimization. Prior work has explored two main
approaches. The first relies on imitation learning,
where a NN is trained first, and a programmatic pol-
icy is then derived by imitating it [8]. For instance,
in [16], a DT policy is learned by imitating the output
of an MPC controller in a microgrid. However, this
approach is inefficient, as the quality of the learned
policy depends on dataset construction. The sec-
ond approach, ∂PRL, aims to make programmatic
policies differentiable and integrate them directly
into the DRL framework, which has been shown
to outperform imitation learning-based methods as
demonstrated in [10, 12].

3.1 DT Policy as a Controller in Microgrids
When both fθ and gθ are affine, i.e., := θb +

θ.X , the DSL definition in Fig. 2 corresponds to
an oblique DT with a linear controller at each leaf,
which can be used as a microgrid controller agent,
π(·) := JT K(·). Traditionally, training such policies
via gradient descent relied on approximations like
sigmoid relaxations or the Straight-Through Estima-
tor (STE). The work in [17] attempts to learn a soft
DT as a microgrid controller, but hardening it in-
troduces inaccuracies [10]. A recent state-of-the-art
approach avoids these approximations by propos-
ing Decision Tree Semantic Network (DTSemNet), a
novel encoding method that represents DTs as NNs.
DTSemNet has demonstrated strong performance
across classification, regression, and DRL bench-
marks. In this work, we leverage capability of DT-
SemNet to learn a low-levelDTcontrol policy inEMS,
regulating DG power for real-time dispatch.

Policy MPC Perfect NN Policy DTSemNet

Cost ($) 1809 1844 1846

Table 1: Operation cost by different policies.

3.2 Experiment and Results
We follow the same experimental setup and

dataset as [4], which consists of real-world hourly
load demand and solar generation data. Data from
January to November is used for training, while De-
cember is reserved for testing. The training data is
used to generate solar and demand profiles for SP-
based optimization and to train the low-level NN and
DTSemNet policies. The test data is used to evalu-
ate the average hourly operation costs. For bench-
marking, we use MPC Perfect, which utilizes actual
future data (typically unavailable in real-world sce-
narios) to compute the optimal average hourly cost.
As shown in Table 1, DTSemNet (height 8) performs
comparably to the NN policy (128×128), with a simi-
lar number of trainable parameters and offering ad-
ditional interpretability.

4. Conclusion and FutureWork
This work explores the use of ∂PRL for trust-

worthy microgrid energy management, to address
the interpretability and verifiability limitations of
NN-based controllers in DRL frameworks. DTSem-
Net facilitates a transparent decision-making pro-
cess that energy scientists may find easy to grasp,
as its output can be written in a formalism close to
their expertise while maintaining competitive per-
formance with NNs. This should also enable scien-
tists to incorporate their knowledge into the formal-
ism (e.g. safety constraints [18]), which we will ex-
plore next. This advances our long-term goal, which
is to produce scientific discovery directly through
∂PRL, where the causal relationship (e.g. physi-
cal equations) between various attributes/features is
discovered through learning.
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