A Appendix

A.1 Proofs

In this section we restate and provide proofs of the statements made in the main text.

Property 1. Forany 1 C ,V CVand M C M, it follows that M*(I1,V;0) = M*(I1,V) and
M>(I1; 0) = M= (10).

Proof. Any 1 € MP¥(II,V;0) satisfies ||7*v — T*v|| = 0 Vr € II,Yo € V. Similarly any
m € MF(I1,V) satisfies analogous equality constraints 7*v = T*v Vr € II, Vo € V. Since | - ||
is a norm, we know that ||7%v — T*v|| = 0 <= T*v = TF*v, hence M*(I1,V;0) = M*(IL, V).
The same logic applies to APVE classes. O

Property 2. Foranye c Rt MC M CMIICI' C andV C V' CV, it follows that
MFEIT, V5 e) € MF(IL, Vs €) € ME(IT, V5 €). (7)
Proof. An AVE class, M*(IT', V'; ¢) satisfies a series of constraints of the form ||7*v — TFv|| < e

for each pair of w,v € II' x V. Considering another pair of sub-sets IT C II' and V C V', we can
partition the first pair as follows:

IxV=M\IxV\V)y(II'\IxV)d ([ xV\V)d(xV)
accordingly,
MFIU, Vs e) = MEIT \IL V' \ Vi e) " MEIT \ I, V;€) N MF(IL V' \ Vi e) N ME(IL, Vs €)
C MH(IL Vse),
satisfying the first subset relation in Eq.[/| For the next subset relation, we simply note that
MMIL Vs €) = (MA\M)E(ILV; ) UMM(IL Vi) 2 MM(IL Vse),
completing the proof. O
Property 3. ForanyI1 C ,V CVand e, € R such that € > e, it follows that
MH(IL, Vs e) € ME(IL V3 €). ®)

Proof. For any 11 € MP¥(I1,V; €) a number of AVE constraints are respected: ||7%v — T*v|| < e
for each pair 7, v € TI x V. Since € > e, it follows that || T,*v — TFv|| < € < ¢ as well and hence

m € MF(IL, V;€). Thus ME(IT, V;€) € MF(IL, V; €') as needed. O
Proposition 1. Foranye € RY, ILLII' C , V., V' CVand k,K € Z* there exists some ¢ € Rt
such that

MFIL Vs e) € MBI,V €). )

Moreover, if M,V and V' are bounded then €' is finite.

Proof. Denote vmax = MaXses peyuy’ U(S), Tmax = MaXseS acAmem T(S, a) and consider any
m € MF(IL, V; €). We can then write

- ~ - _ K
1750 = Tl < max | T v(s)| + max [T v(s)] < 2max {7, Tmax} 725 + 7 Umax

forany € I, v € V' and . € MF*(IL, V;e).

Clearly, when ¢ = oo the desired subset relation holds, as M (IT',V'; 00) = M 2D M¥*(IL, V;¢)
for any choices of sets, orders and e. Additionally, when M, V and V' are bounded, we know that
K
Tmax and vmax are finite. Thus, by selecting a finite €’ > 2 max{7max, rmax}% + YK Vmax, We
obtain m € ME(II', V'; ¢') and thus M* (11, V; €) € ME (I, V’; €') as needed.
O
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Proposition 2. For any m € M¥*(I1, V; €) it follows that
vz, — v <2-EALV, K[, 00),
where T, is any optimal policy of m.

Proof. From Proposition |1, we know that a minimum tolerated error, ¢ = E(I[,V, k| ,00),
exists such that M*(I1, V;e) C M>( ;¢€'). We can then consider the performance of models in

M>( ;¢€). Forany m € M ( ;¢’') we can write:
0> ¥, (s) — vz, (s)
= (Ur, (5) = vn,(5)) + (vr, — v, (5)) + (va.(s) — V. (s))

for any s € S where 7, and 7, are arbitrary optimal policies in the environment and m respectively
and v, denotes the model’s value of a policy 7.

19)

Since m € M ( ;€’') we know the first and third terms are bounded below by —¢’, giving:
0 > v.(s) — vz, (s) — 2¢
= 26’ > v.(s) — vz, (s) >0 (20)
= [Jvx — vz, || < 2€¢,
as needed. O

Proposition 3. For any € € Rt I C ,V CVsuchthatv eV = T,v e VVrelland
k, K € Z% such that k divides K, we have that

MFIL Vs e) € MBI, V; € 1_7K)). (10)

1—~k

Proof. Let K = nk, and consider a model 11 € M¥(IL, V; ). It follows for any 7 € Il and v € V
that

1750 = Tl = | TETE ™ o = TETE |
= [T b0 = TETE b TETE 0~ TETN Ko

< ITETE 0 = TETR Sl ITETE o = TETE R )

Sy - -
< e+ | TETE o = TETE ||

@) )
< e+ AFTE R = TE R

where (1) follows from the assumption on V and (2) follows from the fact that 7 is a contraction.
Next, using induction we can say that:

[T vn = T vall < € (149" 442 -4 407 0F)

=0 (22)

where the last equality follows because K = nk.

This suffices to show that 7 € M (IT, V; e - %) and thus: M*(IL, V;€) € ME(I1, V;e- 11__'1;:)
as needed.

Corollary 1. For any set of policies 11 C | set of functions V € V such that {v, : 7 € II} CV and
k € Z7, it follows that

ME(IL, Vs €) € M(IL; 1=55). (n
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Proof.
F(IT, Vs €) m ﬂ MF{x}, {v};e) m ME{}, {ve}se) (23)

mellvey mell
where the subset-relation holds from our assumption that {v, : 7 € II} C V.

Next we examine 1 € M¥({r}, {v, }; €) for individual = € TI. We know that for any such model:
1T *0m = vall < [T vr = Tovall + | T or — vl
< ’YkHli;r(nil)kvﬂ — v +e
By repeatedly applying this inequality we can obtain:

n—1

~ _nk

||7;rnkv7r — vl < Z € ’Y(tk) =€ ﬂka .

=0
Next, from the continuity of || -
¢ i 1770 — vell = | nlgr;o T s — vl = 19 — v,
giving us that M* ({7}, {v};€) C M>({r};e- 7=57)- We can plug this result back into Eq. to
obtain:
OO oo
MEILV;e) C () MF({r} {vnkie) € [ M™({r}ie 2r) = M (e =15),
mell mell

as needed. O

Proposition 4. For any set of policies T1 C | set of functions V € V, ¢ > 1 and error ¢ € RT, we
have

MM, c-vspan(V); €) € MF(IT, V5 e) € M*(I, c-vspan(V); ¢ - €). (13)

Proof. Clearly, V C c-vspan()V) and thus M (IT, c-vspan(V); €) € M*(II, V; €). We now prove
that M*(I1,V;€) € MF(I1, V; c - €). We first consider any i € M¥(IT, V; €) and v’ € c-vspan(V).
Since v/ € c-vspan()) we can write v’ = Y| a;v; where v; € V foreach i and Y-, |a;| < c.
From here we observe:

T30 = T | = | TE QY cwn) = T awwi)
i=1

i=1

<D el TFv = T
=1
= (24
< Z |az|||TkUz Zrkvill
i=1
<) laile
i=1
<c-e€
which shows that M* (I1, c-vspan(V); ¢ - €) as needed. O

Corollary 2. When either c =1 ore =0, foranyI1 C |,V C V it follows that
MH(T, V5 e) = M¥(T, c-vspan(V); €). (14)

Proof. The proof follows directly from Proposmonl 4l When either ¢ € {0, 1} the left-most and right-
most terms in Eq. nare equal, squeezing M*(I1,V; ¢) = M¥ (T, c-vspan(V); €) as needed. [

Proposition 5.
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Proof.

(Asymmetry) For any V C V' C V" C V it follows that
0=pWIV)<BVIV) <BVIV') and 0=pNV"|V") <BV|IV") < BIVIV).

(Convex, Compact V) When V is convex and compact it follows that

BIVIV') = B(V|[1-vspan(V')).

. Recall B(V||V') = max, ¢y min,ey ||v" — v||. Increasing the size of V' means that more

elements can be maximized over, thereby increasing 3(V||V’). Similarly, increasing the size
of V means that more elements can be minimized over, thereby decreasing 3(V||V’). When
V =V’, we know that

0 < A(VIV') = max min [[v' — v < max [[v" — || =0,
v’ eV veY v’ ey’

where second inequality follows since V = V.

. We begin by considering the function g(v') = min, ¢y ||v — v’||. We begin by showing that

this function is convex. Consider v}, v5 € V' and denote v; = argmin,c||v — v} || and
vp = argmin,cy,||v — vg||. Then for any A € [0, 1] we can write:

Ag(vh) + (1= Ng(vg) = Alloy = va]l + (1 = A)Jvy — vall

(25)
> [[(A] + (1= A)vg) = (M + (1= Awa) |
since V is convex (Avi + (1 — A)ve) € V, thus:
[(Av1 + (1 = A)vg) — (Avr + (1 = A)w)|| = min || (Avy + (1 = A)vy) — o]
vey (26)

= g(Avy + (1= A)vy)
which suffices to show that g is a convex function.

Next we consider any element v’ € 1-vspan()’) such that v’ = ), o] with Y. 0y =1
and «; > 0 for all 7. We can then write:

g(v) = g3 ai)) <Y aig(v)) < max g(v;) < max g(v') = B(V[[V') Q7

v’ eV’
Since g(v') < B(V||V’) for every v' € 1-vspan(V”) it then follows that
BOV[1vspan(V)) = max _ g(v') < BVIV). (28)

v’ €l-vspan(V’)

We obtain the reverse equality by noting that V' C 1-vspan(}’) and thus 3(V||V') <
B(V||1-vspan(V’)). Hence B(V||1-vspan(V')) = B(V||V’) as needed.

Proposition 6. Foranyll € ,V,V’ €V and e € R, it follows that

MM(IL Vie) € ME(IL Vs e+ 295B(V|V)),

moreover, if V is convex and compact, we obtain:

MF(IL Vs e) © ME(IL L-vspan(V'); € + 29 B(V[[V)).

Proof. Fix an arbitrary model m € M¥(I1, V; €) and any 7 € II. We now select some v’ € V' and
examine the tolerance with which m is value equivalent with respect to {7} and {v'}.
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Notice that for any v € V we can write

| TE0 = T | = | = T + T = T
< | Teo" = Tl + 1 T8e = T
= T30 = TEvl + I TFe = TH' + Tfv — To||
< | Teo" = Tl + 1T = Teoll + | Tiv — || (29)
1) -
< 298| =l + [T = T
(2
< 20— vl| + €

where (1) follows from the Bellman operators 7T, and 7, being contractions and (2) follows the
assumption that i € M*(I1, V).

Since the above upper bound on || 7*v" — T¥v'|| holds for any v € V we can write that
|70 = Tev'll < e+ 29% min o — vl (30)
ve

Thus far we have shown that M*(IT, V;€) € M¥(IT, {v'}; € + 27* min,ey ||v" — v||). To find a
tolerance that holds for all v € V' we simply take a maximum over the element-wise tolerance:

27* min ||v" — v|| = e + 27" ' 31
max e + 27" min [o" —vf| = e + 27"B(V|V') 3D
This completes the proof. O
Theorem 2. For any m € M¥*( | V;e) it follows that

[lve — vz || < ﬁ . Icnzull (c ce+ 2fykﬁ(c—vspan(V)HV )) , 17

where T, is an optimal policy of m.

Proof. From Theorem I] we know by tolerating an error of
!

¢ = L min(c- e+ 294 B(e-vspanV) [V )

that M*( | V;e) € M>( ;€). Thus &( ,V,k| ,00) < €. By applying Proposition we
obtain ||v, — vz, || < 2€¢ as needed. O

Corollary 3. LetV = {0, : ™ € } be a set of approximate value functions satisfying ||v; — 0| <
€approx for all m € . Then for any m € M*( ,V ;e) it follows that:

< 2(6 + 2'Yk6approx)
> 1— fyk s

[[vs — vz

*

where T, is any optimal policy in m.

Proof. From the definition of V , we know that 3(V ||V ) < €approx- Thus by Proposition |§| and
Corollary [T we know that

k
€ + 2'7 €approx

Mk( a\7 ;6) ng( v ;€+2r7k6appmx) gMoo( ; ].—’yk )a

~ k
thus E( ,V k| ,00) < %, which gives us the desired performance bound by an applica-
tion of Theorem O
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