
A Appendix

A.1 Proofs

In this section we restate and provide proofs of the statements made in the main text.
Property 1. For any Π ⊆ Π, V ⊆ V and M ⊆ M, it follows that Mk(Π,V; 0) = Mk(Π,V) and
M∞(Π; 0) = M∞(Π).

Proof. Any m̃ ∈ Mk(Π,V; 0) satisfies ∥T̃ k
π v − T k

π v∥ = 0 ∀π ∈ Π,∀v ∈ V . Similarly any
m̃ ∈ Mk(Π,V) satisfies analogous equality constraints T̃ k

π v = T k
π v ∀π ∈ Π,∀v ∈ V . Since ∥ · ∥

is a norm, we know that ∥T̃ k
π v − T k

π v∥ = 0 ⇐⇒ T̃ k
π v = T k

π v, hence Mk(Π,V; 0) = Mk(Π,V).
The same logic applies to APVE classes.

Property 2. For any ϵ ∈ R̄+, M ⊆ M̄ ⊆ M, Π ⊆ Π′ ⊆ Π and V ⊆ V ′ ⊆ V, it follows that

Mk(Π′,V ′; ϵ) ⊆ Mk(Π,V; ϵ) ⊆ M̄k(Π,V; ϵ). (7)

Proof. An AVE class, Mk(Π′,V ′; ϵ) satisfies a series of constraints of the form ∥T̃ k
π v − T k

π v∥ ≤ ϵ
for each pair of π, v ∈ Π′ × V ′. Considering another pair of sub-sets Π ⊆ Π′ and V ⊆ V ′, we can
partition the first pair as follows:

Π′ × V ′ = (Π′ \Π× V ′ \ V) ⊎ (Π′ \Π× V) ⊎ (Π× V ′ \ V) ⊎ (Π× V)

accordingly,

Mk(Π′,V ′; ϵ) = Mk(Π′ \Π,V ′ \ V; ϵ) ∩Mk(Π′ \Π,V; ϵ) ∩Mk(Π,V ′ \ V; ϵ) ∩Mk(Π,V; ϵ)
⊆ Mk(Π,V; ϵ),

satisfying the first subset relation in Eq. 7. For the next subset relation, we simply note that

M̄k(Π,V; ϵ) = (M̄ \M)k(Π,V; ϵ) ∪Mk(Π,V; ϵ) ⊇ Mk(Π,V; ϵ),

completing the proof.

Property 3. For any Π ⊆ Π, V ⊆ V and ϵ, ϵ′ ∈ R̄+ such that ϵ′ ≥ ϵ, it follows that

Mk(Π,V; ϵ) ⊆ Mk(Π,V; ϵ′). (8)

Proof. For any m̃ ∈ Mk(Π,V; ϵ) a number of AVE constraints are respected: ∥T̃ k
π v − T k

π v∥ ≤ ϵ

for each pair π, v ∈ Π× V . Since ϵ′ ≥ ϵ, it follows that ∥T̃ k
π v − T k

π v∥ ≤ ϵ ≤ ϵ′ as well and hence
m̃ ∈ Mk(Π,V; ϵ′). Thus Mk(Π,V; ϵ) ⊆ Mk(Π,V; ϵ′) as needed.

Proposition 1. For any ϵ ∈ R̄+, Π,Π′ ⊆ Π, V,V ′ ⊆ V and k,K ∈ Z+ there exists some ϵ′ ∈ R̄+

such that
Mk(Π,V; ϵ) ⊆ MK(Π′,V ′; ϵ′). (9)

Moreover, if M, V and V ′ are bounded then ϵ′ is finite.

Proof. Denote vmax = maxs∈S,v∈V∪V′ v(s), r̃max = maxs∈S,a∈A,m̃∈M r(s, a) and consider any
m̃ ∈ Mk(Π,V; ϵ). We can then write

∥T̃ K
π v − T K

π v∥ ≤ max
s

|T̃ K
π v(s)|+max

s
|T K

π v(s)| ≤ 2max{r̃max, rmax} 1−γK

1−γ + γKvmax

for any π ∈ Π′, v ∈ V ′ and m̃ ∈ Mk(Π,V; ϵ).

Clearly, when ϵ′ = ∞ the desired subset relation holds, as MK(Π′,V ′;∞) = M ⊇ Mk(Π,V; ϵ)
for any choices of sets, orders and ϵ. Additionally, when M, V and V ′ are bounded, we know that
r̃max and vmax are finite. Thus, by selecting a finite ϵ′ > 2max{r̃max, rmax} 1−γK

1−γ + γKvmax, we
obtain m̃ ∈ MK(Π′,V ′; ϵ′) and thus Mk(Π,V; ϵ) ⊆ MK(Π′,V ′; ϵ′) as needed.
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Proposition 2. For any m̃ ∈ Mk(Π,V; ϵ) it follows that

∥vπ̃∗ − v∗∥ ≤ 2 · Eϵ(Π,V, k |Π,∞),

where π̃∗ is any optimal policy of m̃.

Proof. From Proposition 1, we know that a minimum tolerated error, ϵ′ = Eϵ(Π,V, k |Π,∞),
exists such that Mk(Π,V; ϵ) ⊆ M∞(Π; ϵ′). We can then consider the performance of models in
M∞(Π; ϵ′). For any m̃ ∈ M∞(Π; ϵ′) we can write:

0 ≥ ṽπ∗(s)− ṽπ̃∗(s)

= (ṽπ∗(s)− vπ∗(s)) + (vπ∗ − vπ̃∗(s)) + (vπ̃∗(s)− ṽπ̃∗(s))
(19)

for any s ∈ S where π∗ and π̃∗ are arbitrary optimal policies in the environment and m̃ respectively
and ṽπ denotes the model’s value of a policy π.

Since m̃ ∈ M∞(Π; ϵ′) we know the first and third terms are bounded below by −ϵ′, giving:

0 ≥ v∗(s)− vπ̃∗(s)− 2ϵ′

=⇒ 2ϵ′ ≥ v∗(s)− vπ̃∗(s) ≥ 0

=⇒ ∥v∗ − vπ̃∗∥ ≤ 2ϵ′,

(20)

as needed.

Proposition 3. For any ϵ ∈ R̄+, Π ⊆ Π, V ⊆ V such that v ∈ V =⇒ Tπv ∈ V ∀π ∈ Π and
k,K ∈ Z+ such that k divides K, we have that

Mk(Π,V; ϵ) ⊆ MK(Π,V; ϵ·(1−γK)
1−γk ). (10)

Proof. Let K = nk, and consider a model m̃ ∈ Mk(Π,V; ϵ). It follows for any π ∈ Π and v ∈ V
that

∥T̃ K
π v − T K

π v∥ = ∥T̃ k
π T̃ K−k

π v − T k
π T K−k

π v∥
= ∥T̃ k

π T̃ K−k
π v − T k

π T K−k
π v + T̃ k

π T K−k
π v − T̃ k

π T K−k
π v∥

≤ ∥T̃ k
π T K−k

π v − T k
π T K−k

π v∥+ ∥T̃ k
π T̃ K−k

π v − T̃ k
π T K−k

π v∥
(1)

≤ ϵ+ ∥T̃ k
π T̃ K−k

π v − T̃ k
π T K−k

π v∥
(2)

≤ ϵ+ γk∥T̃ K−k
π v − T K−k

π v∥

(21)

where (1) follows from the assumption on V and (2) follows from the fact that T̃π is a contraction.
Next, using induction we can say that:

∥T̃ K
π vπ − T K

π vπ∥ ≤ ϵ ·
(
1 + γk + γ2k + · · ·+ γ(n−1)k

)
= ϵ ·

n−1∑
t=0

γkt

= ϵ · 1−(γk)n

1−γk

= ϵ · 1−γK

1−γk

(22)

where the last equality follows because K = nk.

This suffices to show that m̃ ∈ MK(Π,V; ϵ · 1−γK

1−γk ) and thus: Mk(Π,V; ϵ) ⊆ MK(Π,V; ϵ · 1−γK

1−γk )

as needed.

Corollary 1. For any set of policies Π ⊆ Π, set of functions V ∈ V such that {vπ : π ∈ Π} ⊆ V and
k ∈ Z+, it follows that

Mk(Π,V; ϵ) ⊆ M∞(Π; ϵ
1−γk ). (11)
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Proof.
Mk(Π,V; ϵ) =

⋂
π∈Π

⋂
v∈V

Mk({π}, {v}; ϵ) ⊆
⋂
π∈Π

Mk({π}, {vπ}; ϵ) (23)

where the subset-relation holds from our assumption that {vπ : π ∈ Π} ⊆ V .

Next we examine m̃ ∈ Mk({π}, {vπ}; ϵ) for individual π ∈ Π. We know that for any such model:

∥T̃ nk
π vπ − vπ∥ ≤ ∥T̃ nk

π vπ − T̃ k
π vπ∥+ ∥T̃ k

π vπ − vπ∥
≤ γk∥T̃ (n−1)k

π vπ − vπ∥+ ϵ.

By repeatedly applying this inequality we can obtain:

∥T̃ nk
π vπ − vπ∥ ≤

n−1∑
t=0

ϵ · γ(tk) = ϵ · 1−γnk

1−γk .

Next, from the continuity of ∥ · ∥, we can take limits to obtain:

ϵ · 1
1−γk ≥ lim

n→∞
∥T̃ nk

π vπ − vπ∥ = ∥ lim
n→∞

T̃ nk
π vπ − vπ∥ = ∥ṽπ − vπ∥,

giving us that Mk({π}, {vπ}; ϵ) ⊆ M∞({π}; ϵ · 1
1−γk ). We can plug this result back into Eq. 23 to

obtain:

Mk(Π,V; ϵ) ⊆
⋂
π∈Π

Mk({π}, {vπ}; ϵ) ⊆
⋂
π∈Π

M∞({π}; ϵ · 1
1−γk ) = M∞(Π; ϵ · 1

1−γk ),

as needed.

Proposition 4. For any set of policies Π ⊆ Π, set of functions V ∈ V, c > 1 and error ϵ ∈ R̄+, we
have

Mk(Π, c-vspan(V); ϵ) ⊆ Mk(Π,V; ϵ) ⊆ Mk(Π, c-vspan(V); c · ϵ). (13)

Proof. Clearly, V ⊆ c-vspan(V) and thus Mk(Π, c-vspan(V); ϵ) ⊆ Mk(Π,V; ϵ). We now prove
that Mk(Π,V; ϵ) ⊆ Mk(Π,V; c · ϵ). We first consider any m̃ ∈ Mk(Π,V; ϵ) and v′ ∈ c-vspan(V).
Since v′ ∈ c-vspan(V) we can write v′ =

∑n
i=1 αivi where vi ∈ V for each i and

∑n
i=1 |αi| ≤ c.

From here we observe:

∥T̃ k
π v′ − T k

π v′∥ = ∥T̃ k
π (

n∑
i=1

αivi)− T k
π (

n∑
i=1

αivi)∥

≤ ∥
n∑

i=1

αi(T̃ k
π vi − T k

π vi)∥

≤
n∑

i=1

|αi|∥T̃ k
π vi − T k

π vi∥

≤
n∑

i=1

|αi|ϵ

≤ c · ϵ

(24)

which shows that Mk(Π, c-vspan(V); c · ϵ) as needed.

Corollary 2. When either c = 1 or ϵ = 0, for any Π ⊆ Π, V ⊆ V it follows that

Mk(Π,V; ϵ) = Mk(Π, c-vspan(V); ϵ). (14)

Proof. The proof follows directly from Proposition 4. When either c ∈ {0, 1} the left-most and right-
most terms in Eq. 13 are equal, squeezing Mk(Π,V; ϵ) = Mk(Π, c-vspan(V); ϵ) as needed.

Proposition 5.
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1. (Asymmetry) For any V ⊆ V ′ ⊆ V ′′ ⊆ V it follows that

0 = β(V||V) ≤ β(V||V ′) ≤ β(V||V ′′) and 0 = β(V ′′||V ′′) ≤ β(V ′||V ′′) ≤ β(V||V ′′).

2. (Convex, Compact V) When V is convex and compact it follows that

β(V||V ′) = β(V||1-vspan(V ′)).

Proof.

1. Recall β(V||V ′) = maxv′∈V′ minv∈V ∥v′ − v∥. Increasing the size of V ′ means that more
elements can be maximized over, thereby increasing β(V||V ′). Similarly, increasing the size
of V means that more elements can be minimized over, thereby decreasing β(V||V ′). When
V = V ′, we know that

0 ≤ β(V||V ′) = max
v′∈V′

min
v∈V

∥v′ − v∥ ≤ max
v′∈V′

∥v′ − v′∥ = 0,

where second inequality follows since V = V ′.

2. We begin by considering the function g(v′) = minv∈V ∥v − v′∥. We begin by showing that
this function is convex. Consider v′1, v

′
2 ∈ V ′ and denote v1 = argminv∈V∥v − v′1∥ and

v2 = argminv∈V∥v − v′2∥. Then for any λ ∈ [0, 1] we can write:

λg(v′1) + (1− λ)g(v′2) = λ∥v′1 − v1∥+ (1− λ)∥v′2 − v2∥
≥ ∥(λv′1 + (1− λ)v′2)− (λv1 + (1− λ)v2)∥

(25)

since V is convex (λv1 + (1− λ)v2) ∈ V , thus:

∥(λv′1 + (1− λ)v′2)− (λv1 + (1− λ)v2)∥ ≥ min
v∈V

∥(λv′1 + (1− λ)v′2)− v∥

= g(λv′1 + (1− λ)v′2)
(26)

which suffices to show that g is a convex function.

Next we consider any element v′ ∈ 1-vspan(V ′) such that v′ =
∑

i αiv
′
i with

∑
i αi = 1

and αi ≥ 0 for all i. We can then write:

g(v′) = g(
∑
i

αiv
′
i) ≤

∑
i

αig(v
′
i) ≤ max

i
g(v′i) ≤ max

v′∈V′
g(v′) = β(V||V ′) (27)

Since g(v′) ≤ β(V||V ′) for every v′ ∈ 1-vspan(V ′) it then follows that

β(V||1-vspan(V ′)) = max
v′∈1-vspan(V′)

g(v′) ≤ β(V||V ′). (28)

We obtain the reverse equality by noting that V ′ ⊆ 1-vspan(V ′) and thus β(V||V ′) ≤
β(V||1-vspan(V ′)). Hence β(V||1-vspan(V ′)) = β(V||V ′) as needed.

Proposition 6. For any Π ∈ Π, V,V ′ ∈ V and ϵ ∈ R̄+, it follows that

Mk(Π,V; ϵ) ⊆ Mk(Π,V ′; ϵ+ 2γkβ(V||V ′)),

moreover, if V is convex and compact, we obtain:

Mk(Π,V; ϵ) ⊆ Mk(Π, 1-vspan(V ′); ϵ+ 2γkβ(V||V ′)).

Proof. Fix an arbitrary model m̃ ∈ Mk(Π,V; ϵ) and any π ∈ Π. We now select some v′ ∈ V ′ and
examine the tolerance with which m̃ is value equivalent with respect to {π} and {v′}.
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Notice that for any v ∈ V we can write

∥T̃ k
π v′ − T k

π v′∥ = ∥T̃ k
π v′ − T k

π v′ + T̃ k
π v − T̃ k

π v∥
≤ ∥T̃ k

π v′ − T̃ k
π v∥+ ∥T̃ k

π v − T k
π v′∥

= ∥T̃ k
π v′ − T̃ k

π v∥+ ∥T̃ k
π v − T k

π v′ + T k
π v − T k

π v∥
≤ ∥T̃ k

π v′ − T̃ k
π v∥+ ∥T̃ k

π v − T k
π v∥+ ∥T k

π v − T k
π v′∥

(1)

≤ 2γk∥v′ − v∥+ ∥T̃ k
π v − T k

π v∥
(2)

≤ 2γk∥v′ − v∥+ ϵ

(29)

where (1) follows from the Bellman operators T̃π and Tπ being contractions and (2) follows the
assumption that m̃ ∈ Mk(Π,V).

Since the above upper bound on ∥T̃ k
π v′ − T k

π v′∥ holds for any v ∈ V we can write that

∥T̃ k
π v′ − T k

π v′∥ ≤ ϵ+ 2γk min
v∈V

∥v′ − v∥. (30)

Thus far we have shown that Mk(Π,V; ϵ) ⊆ Mk(Π, {v′}; ϵ + 2γk minv∈V ∥v′ − v∥). To find a
tolerance that holds for all v′ ∈ V ′ we simply take a maximum over the element-wise tolerance:

max
v′∈V

ϵ+ 2γk min
v∈V

∥v′ − v∥ = ϵ+ 2γkβ(V||V ′) (31)

This completes the proof.

Theorem 2. For any m̃ ∈ Mk(Π,V; ϵ) it follows that

∥v∗ − vπ̃∗∥ ≤ 2
1−γk ·min

c≥1

(
c · ϵ+ 2γkβ(c-vspan(V)||VΠ)

)
, (17)

where π̃∗ is an optimal policy of m̃.

Proof. From Theorem 1, we know by tolerating an error of

ϵ′ = 1
1−γk min

c≥1
(c · ϵ+ 2γkβ(c-vspanV)||VΠ)),

that Mk(Π,V; ϵ) ⊆ M∞(Π; ϵ′). Thus Eϵ(Π,V, k |Π,∞) ≤ ϵ′. By applying Proposition 2, we
obtain ∥v∗ − vπ̃∗∥ ≤ 2ϵ′ as needed.

Corollary 3. Let V̂Π = {v̂π : π ∈ Π} be a set of approximate value functions satisfying ∥vπ − v̂π∥ ≤
ϵapprox for all π ∈ Π. Then for any m̃ ∈ Mk(Π, V̂Π; ϵ) it follows that:

∥v∗ − vπ̃∗∥ ≤
2(ϵ+ 2γkϵapprox)

1− γk
,

where π̃∗ is any optimal policy in m̃.

Proof. From the definition of V̂Π, we know that β(VΠ||V̂Π) ≤ ϵapprox. Thus by Proposition 6 and
Corollary 1 we know that

Mk(Π, V̂Π; ϵ) ⊆ Mk(Π,VΠ; ϵ+ 2γkϵapprox) ⊆ M∞(Π;
ϵ+ 2γkϵapprox

1− γk
),

thus Eϵ(Π, V̂Π, k |Π,∞) ≤ ϵ+2γkϵapprox

1−γk , which gives us the desired performance bound by an applica-
tion of Theorem 2.
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