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Abstract

We often see undesirable tradeoffs in robust ma-
chine learning where out-of-distribution (OOD) ac-
curacy is at odds with in-distribution (ID) accuracy:
a robust classifier obtained via specialized tech-
niques such as removing spurious features often
has better OOD but worse ID accuracy compared
to a standard classifier trained via ERM. In this pa-
per, we find that ID-calibrated ensembles—where
we simply ensemble the standard and robust mod-
els after calibrating on only ID data—outperforms
prior state-of-the-art (based on self-training) on
both ID and OOD accuracy. On eleven natural dis-
tribution shift datasets, ID-calibrated ensembles
obtain the best of both worlds: strong ID accuracy
and OOD accuracy. We analyze this method in
stylized settings, and identify two important con-
ditions for ensembles to perform well both ID and
OOD: (1) standard and robust models should be
calibrated (on ID data, because OOD data is un-
available), (2) OOD has no anticorrelated spurious
features.

1 INTRODUCTION

Machine learning models suffer large drops in accuracy in
the presence of distribution shift where the test distribution
is different from the training distribution. As ML systems
are widely deployed, it is important to train models that
achieve good accuracy on unforeseen, out-of-distribution
(OOD) examples. For example, models trained on medical
data from a few hospitals should work well when deployed
broadly [Zech et al., 2018, AlBadawy et al., 2018]. Simi-
larly, when predicting poverty from satellite imagery, mod-
els trained on data from a few countries should work well on
all countries, particularly those where labels are scarce due
to resource constraints [Jean et al., 2016]. There has been a

lot of research interest in tackling this robustness problem
under various settings such as robustness to spurious correla-
tions [Heinze-Deml and Meinshausen, 2017, Sagawa et al.,
2020a], domain generalization [Arjovsky et al., 2019, Sun
and Saenko, 2016], demographic shifts [Hashimoto et al.,
2018, Duchi et al., 2019] among others.

Across many of these settings, an unfortunate tradeoff arises:
robustness interventions, such as removing spurious features
or lightweight fine-tuning, typically improve the OOD accu-
racy but cause a drop in the in-distribution (ID) accuracy on
new test points from the original distribution. This tradeoff
is a major hurdle in using the multitude of proposed meth-
ods that aim to improve OOD accuracy. In practice, most
inputs are likely to be ID, so it is unsatisfactory to use a
robust model that has high OOD accuracy but performs less
accurately on these majority ID points. On the other hand,
standard models (trained without robustness interventions)
can fail in the presence of even small shifts, and it can be
dangerous to use a standard model even if OOD points are
rare. In this work, we ask: is there a general strategy to
harness the strengths of both the standard and robust model
to achieve high accuracy both ID and OOD, without using
OOD data?

We find that ID-calibrated ensembles, a simple approach of
first calibrating the standard and robust models on only ID
data and then ensembling them, outperforms prior state-of-
the-art both ID and OOD. As illustrated in Figure 1, across
11 natural distribution shift datasets (e.g. geographical shift,
style shift, subpopulation shift), ID-calibrated ensembles get
the best of both worlds: strong ID accuracy of the standard
model and robust accuracy of the OOD models. Averaged
across these datasets, ID-calibrated ensembles achieve an
ID accuracy of 90.3% (vs. 88.7% for the standard model and
86.8% for the robust model) and OOD accuracy of 74.5%
(vs. 65.2% for the standard model and 72.3% for the robust
model).

We then analyze when and why ID-calibrated ensembles
can get the best of the standard and robust models, under a
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Figure 1: In many settings, we have a standard model that performs better in-distribution, and a robust model that performs
better out-of-distribution. Across 11 natural distribution shifts, ID-calibrated ensembles get the best of both worlds: the
strong ID accuracy of the standard model and OOD accuracy of the robust model. We analyze its strengths and limitations
in Section 4—as predicted by our analysis, ID calibrated ensembles do not perform as well on adversarially synthesized
shifts with “anticorrelated” spurious features. We show full experimental results and ablations in Section 6.

simplifying assumption that these models provide different
and independent signals for the label. If the standard and
robust models are calibrated ID, the ensembling strategy
for the best ID performance is to simply add the predictions
of the two models (Proposition 4.1). By the same idea, if
the standard and robust models were also calibrated OOD,
ensembling would achieve the optimal OOD accuracy. How-
ever, since we only have ID training data, models can only
be calibrated ID and ID calibration is not sufficient for OOD
calibration [Ovadia et al., 2019].

When can calibrated ensembles provide benefits even with-
out OOD calibration? In many natural distribution shifts,
standard models pick up on predictive signals in the train-
ing data that are absent or suppressed under distribution
shift—in these cases, we show that ID-calibrated ensembles
obtain the best of both the standard and robust models OOD.
However, when spurious features become anticorrelated
OOD (as is common when the distribution shift is adver-
sarially synthesized), we show that the ensemble’s OOD
accuracy is in between the standard and robust models. We
empirically validate this on three adversarially synthesized
shifts [Sagawa et al., 2020a, Jones et al., 2021] where the
spurious signals are anticorrelated OOD.

Finally, we compare ID-calibrated ensembles to a number
of other alternate ensembling strategies (for example, tuning
the weights of the ensemble on ID validation data) and find
that they do not work as well as ID-calibrated ensembles.

To summarize, our main contributions are:

1. We revisit the classic idea of ensembling and propose
a simple, general, and effective method (ID-calibrated
ensembles) to mitigate ID-OOD accuracy tradeoffs.
This method outperforms prior approaches based on
self-training, despite not using any additional unlabeled
data.

2. We prove that ensembles of calibrated models are op-
timal when the models provide independent signals
about the label. However, models can only be cali-

brated ID from which we have training data, and ID
calibration does not imply OOD calibration. In sim-
ple and stylized settings, we identify conditions under
which ID-calibrated ensembles achieve the best of stan-
dard and robust models in terms of OOD performance.
We validate these insights experimentally and find that
ID-calibrated ensembles eliminate tradeoffs under a
variety of natural distribution shifts, but can fail when
there are adversarially synthesized shifts.

2 SETUP

Consider a K-class classification task, where the goal is to
predict labels y ∈ [K] corresponding to inputs x ∈ X .

Models. A model f : X → RK takes an input x ∈ X
and outputs a score f(x) ∈ RK where f(x)i can be in-
terpreted as the model’s “confidence” that the label y is i.
The model outputs the label pred(f(x)) = argmaxi f(x)i.
The confidence scores can be normalized to sum to 1 (and
interpreted as probabilities) using the softmax function,
softmax(f(x))i =

exp(f(x)i)∑K
j=1 exp(f(x)j)

for i ∈ [K].

Distributions and error. Let Pid and Pood denote the under-
lying distribution of (x, y) pairs in-distribution (ID) and out-
of-distribution (OOD), respectively. We evaluate a model
f on the fraction of times it makes a wrong prediction on
Pid and Pood: Errid(f) = Ex,y∼Pid

[pred(f(x)) 6= y] and
Errood(f) = Ex,y∼Pood

[pred(f(x)) 6= y].

Standard and robust models. A standard model fstd is
trained via empirical risk minimization where we minimize
some loss on ID training data. fstd often relies on spurious
correlations such as image background or occurence of
certain words that are not necessarily predictive OOD. In
order to improve OOD performance, a robust model frob
is trained via a modified training procedure (robustness
interventions) to discourage models from relying on ID-
specific spurious features. Formally, we have the following



Algorithm 1 ID-calibrated ensembles

Require: in-distribution validation data {(xval
i , yval

i )}nval
i=1 ∼ Pid,

standard and robust models fstd, frob : X → RK

1: f std = Calibrate fstd on in-distribution (ID) data
2: f rob = Calibrate frob on in-distribution (ID) data
3: Return fens(x) =

1
2
(softmax(f std(x)) + softmax(f rob(x)))

relationship between fstd and frob.

Errid(fstd) ≤ Errid(frob); Errood(frob) ≤ Errood(fstd).
(2.1)

The precise robustness intervention depends on the task—
in Section 4 we model the relationship between fstd and frob
in a stylized setting amenable for analysis, and in Section 5
we describe what fstd and frob are in our real datasets.

Best of both worlds. Our goal is to get the best of both
worlds—a classifier fens that achieves the strong ID accu-
racy of the standard model, and OOD accuracy of the robust
model:

Errid(fens) ≤ Errid(fstd); Errood(fens) ≤ Errood(frob).
(2.2)

ID validation data. To get the best of both worlds, we only
allow access to ID validation data, {(xval

i , yvali )}nval
i=1 ∼ Pid,

for tuning hyperparameters. Following Xie et al. [2021],
Koh et al. [2021], Gulrajani and Lopez-Paz [2020] we do
not use any OOD validation data.

3 METHODS

Proposed method: ID-calibrated ensembles. Given a stan-
dard model fstd and robust model frob, we first calibrate
each model on the in-distribution validation data, and then
add up their predictions (Algorithm 1). In our experiments,
we calibrate using temperature scaling [Guo et al., 2017]
with the cross-entropy loss `:

Tstd = argmin
T

1

nval

nval∑
i=1

`
( softmax(fstd(xval

i ))

T
, yvali

)
(3.1)

Trob = argmin
T

1

nval

nval∑
i=1

`
( softmax(frob(xval

i ))

T
, yvali

)
(3.2)

We then ensemble the two models by adding up the proba-
bilities that they predict [Lakshminarayanan et al., 2017].

fens(x) =
1

2

(
softmax

(fstd(x)
Tstd

)
+ softmax

(frob(x)
Trob

))
,

(3.3)
where the predicted label is pred(fens(x)) =

argmaxy fens(x)y .

Ablations. In Section 6 we ablate each component of the
method, for example the calibration step, way of combining
the models, and we compare to (calibrated) ensembles of
two standard models, or of two robust models.

4 INTUITIONS AND ANALYSIS

In this section, we build basic intuitions for when and why
ID-calibrated ensembles can get the best of both worlds
(good ID accuracy of fstd and OOD accuracy of frob), even
without using any OOD data. We first define a stylized
setting, and then analyze the ID performance in Section 4.1
and OOD performance in Section 4.2.

Diverse features. An intuitive and illustrative conceptual
setting is the following: we assume inputs have some robust
features (that are predictive both ID and OOD) and some
spurious features (that are only predictive ID). fstd relies on
the spurious features while frob relies on the robust features,
both of which provide independent signals on the label.

Assumption 4.1. We assume that frob and fstd have diverse
features with respect to Pid and Pood, that is,

frob(x) ⊥ fstd(x) | y when (x, y) ∼ P for P ∈ {Pid, Pood}
(4.1)

Connection with prior assumptions. The diverse features
assumption is weaker than the assumptions in prior concep-
tual models of distribution shifts Chen et al. [2020], Sagawa
et al. [2020b], Nagarajan et al. [2020] where robust and spu-
rious features are disjoint parts of the input, each generated
independently based on the label. In our setting, the features
can be complicated functions of the inputs.

Ensemble. The ensemble fens simply adds up the predic-
tions of the standard model fstd and robust model frob. This
is slightly different from Section 3, but is more amenable to
analysis.

fens(x) = fstd(x) + frob(x) (4.2)

Class-balanced. For simplicity of exposition, we assume
the class-balanced setting where every label P (Y = y)
is equally likely. Formally, we say P is class-balanced if
P (Y = y) = 1/K for all y ∈ [K]. We analyze the general
setting in Appendix A.

4.1 ID PERFORMANCE OF ENSEMBLES

In this section, we show that if fstd and frob are calibrated
with respect to Pid, then the ensemble fens is the best way to
combine their predictions. Since we have access to valida-
tion data from Pid, the first step of our method (Section 3) is
to calibrate fstd and frob ID. We conclude the section by giv-
ing intuition for why this calibration step can be particularly
important for deep neural networks.



Intuitively, calibration means that the probability that a
model outputs for an event reflects the true frequency of
that event: if a model says 1,000 patients have the flu with
probability 0.1, approximately 100 of them should indeed
have the flu. Formally, we look at joint calibration [Murphy,
1973, Brocker, 2009] where a model f is calibrated with
respect to a distribution P if for all x ∈ X , y ∈ [K]:

P (y | f(x)) = softmax(f(x))y (4.3)

The following proposition says that if fstd and frob are cali-
brated on Pid, then fens has lower error on Pid than any other
way of combining the two models—this also implies that
fens gets higher accuracy than fstd and frob.

Proposition 4.1. Suppose that fstd and frob are calibrated
with respect to Pid, and that Pid is class-balanced. Let h :
RK × RK → RK be an arbitrary function that combines
the standard and robust model’s predictions, and let fh be
the resulting classifier: fh(x) = h(fstd(x), frob(x)). The
ensemble is better than any such combination classifier fh:
Errid(fens) ≤ Errid(fh).

The proof of Proposition 4.1 is in Appendix A. Intuitively,
since frob(x) ⊥ fstd(x) | y, the Bayes optimal predictor
is proportional to multiplying their predicted probabilities,
which is equal to adding logits (logits are in log space).
Proposition 4.1 has an important condition: the two mod-
els must be calibrated. In practice, deep learning models
are miscalibrated [Guo et al., 2017], so our first step (Sec-
tion 3) is to calibrate the models ID. We explain why the ID
calibration step is important for deep neural networks.

Why neural networks are miscalibrated. Deep neural
networks are typically large enough to memorize the train-
ing dataset, and are encouraged to magnify their weights
(and hence their confidence) to decrease the training
loss [Mukhoti et al., 2020, Bai et al., 2021]. The extent
of this miscalibration and overconfidence depends on the
training procedure [Hendrycks et al., 2019, Desai and Dur-
rett, 2020]. In our case fstd and frob are trained in different
ways and have different calibration (Appendix B.3).

Why this miscalibration can hurt ensembling. Concretely,
consider two models f ′

std and f ′
rob which are calibrated on

Pid. Let fstd(x) = Mf ′
std(x) for large M ∈ R (this mag-

nifies its weights as discussed above), and let frob = f ′
rob.

fstd and f ′
std have the same predictions and therefore accu-

racy but fstd is highly miscalibrated. The ensemble is then
given by fens(x) = Mf ′

std(x) + f ′
rob(x). For very large M ,

fens and f ′
std have the same predictions—this means that

Errood(fens) = Errood(fstd) < Errood(frob), and so ensem-
bling does not get the best of both worlds.

4.2 OOD PERFORMANCE OF ENSEMBLES

We showed that if fstd and frob are calibrated on a distribu-
tion P , then fens is better than both models on P . However,
our validation data is from Pid, so we can only calibrate fstd
and frob ID. Even after this ID calibration step, fstd and frob
are very miscalibrated OOD (on Pood—see Appendix B.3
and Ovadia et al. [2019]).

Our goal in this section is to build basic intuitions for when
ID-calibrated ensembles can get high OOD accuracy. We
draw inspiration from distribution shift benchmarks but ex-
amine simplified and stylized shifts. A toy version of our
analysis is visualized in Figure 2, where the standard model
relies on spurious features that change out-of-distribution.
If these features are “suppressed” or “missing” OOD, then
fens does better than fstd and frob (Figure 2b). However, if
these features are anticorrelated OOD (correlated with the
opposite label) then the accuracy of fens is between fstd and
frob (Figure 2c). We begin by formalizing these shifts, and
then analyze the accuracy under these shifts.

Missing spurious. For our first setting, we draw inspiration
from some distribution shift benchmarks. Consider Breeds
Living-17 [Santurkar et al., 2020] where the goal is to clas-
sify an image as one of 17 animal categories. The category
‘bear’ in the ID training data contains images of black bears
and sloth bears while the OOD dataset has images of brown
bears and polar bears. A standard model trained on the ID
dataset might latch onto very specific features about sloth
bears (for example the presence of a shaggy mane) which
are simply missing in the OOD dataset (fstd(x) = 0). A ro-
bust model could be trained to project these features out [Xie
et al., 2021], so its predictions are still fairly reliable OOD.

Definition 4.1 (missing spurious). A distribution P0 has
missing spurious features if for x ∼ P0, we have fstd(x) =
0 almost surely and for some α ∈ R+, P0(Y = y |
frob(X) = frob(x)) = softmax(αfrob(x))y for all x ∈ X .

Suppressed features. In some datasets, such as satellite
remote sensing datasets [Jean et al., 2016, Xie et al., 2021],
a standard model can latch onto country-specific features
that may be less prevalent OOD.

Definition 4.2 (suppressed features). A distribution Pτ

is said to have suppressed features if Pτ (Y = y |
f(X) = f(x)) = softmax(τf(x))y for all x ∈ X and
f ∈ {fstd, frob}, where τ ∈ R+.

Anticorrelated spurious. In some settings, the spurious
feature can be correlated with a label ID but anticorrelated
OOD. For example, in Waterbirds [Sagawa et al., 2020a],
the task is to classify if an image contains a waterbird or a
landbird where in the ID dataset, waterbirds are primarily
featured with water backgrounds and landbirds with land
backgrounds, but in the OOD datasets the backgrounds are



(a) In-distribution (b) Missing spurious (c) Anticorrelated spurious

Figure 2: A toy version of our analysis in Section 4. (Figure 2a) Given a standard model fstd (red horizontal line) and robust
model frob (blue vertical line) that use different aspects of the data, ensembling their predictions gives a predictor fens (black
dotted line) with lower error—in this case fens completely separates the positive (green circle) and negative (yellow circle)
examples in-distribution (ID). (Figure 2b) fstd uses spurious features, suppose that these features are missing OOD (e.g., the
y component of the input goes close to 0)—then fstd fares poorly and mislabels half the inputs, but the ensemble fens is
about as accurate as the robust model frob. (Figure 2c) On the other hand, suppose the spurious features are anticorrelated
with the label OOD. In this case fens intersects the positive (yellow circle) and negative (green circle) distributions, and gets
50% error—here fens is worse than frob but better than fstd.

flipped such that landbirds occur with water backgrounds
and vice versa. This motivates the final definition of spu-
rious shifts where the spurious features (background) are
anticorrelated with the label OOD.

Definition 4.3 (anticorrelated spurious). A distribution Padv

is said to be anticorrelated spurious if for some α, β > 0, for
all x ∈ X , Padv(Y = y|fstd(x)) = softmax(−βfstd(x))y
(note the minus sign), while Padv(Y = y | frob(x)) =
softmax(αfrob(x))y .

If the OOD distribution is a mixture of suppressed features
and missing spurious features, then the ensemble fens gets
the best of both worlds.

Proposition 4.2. If the OOD contains a mixture of sup-
pressed features and missing spurious features i.e., Pood =
αPτ + (1− α)P0, and Pτ and P0 are class-balanced, then
we have Errood(fens) ≤ Errood(frob) and Errood(fens) ≤
Errood(fstd).

On the other hand, if the OOD distribution contains anti-
correlated spurious features, then the accuracy of fens is in
between the standard and robust models.

Proposition 4.3. If spurious features are anticorrelated
OOD so that Pood = Padv, then even if Padv is class-
balanced, Errood(frob) ≤ Errood(fens) ≤ Errood(fstd).

The full proofs appear in Appendix A.

5 DATASETS

We consider thirteen standard datasets, spanning multiple
robustness interventions, types of shifts, and modalities (vi-
sion, language, time-series). We first describe the robustness
interventions we consider, and then describe the datasets
and types of shifts. All the datasets have been used by prior
works on robustness, so we use their model checkpoints for
reliable comparisons. See Appendix B.1 for more details.

Robustness interventions:

1. In-N-Out: Xie et al. [2021] use domain knowledge to
project out spurious features in the input, and do an
additional pretraining step. They call this robust model
“aux-out” and show that it improves accuracy OOD,
but hurts accuracy ID, compared to ERM.

2. Lightweight fine-tuning: We take checkpoints from Ku-
mar et al. [2022] where the standard model fine-tunes
all parameters on an ID dataset, and the robust model
only learns the top linear ‘head’ layer (which does
better OOD but worse ID).

3. Zero-shot language prompting: CLIP [Radford et al.,
2021] is a multi-modal model that can predict the label
of an image by comparing the image embedding, with
prompts such as ‘photo of an apple’. They show that
this zero-shot language prompting approach (robust
model) is more accurate OOD than fine-tuning the
entire model (standard model), although ID accuracy
of the robust model is worse.

4. Group distributionally robust optimization
(DRO) [Sagawa et al., 2020a]: Standard ERM
models often latch on to spurious correlations in
a dataset, such as image background color, or the
occurrence of certain words in a sentence. Group DRO



essentially upweights examples where this spurious
correlation is not present.

5. CORAL [Sun and Saenko, 2016] aims to align feature
representations across different domains, by penalizing
differences in the means and covariances of the feature
distributions. The hope is that this generalizes better to
OOD domains.

We consider three types of natural shifts (geography shifts,
subpopulation shifts, style shifts), and we also consider
adversarially synthesized “anticorrelated” spurious shifts.

Geography shifts. In geography shifts the ID data comes
from some locations, and the OOD data comes from a dif-
ferent set of locations. One motivation is that in many de-
veloping areas training data may be unavailable because of
monetary constraints [Jean et al., 2016].

1. LandCover [Rußwurm et al., 2020]: The goal is to
classify a satellite image into one of 6 land types (e.g.,
"grassland", "savannas"). The ID data contains images
from outside Africa, and the OOD data consists of
images from Africa. Xie et al. [2021] use the In-N-Out
intervention.

2. Cropland [Wang et al., 2020]: The goal is to predict
whether a satellite image is of a cropland or not. The
ID dataset contains images from Iowa, Missouri, and
Illinois, and the OOD dataset contains images from
Indiana and Kentucky. Xie et al. [2021] use the In-N-
Out intervention.

3. iWildCam [Beery et al., 2020, Koh et al., 2021]: The
goal is to classify the species of an animal given a
photo taken by a camera placed in the wild. The ID
dataset consists of photos taken by over 200 cameras,
and the OOD dataset consists of photos taken by held-
out cameras placed in different locations. Koh et al.
[2021] use the CORAL intervention.

Subpopulation shifts. In subpopulation shifts, the ID data
contains a few sub-categories (e.g., black bear and sloth
bear), and the OOD data contains different sub-categories
(e.g., brown bears and polar bears) of the same parent cat-
egory (e.g., bears). For both datasets below, Kumar et al.
[2022] use the lightweight fine-tuning intervention.

1. Living-17 [Santurkar et al., 2020]: the goal is to clas-
sify an image as one of 17 animal categories such as
“bear”, where the ID and OOD datasets have different
species of bears.

2. Entiy-30 [Santurkar et al., 2020]: similar to Living-17,
except the goal is to classify an image as one of 30
entity categories such as “food”, “motor vehicle”, and
“insect”.

Style shifts. In style shifts, the ID data has a certain style
(e.g., sketches), and the OOD data has a different style (e.g.,
real photos, renditions).

1. DomainNet [Peng et al., 2019]: a standard domain
adaptation dataset. Here, our ID dataset contains
“sketch” images (e.g., drawings of apples, elephants,
etc), and the OOD dataset contains “real” photos
of the same categories. Kumar et al. [2022] use the
lightweight fine-tuning intervention.

2. CelebA [Liu et al., 2015]: the goal is to classify a
portrait of a face as “male” or “female” - the ID dataset
contains images of people without hats, and the OOD
dataset contains images of people wearing hats (some
facial features might be “suppressed” or “missing” with
hats). Xie et al. [2021] use the In-N-Out intervention.

3. CIFAR->STL: standard domain adaptation
dataset [French et al., 2018], where the ID is
CIFAR-10 [Krizhevsky, 2009], and the OOD is
STL [Coates et al., 2011]. The task is to classify an
image into one of 10 categories such as “dog”, “cat”,
or “airplane”. Kumar et al. [2022] use the lightweight
fine-tuning intervention.

4. ImageNet [Russakovsky et al., 2015]: a large scale
dataset where the goal is to classify an image into
one of 1000 categories. Radford et al. [2021] use the
zero-shot language prompting intervention. We evalu-
ate on 3 standard OOD datasets: ImageNetV2 [Recht
et al., 2019],ImageNet-R [Hendrycks et al., 2020], and
ImageNet-Sketch [Wang et al., 2019].

Anticorrelated spurious shifts. In these adversarially syn-
thesized shifts, the ID dataset contains a feature that is corre-
lated with a label, but this correlation is flipped OOD. Jones
et al. [2021] use the group DRO intervention.

1. Waterbirds [Sagawa et al., 2020a]: The goal is to
classify an image as a “waterbird” or “landbird”. The
dataset is synthetically constructed to have anticorre-
lated spurious features: “water” backgrounds are corre-
lated with “waterbird” labels in the ID, but anticorre-
lated OOD.

2. MNLI [Williams et al., 2018]: The goal is to predict
whether a hypothesis is entailed, contradicted by, or
neutral to an associated premise. Sagawa et al. [2020a]
partition the dataset so that “negation” words are corre-
lated with the contradiction label ID but these words
are anticorrelated with the contradiction label OOD.

3. CivilComments [Borkan et al., 2019]: The goal is
to predict whether a comment is toxic or not. Jones
et al. [2021] partition the dataset so that in the ID split
mentions of a Christian identity are correlated with non-
toxic comments, but in the OOD split mentions of a
Christian identity are correlated with a toxic comment.
CivilComments is also used in Koh et al. [2021].



Table 1: Xie et al. [2021] propose In-N-Out (self-training) to mitigate ID-OOD accuracy tradeoffs—their method requires
lots of unlabeled data. Even without this unlabeled data, ID-calibrated ensembles are competitive with or outperform
self-training ID and OOD. We show results on all datasets used by Xie et al. [2021].

Cropland Landcover CelebA
ID Acc OOD Acc ID Acc OOD Acc ID Acc OOD Acc

Standard model 95.3 (0.0) 85.6 (5.8) 76.9 (0.3) 55.7 (1.1) 90.4 (0.5) 74.5 (0.6)
Robust model 95.1 (0.1) 89.8 (0.4) 72.7 (0.2) 60.4 (1.1) 94.5 (0.2) 76.3 (1.2)
Self-training 95.3 (0.2) 90.6 (0.6) 77.0 (0.4) 61.0 (0.7) 93.1 (0.2) 78.7 (0.7)

Cal ensembling 95.6 (0.1) 91.3 (0.8) 77.2 (0.2) 60.8 (0.8) 94.5 (0.5) 77.6 (1.2)

6 RESULTS

In Section 6.1, we show that ID-calibrated ensembles get the
best of both worlds across the 11 natural shifts we consider,
but not on the 3 adversarially synthesized anticorrelated
spurious shifts, as predicted by our analysis in Section 4.
ID-calibrated ensembles match or outperform a prior state-
of-the art approach based on self-training [Xie et al., 2021],
which requires additional unlabeled data. In Section 6.2,
we show ablations of our method. Interestingly, we find
that a common approach of tuning the ensemble weights to
optimize ID accuracy can lead to poor OOD performance.

6.1 MAIN RESULTS

Competitive with self-training. Xie et al. [2021] propose
self-training on unlabeled data to mitigate ID-OOD accuracy
tradeoffs. We run experiments on all 3 datasets they consider
(Landcover, Cropland, CelebA), taking checkpoints from
the official CodaLab implementation of Xie et al. [2021].
Table 1 shows that ID-calibrated ensembles match or out-
perform self-training on all 3 of their datasets, both ID and
OOD. We believe this is interesting because our method is
simple and does not need additional unlabeled data (which,
for example, the other datasets do not have).

Strong ID and OOD accuracy. Across the 11 natural shifts,
ID-calibrated ensembles get the best of both worlds, typ-
ically outperforming the standard and robust model both
ID (Table 2) and OOD (Table 3). Averaged across the nat-
ural shift datasets, ID-calibrated ensembles get 90.3% ID
(vs. 88.7% for the standard model and 86.8% for the robust
model) and 74.5% OOD (vs. 72.3% for the robust model and
65.2% for the standard model). The method works across
the board—ID-calibrated ensembles achieve the best perfor-
mance on 8/9 ID natural shifts, and on 10/11 OOD natural
shifts. For the remaining two cases, DomainNet OOD and
CIFAR-10 ID, ID-calibrated ensembles close over 95% of
the gap between the standard and robust model.

Shift type is important. Our analysis in Section 4 predicts
that ID-calibrated ensembles do not work as well on anticor-

related spurious shifts, where a spurious feature is correlated
with the label but anticorrelated OOD. Indeed, in these cases
the OOD accuracy of ID-calibrated ensembles is between
the standard and robust model (Table 3). Even so, averaged
across all 14 datasets ID-calibrated ensembles do well and
get 90.0% ID (vs. 88.6% for the standard model, 86.9%
for the robust model) and 74.7% OOD (vs. 64.3% for the
standard model, 74.6% for the robust model).

6.2 ABLATIONS

Our proposed method is a simple combination of a cali-
brated robust and calibrated standard model. We vary the
components of our method and try: (i) tuned ensembles with-
out calibration, (ii) vanilla ensembles without calibration,
and (iii) ensembles of two standard or two robust models.

Tuned ensembles do not mitigate tradeoffs. A natural way
to ensemble the two models is “tuned ensembles”: choos-
ing the ensemble weights to optimize accuracy on the ID
validation set. This approach is also known as stacking, and
has performed well on the Netflix prize and Kaggle compe-
titions [Sill et al., 2009]. Interestingly, we find that tuned
ensembles do not do very well OOD, getting an average
accuracy of 72.1% across the 14 datasets (vs. 74.7% for
ID-calibrated ensembles). The ID accuracies are similar—
results for all datasets are in Table 4 (ID) and Table 5 (OOD).

Calibration helps. ID-calibrated ensembles (calibration
is only done on ID data) outperform vanilla ensembles,
getting an average ID accuracy of 90.0% (vs. 89.4% for
vanilla ensembles) and an average OOD accuracy of 74.7%
(vs. 73.1% for vanilla ensembles). We show results for all
datasets in Table 4 (ID) and Table 5 (OOD).

Outperforms standard and robust ensembles. As a sanity
check, Appendix B.2 shows that our method outperforms 1.
ensembling two (calibrated) standard models, and 2. ensem-
bling two (calibrated) robust models.

Models are miscalibrated OOD. Even after ID calibra-
tion, we find that the standard and robust models are not
calibrated OOD, which matches prior work [Ovadia et al.,



Table 2: In-distribution (ID) accuracies for the standard model, robust model, and ID-calibrated ensembles, across 9 natural
shift datasets (colored blue) and 3 anticorrelated spurious shift datasets (colored red and starred). On the 9 ID natural shift
datasets, ID-calibrated ensembles match or outperform the best model in 8/9 cases, and on average outperforms both the
standard and robust models. For the remaining dataset, CIFAR-10, ID-calibrated ensembles close 97% of the gap between
the standard and robust model.

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Standard 93.6 (0.2) 83.9 (1.0) 97.4 (0.1) 96.9 (0.1) 76.9 (0.3) 95.3 (0.0) 90.4 (0.5)
Robust 90.7 (0.2) 89.2 (0.1) 92.0 (0.0) 97.0 (0.0) 72.7 (0.2) 95.1 (0.1) 94.5 (0.2)

Cal Ensemble 93.7 (0.1) 91.2 (0.7) 97.2 (0.1) 97.2 (0.2) 77.2 (0.2) 95.6 (0.1) 94.5 (0.5)

ImageNet iWildCam MNLI* Waterbirds* CivilComments*

Standard 81.7 (-) 82.4 (-) 82.9 (-) 88.3 (-) 92.8 (-)
Robust 68.4 (-) 81.8 (-) 81.5 (-) 93.2 (-) 86.3 (-)

Cal Ensemble 82.0 (-) 84.0 (-) 82.8 (-) 92.9 (-) 91.4 (-)

Table 3: Out-of-distribution (OOD) accuracies for the standard model, robust model, and ID-calibrated ensembles, across
11 natural shift datasets (colored blue) and 3 anticorrelated spurious shift datasets (colored red and starred). On the 11
OOD natural shift datasets, ID-calibrated ensembles match or outperform the best model in 10/11 cases, and on average
outperforms both the standard and robust models. For the remaining dataset, DomainNet, ID-calibrated ensembles close 96%
of the gap between the standard and robust model. As expected from our analysis (Section 4), on anticorrelated spurious
shifts the accuracy of ID-calibrated ensembles is between the standard and robust models.

Ent30 DomNet STL10 Liv17 Land Crop CelebA

Standard 60.7 (0.1) 55.3 (0.4) 82.4 (0.3) 77.7 (0.6) 55.7 (1.1) 85.6 (5.8) 74.5 (0.6)
Robust 63.2 (1.1) 87.2 (0.1) 85.1 (0.2) 82.2 (0.2) 60.4 (1.1) 89.8 (0.4) 76.3 (1.2)

Cal Ensemble 64.7 (0.5) 86.1 (0.2) 87.3 (0.2) 82.2 (0.6) 60.8 (0.8) 91.3 (0.8) 77.6 (1.2)

ImNet-R ImNet-V2 ImNet-Sk iWildCam MNLI* Waterbirds* Comments*

Standard 52.4 (-) 71.5 (-) 40.5 (-) 61.1 (-) 65.5 (-) 60.4 (-) 56.8 (-)
Robust 77.5 (-) 61.9 (-) 48.2 (-) 63.0 (-) 77.4 (-) 88.1 (-) 84.2 (-)

Cal Ensemble 77.9 (-) 73.2 (-) 52.3 (-) 66.3 (-) 73.2 (-) 81.1 (-) 71.8 (-)

2019]. We estimate the expected calibration error (ECE;
Equation 2 in Guo et al. [2017]). Since we calibrated on
ID data, the ECE is low ID (1.6% for the standard model,
2.3% for the robust model; Table 8). However, the ECE
is high OOD (11.3% for the standard model, 6.8% for the
robust model; Table 9) Appendix B.3 shows that even the
relative confidence of the models can be wrong: the stan-
dard model can be more confident but less accurate OOD,
after ID-calibration. Nonetheless, ID-calibrated ensembles
get the best of both worlds—see Section 4 for some simple
intuitions for why this can happen.

7 RELATED WORKS AND DISCUSSION

Calibration. Calibration has been widely studied in ma-
chine learning [Naeini et al., 2014, Guo et al., 2017, Kumar
et al., 2019], and applications such as meteorology [Murphy,

1973, DeGroot and Fienberg, 1983, Gneiting and Raftery,
2005], fairness [Hebert-Johnson et al., 2018], and health-
care [Jiang et al., 2012]. Many of these works focus on the
in-distribution (ID) setting, where models are calibrated on
the same distribution that they are evaluated on. Ovadia
et al. [2019], Jones et al. [2021] show that if we calibrate
(e.g., via temperature scaling) a model ID, it still has poor
uncertainties OOD. However, we show that despite having
poor uncertainties on traditional metrics, calibrated models
can be combined effectively to mitigate ID-OOD tradeoffs.
Wald et al. [2021] show that if a model is calibrated on many
domains (domains > no. of features) in a linear setting, then
the model is calibrated (and invariant) on new domains. A
key difference is that they require a large number of training
domains, which may need to be annotated to ensure calibra-
tion across them, while we only require access to a single
doamin.



Ensembling. Ensembling models is a common way to get
an accuracy boost—typically the ensemble members are
trained with a different random seed [Lakshminarayanan
et al., 2017] or augmentation [Stickland and Murray, 2020].
In the setting where the ensemble members mostly differ by
random seeds or augmentations, prior work has shown that
calibrating the members of an ensemble does not help [Wu
and Gales, 2021, Ovadia et al., 2019]. However when we
combine two very different models (standard and robust),
calibration leads to clear improvements.

Mitigating ID-OOD tradeoffs. Tradeoffs between ID
and OOD accuracy are widely studied and prior work self-
trains on large amounts of unlabeled data to mitigate such
tradeoffs [Raghunathan et al., 2020, Xie et al., 2021, Khani
and Liang, 2021]. In contrast, our approach uses no extra
unlabeled data and is a simple method where we just add
up the model probabilities after a quick calibration step. In
concurrent and independent work, [Wortsman et al., 2021]
show that there exists a way to combine a CLIP zero-shot
and fine-tuned model to get good ID and OOD accuracy—
however learning how to combine the models may require
OOD data, which is not available. We show that the natural
way to learn how to weight ensemble members—selecting
the weights to optimize ID accuracy—does not get the best
of both worlds. In addition, their approach does not directly
apply to settings where the standard and robust models have
different architectures, such as In-N-Out [Xie et al., 2021].

Conclusion and Future Work. In this paper, we show
that ID-calibrated ensembles, a simple method of calibrat-
ing a standard and robust model only on ID data and then
ensembling them, can eliminate the tradeoff between in-
distribution (ID) and out-of-distribution (OOD) accuracy on
a wide range of natural shifts. We hope that this leads to
more widespread use and deployment of robustness inter-
ventions.

ID-calibrated ensembles were competitive with prior work
that used self-training, despite being simpler and not using
additional unlabeled data. However, self-training may have
advantages: we believe self-training may potentially elim-
inate tradeoffs even in anticorrelated spurious settings—it
could be interesting for future work to compare ensembling
and self-training theoretically, and see if their benefits are
complementary. Additionally, ID-calibrated ensembles re-
quire twice the compute of a single model (although for fair-
ness, we compared with an ensemble of standard or robust
models), while self-training gives us a single model. One
potential future direction is to see if ID-calibrated ensem-
bles can be distilled into a single model (without additional
unlabeled data).
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A PROOFS FOR SECTION 4

We begin with some standard background on Bayes optimal classifiers. When then prove the results in Section 4. By default,
expectations are taken over all random variables.

A.1 BACKGROUND ON BAYES-OPTIMAL CLASSIFIERS

These results are all standard, but we include it as background information since different texts use different notations. Let
Z ∈ Z denotes some features (that can be complicated functions of the input x, for example the output of a neural network),
and let Y ∈ Y denote the label. Let P be a distribution over (Z, Y ). The Bayes-optimal classifier predicts the most likely
label y given features z.

Definition A.1. The Bayes-optimal classifier for P given features z is given by:

y∗(z) = argmin
y∈Y

P (y | z). (A.1)

The Bayes-optimal classifier has the minimum misclassification error of all possible classifiers that use z ∈ Z to predict
y ∈ Y . Formally, the error of a classifier ŷ is the probability that it gets the label incorrect.

Definition A.2. The error of a predictor ŷ : Z → Y on distribution P is given by:

ErrP (ŷ) = P (Y 6= ŷ(Z)), (A.2)

Alternatively, we can look at the error for each Z, and then take the average over Z, which gives us:

Lemma A.1. The error of a predictor ŷ : Z → Y on distribution P can be written as:

ErrP (ŷ) = E[1− P (Y = ŷ(Z) | Z)]. (A.3)

Proof. We can write the misclassification probability as an expectation over an indicator and then apply the law of total
expectation.

P (Y 6= ŷ(Z)) = E[I(Y 6= ŷ(Z))] (A.4)
= E[E[I(Y 6= ŷ(Z)) | Z]]. (A.5)

And then just write the inner expectation as a probability.

E[E[I(Y 6= ŷ(Z)) | Z]] = E[P (Y 6= ŷ(Z) | Z)] (A.6)
= E[1− P (Y = ŷ(Z) | Z)]. (A.7)

The Bayes-optimal classifier selects the y with the highest probability given z, so we have:

Lemma A.2. The error of the Bayes-optimal classifier y∗ on a distributon P can be written as (where Z ∼ P ):

ErrP (y∗) = E[1−max
y∈Y

P (Y = y | Z)]. (A.8)

Proof. The proof is immediate by substituting the definition of the Bayes-optimal classifier (Definition A.1) into the
alternative formula for the error in Lemma A.1.

From the above, it is clear that the Bayes-optimal classifier has lower error than any other classifier that uses only z,
formalized below.

Lemma A.3. The bayes-optimal classifier (for P ) has lower error than all classifiers ŷ : Z → Y:

ErrP (y∗) ≤ ErrP (ŷ). (A.9)



Proof. Beginning from Lemma A.1, we have:

ErrP (ŷ) = E[1− P (Y = ŷ(Z) | Z)] (A.10)
≥ E[1−max

y∈Y
P (Y = y | Z)] (A.11)

= ErrP (y∗). (A.12)

As a simple corollary, we note that the accuracy of the Bayes-optimal classifier is at least the frequency of the most common
label.

Corollary A.1. If y∗ is bayes-optimal for P then,

ErrP (y∗) ≤ 1−max
y∈Y

P (Y = y) (A.13)

So for example if P is balanced, then the Bayes-opt classifier will have accuracy at least 1/K, where K is the number of
classes.

Note that calibrated classifiers are Bayes-optimal given their outputs. Formally, let P be a distribution over (x, y), and
suppose f is calibrated with respect to P . Let z = f(x) and let P ′ be the induced distribution over (z, y). Then f is
Bayes-optimal for P ′ given features z. The label distributions P ′(y) and P (y) are the same, so Lemma A.3 applies to any
calibrated classifier.

A.2 PROOF OF PROPOSITION 4.1

Restatement of Proposition 4.1. Suppose that fstd and frob are calibrated with respect to Pid, and that Pid is class-balanced.
Let h : RK × RK → RK be an arbitrary function that combines the standard and robust model’s predictions, and let fh
be the resulting classifier: fh(x) = h(fstd(x), frob(x)). The ensemble is better than any such combination classifier fh:
Errid(fens) ≤ Errid(fh).

We first show that in the setting of the Proposition, we can write P (y | frob(x), frob(x)) in terms of frob(x) and fstd(x).

Lemma A.4. In the setting of Proposition 4.1, let m ∈ RK be the log of the marginal probabilities P (y):

my = logP (y), for all y ∈ [K]. (A.14)

Then we have:
P (y | fstd(x), frob(x)) = softmax(fstd(x) + frob(x)−m)y, for all y ∈ [K]. (A.15)

In the balanced setting, where P (y) = 1/K for all y, this simplifies to:

P (y | fstd(x), frob(x)) = softmax(fstd(x) + frob(x))y, for all y ∈ [K]. (A.16)

Proof. Fix r = frob(x) and s = fstd(x), where r, s ∈ RK . We first rewrite the probability of y given the robust and standard
model outputs P (y | r, s) in terms of the probability of y given each of the individual model outputs: P (y | r) and P (y | s).
We do this for discrete random variables for simplicity, but the same result follows by using Bayes rule for general random
variables.

P (y | r, s) = P (r, s | y)P (y)

P (r, s)
[Bayes rule] (A.17)

=
P (r | y)P (s | y)P (y)

P (r, s)
[r ⊥ s | y] (A.18)

=
[P (y|r)P (r)

P (y)
P (y|s)P (s)

P (y) P (y)

P (r, s)
[Bayes rule] (A.19)

=
P (y | r)P (y | s)

P (y)

[P (r)P (s)

P (r, s)

]
[Algebra] (A.20)

(A.21)



Since r, s are fixed, we can denote the terms that do not depend on y by a constant c1,

c1 =
P (r)P (s)

P (r, s)
. (A.22)

So then we can write:

P (y | r, s) = P (y | r)P (y | s)
P (y)

c1, for all y ∈ [K]. (A.23)

Now, we assumed P (Y = y | r) = softmax(r)y and P (Y = y | s) = softmax(s)y for all y ∈ [K]. For some constants
c2, c3 ∈ R, we can write this as: P (Y = y | r) = exp(ry)/c2 and P (Y = y | s) = exp(sy)/c3 for all y ∈ [K]. Substituting
this into Equation A.23, we get:

P (y | r, s) = exp(ry + sy)

P (y)

c1
c2c3

, for all y ∈ [K]. (A.24)

Writing 1/P (y) as exp(− logP (y)), and setting c4 = c1
c2c3

, this gives us:

P (y | r, s) = c4 exp(ry + sy − logP (y)), for all y ∈ [K]. (A.25)

Since the LHS is a probability, these must sum to 1 and so c4 must be a normalizing constant, that is, c4 =
1/(

∑
y∈[K] exp(ry + sy − logP (y))). This gives us:

P (y | r, s) = softmax(r + s−m)y, for all y ∈ [K], (A.26)

which is precisely Equation A.15. In the balanced setting, we have P (Y ) = 1/K so we simply fold P (Y ) into the constant
c4, and get:

P (y | r, s) = softmax(r + s)y, for all y ∈ [K], (A.27)

which is precisely Equation A.16.

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. We assumed the “balanced” setting where P (y) = 1/K for all y. From Lemma A.4, letting
fens(x) = fstd(x) + frob(x), we have:

P (y | fstd(x), frob(x)) = softmax(fens(x))y, (A.28)

So this means that the ensemble prediction is the Bayes optimal given (fstd(x), frob(x)):

pred(fens(x)) = argmax
y

fens(x)y = argmax
y

softmax(fens(x))y = argmax
y

P (y | fstd(x), frob(x)). (A.29)

But then from Lemma A.3, any other predictor which uses only (frob(x), fstd(x)) must have higher error. This completes
the proof.

Note that the inequality in the above proof is a strict inequality except in degenerate cases: as long as fstd and frob sometimes
disagree in their predictions, and in some of these cases fstd assigns a higher probability to its predictions, and in some cases
frob assigns a higher probability to its prediction, the inequalities will be strict inequalities.

A.3 PROOF OF PROPOSITION 4.2

Restatement of Proposition 4.2. If the OOD contains a mixture of suppressed features and missing spurious features
i.e., Pood = αPτ + (1 − α)P0, and Pτ and P0 are class-balanced, then we have Errood(fens) ≤ Errood(frob) and
Errood(fens) ≤ Errood(fstd).



Proof. We first note that errors are additive. That is, letting:

Err(P, f) = E[pred(f(x)) 6= y], where x, y ∼ P, (A.30)

we have:
Err(αPτ + (1− α)P0, f) = αErr(Pτ , f) + (1− α)Err(P0, f) (A.31)

So it suffices to prove that the ensemble is better than the standard and robust models for Pτ and P0 separately.

Suppressed features. Let frob(x) = τfrob(x) and fstd(x) = τfstd(x) be scaled versions of the standard and robust models.
Definition 4.2 implies that frob and fstd are calibrated. Since we assumed Pτ is balanced, by Proposition 4.1, fens given
by fens(x) = τfrob(x) + τfstd(x) has optimal error on Pτ . But for all x, the predictions of fens and fens are the same
(multiplying the outputs of a model by a constant does not change the predicted output, which is the argmax). So fens also
has optimal error on Pτ :

Err(Pτ , fens) ≤ Err(Pτ , fstd), and Err(Pτ , fens) ≤ Err(Pτ , frob) (A.32)

Note that these inequalities are strict inequalities except in degenerate cases: as long as fstd and frob sometimes disagree
in their predictions, and in some of these cases fstd assigns a higher probability to its predictions, and in some cases frob
assigns a higher probability to its prediction, the inequalities will be strict inequalities.

Missing spurious. If fstd(x) = 0 almost surely, then fens(x) = frob(x) + fstd(x) = frob(x) almost surely. Furthermore,
if fstd(x) = 0 then its error is lower bounded by 1−maxy P0(y). On the other hand, frob(x) is calibrated and therefore
Bayes-optimal given z = frob(x) so from Lemma A.1 (e.g., see the the discussion below the Lemma for more details) has
error at most 1−maxy P0(y). So we have:

Err(P0, fens) = Err(P0, frob) ≤ Err(P0, fstd) (A.33)

Note that the inequality is a strict inequality except in a degenerate case (where the probability that frob predicts for the most
common class argmaxy P0(y) is the same for all inputs).

A.4 PROOF OF PROPOSITION 4.3

Restatement of Proposition 4.3. If spurious features are anticorrelated OOD so that Pood = Padv, then even if Padv is
class-balanced, Errood(frob) ≤ Errood(fens) ≤ Errood(fstd).

Proof. Let X,Y ∼ Pood, and let Z = (fstd(X), frob(X)) be the predictions of the standard and robust models. Fix
z = (fstd(x), frob(x)), and let s = fstd(x) and r = frob(x). We will analyze the errors for fixed Z = z (showing that the
robust model is better than the ensemble, which is better than the standard model). Since this is true for all z, we then use
Lemma A.1 (which is basically the law of total expectation), to get the desired result.

Bayes-opt classifier. Recall that for some α, β > 0, we have Padv(Y = y|fstd(x)) = softmax(−βfstd(x))y for all x (note
the minus sign), while Padv(Y = y | frob(x)) = softmax(αfrob(x))y . Then, applying Lemma A.4, we have:

Padv(y | (fstd(x), frob(x))) = softmax(αfrob(x)− βfstd(x))y. (A.34)

Rewriting this in terms of z, r, s, we have:

Padv(y | z) = softmax(αr − βs)y. (A.35)

Ensemble vs. robust classifier. Let jrob = argmaxy ry be the robust model’s prediction, and jens = argmaxy(r + s)y be
the ensemble model’s prediction. Because jrob is the argmax of r, we have:

rjrob ≥ rjens . (A.36)

Because jens is the argmax of r + s, we have:

rjens + sjens ≥ rjrob + sjrob . (A.37)



Taking the negation of this, we get:
−rjrob − sjrob ≥ −rjens − sjens . (A.38)

Adding β times Inequality A.38 to (α+ β) times Inequality A.36, we get:

αrjrob − βsjrob ≥ αrjens − βsjens . (A.39)

Since softmax is monotonic, we have:

softmax(αr − βs)jrob ≥ softmax(αr − βs)jens . (A.40)

But from Equation A.35 the LHS is the same as the robust model’s probability of getting the label correct, and the RHS is
the same as the ensemble’s probability of getting the label correct:

Padv(Y = jrob | Z = z) ≥ Padv(Y = jens | Z = z). (A.41)

Taking negations (to get the error), and then the expectation over Z = z, we get (note that below we write the error, which is
why the sign is now flipped):

Errood(fens) ≥ Errood(frob). (A.42)

Which is what we wanted to show.

Ensemble vs. standard classifier. The argument is fairly analogous to the previous case, with some minor differences in the
algebra in the first part. Let jstd = argmaxy sy be the standard model’s prediction. Because jstd is the argmax of s, we
have:

sjstd ≥ sjens . (A.43)

Taking the negation of this, we get:
−sjens ≥ −sjstd . (A.44)

Because jens is the argmax of r + s, we have:

rjens + sjens ≥ rjstd + sjstd . (A.45)

Adding α times Inequality A.45 with (α+ β) times Inequality A.44, we get:

αrjens − βsjens ≥ αrjstd − βsjstd . (A.46)

The rest of this step is the same as in the comparison between the ensemble and the robust model. Since softmax is
monotonic, we have:

softmax(αr − βs)jens ≥ softmax(αr − βs)jstd . (A.47)

But from Equation A.35 the LHS is the same as the robust model’s probability of getting the label correct, and the RHS is
the same as the ensemble’s probability of getting the label correct:

Padv(Y = jens | Z = z) ≥ Padv(Y = jstd | Z = z). (A.48)

Taking negations (to get the error), and then the expectation over Z = z, we get (note that below we write the error, which is
why the sign is now flipped):

Errood(fstd) ≥ Errood(fens). (A.49)

Which is what we wanted to show.

Dealing with class imbalance. Lemma A.4, Equation A.14 shows how to combine models in general, if the class-balanced
assumption does not hold. Note the additional “−m” term. Here, the (marginal) probability of each class is defined in
Equation A.14.

(ID Analysis) Then, the “Proof of Proposition 4.1” is identical for the general case, we just need to set fens(x) =
fstd(x) + frob(x)−m on the first line. Equation A.28 then follows from Lemma A.4, and the rest of the proof is identical.

(OOD Analysis) The OOD results, Proposition 4.2 and 4.3, follow if the class marginal distributions match up between
ID and OOD, so Pid(Y = y) = Pood(Y = y). If the distribution over classes changes substantially, then ensembles can
possibly do worse than the robust model.



B MORE INFORMATION ON EXPERIMENTS

B.1 ADDITIONAL DETAILS ON DATASETS

Here we describe the robustness interventions and datasets in more detail.

Robustness interventions:

1. In-N-Out [Xie et al., 2021]. Many datasets contain a core input x (image or time series data), and metadata z (e.g., loca-
tion or climate data). Xie et al. [2021] show that using the metadata (in addition to x) improves accuracy in-distribution
(ID), but hurts accuracy out-of-distribution. Xie et al. [2021] consider a standard model that takes in both the core
inputs and metadata to predict the target, and a robust model that only takes in the core inputs and does some additional
pretraining. We use official checkpoints from their CodaLab worksheet https://worksheets.codalab.org/
worksheets/0x2613c72d4f3f4fbb94e0a32c17ce5fb0, and compare to the results tagged as “In-N-Out”
on each dataset. They also show results after doing additional self-training on (unlabeled) OOD data, but we do not
compare to this because 1. OOD data is assumed to be unavailable in our setting, and 2. if OOD unlabeled data is
available, we can also start from ID-calibrated ensembles and do additional self-training.

2. Lightweight fine-tuning [Kumar et al., 2022]: When adapting a pretrained model to an ID dataset, typically all the
model parameters are fine-tuned. Recent works show that tuning only parts of the model can often do better OOD even
though the ID performance is worse [Li and Liang, 2021, Houlsby et al., 2019]. On four distribution shift datasets,
we take checkpoints from Kumar et al. [2022] where the standard model starts from a pretrained initialization and
fine-tunes all parameters on an ID dataset, and the robust model only learns the top linear ‘head’ layer.

3. Zero-shot language prompting: Radford et al. [2021] pretrain a model on a large multi-modal language and vision
dataset. The model can then predict the label of an image by comparing the image embedding, with the language
embedding for prompts such as ‘photo of an apple’ or ‘photo of a banana’. They show that this zero-shot language
prompting approach (robust model) can be much more accurate OOD than the traditional method of fine-tuning the
entire model (standard model), although ID accuracy of the robust model is worse. We use model checkpoints and
datasets from Radford et al. [2021].

4. Group distributionally robust optimization (DRO) [Sagawa et al., 2020a]: Standard ERM models often latch on to
spurious correlations in a dataset, such as image background color, or the occurrence of certain words in a sentence.
Group DRO essentially upweights examples where this spurious correlation is not present. The original formulation
in Sagawa et al. [2020a] assumes the spurious correlations are annotated, but newer variants [Liu et al., 2021] can work
even without these annotations.

5. CORAL [Sun and Saenko, 2016] aims to align feature representations across different domains, by penalizing
differences in the means and covariances of the feature distributions. The hope is that this generalizes better to OOD
domains.

We consider three types of natural shifts (geography shifts, subpopulation shifts, style shifts), and we also consider adversarial
spurious shifts.

Geography shifts. In geography shifts the ID data comes from some locations, and the OOD data comes from a different
set of locations. One motivation is that in many developing areas training data may be unavailable because of monetary
constraints [Jean et al., 2016].

1. LandCover [Rußwurm et al., 2020]: The goal is to classify a satellite images into one of 6 land types (e.g., "grassland",
"savannas"). The ID data contains images from outside Africa, and the OOD data consists of images from Africa. We
take model checkpoints from Xie et al. [2021] where they use the In-N-Out intervention—the core feature x is time
series data measured by Nasa’s MODIS satellite, and the spurious metadata z consists of climate data (e.g., temperature)
at that location. We use the ID and OOD dataset splits defined by Xie et al. [2021].

2. Cropland [Wang et al., 2020]: The goal is to predict whether a satellite image is of a cropland or not. The ID dataset
contains images from Iowa, Missouri, and Illinois, and the OOD dataset contains images from Indiana and Kentucky.
We take model checkpoints from Xie et al. [2021] where they use the In-N-Out intervention—the core feature x is an
RGB satellite image, and the spurious metadata z consists of location coordinates and vegetation bands. We use the ID
and OOD dataset splits defined by Xie et al. [2021].

3. iWildCam [Beery et al., 2020, Koh et al., 2021]: The goal is to classify the species of an animal given a photo
taken by a camera placed in the wild (e.g., in a forest). The ID dataset consists of photos taken by over 200 cameras,

https://worksheets.codalab.org/worksheets/0x2613c72d4f3f4fbb94e0a32c17ce5fb0
https://worksheets.codalab.org/worksheets/0x2613c72d4f3f4fbb94e0a32c17ce5fb0


and the OOD dataset consists of photos taken by held-out cameras. We use the splits by Koh et al. [2021]. We
take model checkpoints from Koh et al. [2021], where the standard model is trained via standard empirical risk
minimization (ERM), and the robust model is trained via CORAL. The model checkpoints were taken from https:
//worksheets.codalab.org/worksheets/0x036017edb3c74b0692831fadfe8cbf1b.

Subpopulation shifts. In subpopulation shifts, the ID data contains a few sub-categories (e.g., black bear and sloth bear),
and the OOD data contains different sub-categories (e.g., brown bears and polar bears) or the same parent category (e.g.,
bears). For both datasets below, we take model checkpoints from Kumar et al. [2022] where they use the lightweight
fine-tuning intervention, starting from a MoCo-v2 ResNet-50 model pretrained on unlabeled ImageNet images. The datasets
are from Santurkar et al. [2020].

1. Living-17 [Santurkar et al., 2020]: the goal is to classify an image as one of 17 animal categories such as “bear” - the
ID dataset contains images of black bears and sloth bears and the OOD dataset has images of brown bears and polar
bears.

2. Entity-30 [Santurkar et al., 2020]: similar to Living-17, except the goal is to classify an image as one of 30 entity
categories such as “food”, “motor vehicle”, and “index”.

Style shifts. In style shifts, the ID data contains data in a certain style (e.g., sketches), and the OOD data contains data in a
different style (e.g., real photos, renditions).

1. DomainNet [Peng et al., 2019]: a standard domain adaptation dataset. Here, our ID dataset contains “sketch” images
(e.g., drawings of apples, elephants, etc), and the OOD dataset contains “real” photos of the same categories. We take
model checkpoints from Kumar et al. [2022] where they use the lightweight fine-tuning intervention, starting from a
CLIP ResNet-50 model.

2. CelebA [Liu et al., 2015]: the goal is to classify a portrait of a face as “male” or “female” - the ID dataset contains
images of people without hats, and the OOD dataset contains images of people wearing hats (some facial features
might be “suppressed” or “missing” with hats). We take model checkpoints from Xie et al. [2021] where they use the
In-N-Out intervention—the core feature x is the RGB image, and the spurious metadata z consists of 7 attribute tags
annotated in the dataset (e.g., presence of makeup, beard).

3. CIFAR->STL: standard domain adaptation dataset [French et al., 2018], where the ID is CIFAR-10 [Krizhevsky, 2009],
and the OOD is STL [Coates et al., 2011]. The task is to classify an image into one of 10 categories such as “dog”,
“cat”, or “airplane”. We take model checkpoints from Kumar et al. [2022] where they use the lightweight fine-tuning
intervention, starting from a MoCo-v2 ResNet-50 model pretrained on unlabeled ImageNet images.

4. ImageNet [Russakovsky et al., 2015]: a large scale dataset where the goal is to classify an image into one of 1000
categories. We use the zero-shot language prompting intervention using a CLIP ViT-B/16 vision transformer model.
We evaluate on 3 standard OOD datasets: ImageNetV2 [Recht et al., 2019],ImageNet-R [Hendrycks et al., 2020], and
ImageNet-Sketch [Wang et al., 2019].

Adversarial spurious shifts. In adversarial spurious shifts, the ID dataset contains a feature that is correlated with a label,
but this correlation is flipped OOD.

1. Waterbirds [Sagawa et al., 2020a]: The goal is to classify an image as a “waterbird” or “landbird”. The dataset is
synthetically constructed to have adversarially spurious features: “water” backgrounds are correlated with “waterbird”
labels in the ID, but anticorrelated OOD. We use checkpoints from Jones et al. [2021] where they use the group DRO
intervention.

2. MNLI [Williams et al., 2018]: The goal is to predict whether a hypothesis is entailed, contradicted by, or neutral to
an associated premise. We use the splits in Sagawa et al. [2020a]—they partition the dataset so that in-distribution
“negation” words “nobody”, “no”, “never”, and “nothing” are correlated with the contradiction label, however in the
OOD dataset these words are anticorrelated with the contradiction label. We use checkpoints from Jones et al. [2021]
where they use the group DRO intervention.

3. CivilComments [Borkan et al., 2019]: The goal is to predict whether a comment is toxic or not. We use the splits
in Sagawa et al. [2020a]—they partition the dataset where in the ID split mentions of a Christian identity are correlated
with non-toxic comments, but in the OOD split mentions of a Christian identity are correlated with a toxic comment.
We use checkpoints from Jones et al. [2021] where they use the group DRO intervention. CivilComments is also used
in Koh et al. [2021].

https://worksheets.codalab.org/worksheets/0x036017edb3c74b0692831fadfe8cbf1b
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Table 4: ID accuracies: The in-distribution accuracies of calibrated ensembles, tuned ensembles, and vanilla ensembles are
very close (within confidence intervals), so any of these methods are acceptable if we are looking at in-distribution accuracy.
However, they perform quite differently when it comes to OOD accuracy (Table 5).

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Logits 93.7 (0.1) 89.3 (0.6) 97.3 (0.1) 97.1 (0.2) 77.4 (0.1) 95.5 (0.1) 93.4 (0.6)
Probs 93.7 (0.1) 89.1 (0.4) 97.3 (0.1) 97.1 (0.2) 77.4 (0.2) 95.5 (0.1) 93.4 (0.6)

Tuned Logits 93.8 (0.0) 91.3 (0.2) 97.4 (0.1) 97.1 (0.1) 77.3 (0.4) 95.6 (0.1) 94.8 (0.2)
Tuned Probs 93.8 (0.1) 90.6 (0.7) 97.4 (0.1) 97.2 (0.1) 77.1 (0.3) 95.5 (0.1) 95.0 (0.2)

Calibrated Logits 93.7 (0.1) 91.1 (0.4) 97.2 (0.1) 97.2 (0.2) 77.2 (0.2) 95.6 (0.1) 94.5 (0.5)
Calibrated Probs 93.7 (0.1) 91.2 (0.7) 97.2 (0.1) 97.2 (0.2) 77.2 (0.2) 95.6 (0.1) 94.5 (0.5)

ImageNet iWildCam MNLI Waterbirds Comments

Logits 82.1 (-) 84.2 (-) 82.9 (-) 90.1 (-) 90.4 (-)
Probs 82.1 (-) 83.9 (-) 82.9 (-) 90.1 (-) 90.4 (-)

Tuned Logits 82.7 (-) 84.1 (-) 83.0 (-) 93.2 (-) 92.7 (-)
Tuned Probs 82.3 (-) 83.9 (-) 83.0 (-) 93.2 (-) 92.6 (-)

Calibrated Logits 82.0 (-) 84.3 (-) 82.8 (-) 92.9 (-) 91.4 (-)
Calibrated Probs 82.0 (-) 84.0 (-) 82.8 (-) 92.9 (-) 91.4 (-)

B.2 PER-DATASET RESULTS ON ENSEMBLING ABLATIONS

In Section 6.2 we ablated calibrated ensembles with “tuned” ensembles where the ensemble weights are tuned on in-
distribution validation data, and with vanilla ensembles. Here, we show per-dataset results both ID (Table 4) and OOD
(Table 5).

In Section 6.2, We also compared calibrated ensembles (of one standard and one robust model) with ensembles of two
standard models, and ensembles of two robust models, where for a fair comparison all models are calibrated. We ran this
ablation on 6 of the 14 datasets (Entity-30, DomainNet, CIFAR→STL, Living-17, Landcover, Cropland, and CelebA)
because it requires multiple standard and multiple robust models, which were not available or very expensive to run on large
datasets like ImageNet. Calibrated ensembles get an average ID accuracy of 91.8% (vs. 89.7% for a robust-robust ensemble
and 90.7% for a standard-standard ensemble), and an average OOD accuracy of 76.5% (vs. 76.2% for a robust-robust
ensemble and 68.8% for a standard-standard ensemble). We show per-dataset results in Table 6 (ID) and Table 7 (OOD). We
show per-dataset results both ID (Table 6) and OOD (Table 7).

B.3 PER-DATASET RESULTS ON CALIBRATION AND CONFIDENCE

Relative confidence can be incorrect. We measure the confidence of a model f on a distribution P as conf(f, P ) =
Ex∼P [maxi f(x)i]. Even if the models are not calibrated OOD, one intuitive intuition for why calibrated ensembles work is
that that robust model has higher confidence OOD, so that the ensemble primarily uses the (more accurate) robust model’s
predictions OOD. However, on the remote sensing dataset Landcover we find that the robust model is 6% less confident
on OOD data than the standard model even though the robust model is 5% more accurate OOD than the standard model.
Interestingly, calibrated ensembles are able to combine the models in a more fine-grained way to get the best of both worlds,
which is captured in our stylized setting in Section 4. We show the average confidence of the standard and robust models for
each dataset ID (Table 10) and OOD (Table 11).

Per-dataset results for ECE. In Section ??, we talked about the ECE of the standard and robust models after calibrating on
ID data. Here we show the results for each dataset ID (Table 8) and OOD (Table 9). We also show the ECE of the standard
and robust models before calibrating on ID data, on ID (Table 12) and on OOD (Table 13).



Table 5: OOD accuracies: calibrated ensembles outperform vanilla ensembles and even tuned ensembles where the
combination weights are tuned to maximize in-distribution accuracy. Averaged across the datasets, calibrated ensembles get
an OOD accuracy of 74.7%, while tuned ensembles get an accuracy of 72.1%. The in-distribution accuracies of the methods
are very close (within 0.2% of each other).

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Logits 64.9 (0.3) 75.7 (1.2) 87.3 (0.2) 81.8 (0.4) 60.5 (0.8) 90.9 (0.2) 76.9 (0.9)
Probs 64.6 (0.4) 78.7 (1.3) 87.2 (0.2) 81.8 (0.4) 59.5 (1.0) 90.9 (0.2) 76.9 (0.9)

Tuned Logits 64.6 (0.6) 86.3 (0.6) 85.7 (0.9) 80.8 (0.7) 58.7 (1.2) 87.3 (5.7) 77.5 (1.3)
Tuned Probs 62.8 (0.7) 86.9 (0.2) 85.0 (1.3) 81.6 (0.5) 58.7 (2.2) 86.8 (5.5) 77.6 (1.7)

Calibrated Logits 65.0 (0.4) 84.4 (0.3) 87.5 (0.2) 82.0 (0.4) 61.2 (0.8) 91.3 (0.8) 77.6 (1.2)
Calibrated Probs 64.7 (0.5) 86.1 (0.2) 87.3 (0.2) 82.2 (0.6) 60.8 (0.8) 91.3 (0.8) 77.6 (1.2)

ImNet-R ImNet-V2 ImNet-Sk iWildCam MNLI Waterbirds Comments

Logits 73.1 (-) 73.7 (-) 52.1 (-) 66.2 (-) 73.1 (-) 66.9 (-) 76.0 (-)
Probs 77.5 (-) 73.4 (-) 52.0 (-) 65.3 (-) 72.4 (-) 66.9 (-) 76.0 (-)

Tuned Logits 64.7 (-) 73.6 (-) 47.9 (-) 66.0 (-) 68.0 (-) 88.1 (-) 60.3 (-)
Tuned Probs 64.0 (-) 72.6 (-) 45.5 (-) 65.3 (-) 69.4 (-) 88.1 (-) 61.5 (-)

Calibrated Logits 73.7 (-) 73.6 (-) 52.3 (-) 66.1 (-) 73.6 (-) 81.1 (-) 71.8 (-)
Calibrated Probs 77.9 (-) 73.2 (-) 52.3 (-) 66.3 (-) 73.2 (-) 81.1 (-) 71.8 (-)

Table 6: ID accuracies: Calibrated ensembles (one standard and one robust model) achieve comparable or better performance
to Standard ensembles (ensemble of two calibrated standard models) and Robust ensembles (ensemble of two calibrated
robust models).

Ent30 DomNet CIFAR10 Liv17 Land CelebA

Std Ensemble 94.0 (0.0) 86.3 (0.4) 97.7 (0.1) 97.0 (0.3) 77.9 (0.1) 91.7 (0.4)
Rob Ensemble 90.9 (0.2) 89.3 (0.3) 92.0 (0.0) 97.1 (0.1) 73.4 (0.2) 95.2 (0.4)
Cal ensemble 93.7 (0.1) 91.2 (0.7) 97.2 (0.1) 97.2 (0.2) 77.2 (0.2) 94.5 (0.5)

Table 7: OOD accuracies: Calibrated ensembles (one standard and one robust model) achieve comparable or better
performance to Standard ensembles (ensemble of two calibrated standard models) and Robust ensembles (ensemble of two
calibrated robust models).

Ent30 DomNet CIFAR10 Liv17 Land CelebA

Std Ensemble 61.7 (0.2) 57.9 (0.2) 83.5 (0.2) 78.6 (0.4) 57.5 (0.7) 73.7 (1.1)
Rob Ensemble 63.8 (0.4) 87.5 (0.1) 85.1 (0.1) 82.4 (0.1) 60.5 (1.4) 78.0 (0.6)
Cal ensemble 64.7 (0.5) 86.1 (0.2) 87.3 (0.2) 82.2 (0.6) 60.8 (0.8) 77.6 (1.2)



Table 8: ID ECE: The expected calibration error (ECE) of the standard and robust models on ID test data, after post-
calibration in ID validation data. The ID calibration errors are low—note that we only use 500 examples to temperature scale,
so for ImageNet we have fewer examples than classes for post-calibration, but the models are still fairly well calibrated.

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Cal. Standard 0.7 (0.1) 2.0 (0.3) 0.8 (0.2) 1.3 (0.2) 1.1 (0.5) 1.4 (0.3) 2.7 (0.4)
Cal. Robust 1.1 (0.4) 2.2 (0.2) 1.3 (0.2) 1.8 (0.0) 1.7 (0.3) 3.5 (0.2) 1.2 (0.3)

ImageNet iWildCam MNLI Waterbirds Comments

Cal. Standard 1.2 (-) 3.6 (-) 2.2 (-) 1.2 (-) 1.2 (-)
Cal. Robust 2.3 (-) 1.3 (-) 2.5 (-) 0.5 (-) 8.1 (-)

Table 9: OOD ECE: The expected calibration error (ECE) of the standard and robust models on OOD test data, after
calibrating on ID validation data. The calibration errors here are high, especially compared to the ID calibration errors in
Table 8.

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Cal. Standard 15.4 (0.8) 13.6 (1.5) 5.6 (1.1) 11.4 (0.3) 16.4 (0.8) 7.4 (4.8) 11.5 (1.0)
Cal. Robust 14.3 (1.5) 5.5 (0.5) 8.2 (0.0) 8.7 (0.2) 6.5 (1.1) 5.0 (0.3) 14.0 (1.4)

ImNet-R ImNet-V2 ImNet-Sk iWildCam MNLI Waterbirds Comments

Cal. Standard 5.4 (-) 4.0 (-) 10.1 (-) 3.2 (-) 13.2 (-) 17.7 (-) 23.3 (-)
Cal. Robust 4.0 (-) 4.9 (-) 5.1 (-) 2.4 (-) 4.2 (-) 5.5 (-) 6.3 (-)

Table 10: ID Confidences: The confidence of the standard and robust models on ID test data (after calibrating on ID data).
The standard model is typically more confidence than the robust model, which is reasonable since the standard model is also
typically more accurate. There are a few exceptions such as DomainNet, CelebA, and WaterBirds where the standard model
is less confident than the robust model, but the standard model is also less accurate in these cases, so this is also reasonable.

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Cal. Standard 93.1 (0.3) 83.7 (0.4) 96.9 (0.6) 97.0 (0.2) 76.5 (0.9) 95.5 (0.4) 91.7 (0.6)
Cal. Robust 89.9 (0.4) 89.6 (0.1) 91.0 (0.1) 96.0 (0.1) 71.3 (0.5) 94.9 (0.5) 94.7 (0.2)

ImageNet iWildCam MNLI Waterbirds Comments

Cal. Standard 82.1 (-) 82.1 (-) 82.6 (-) 87.9 (-) 93.6 (-)
Cal. Robust 68.1 (-) 82.3 (-) 81.9 (-) 93.2 (-) 87.0 (-)



Table 11: OOD Confidences. The confidence of the standard and robust models on OOD test data (after calibrating on ID
data). The robust model is usually more confident than the standard model, which is reasonable since the robust model is
also typically more accurate. However, Landcover is a noticable exception: the robust model is less confident OOD, even
though it is more accurate (see Table 3).

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Cal. Standard 76.1 (0.8) 68.9 (1.5) 87.8 (1.2) 89.2 (0.5) 72.0 (1.9) 92.8 (1.0) 85.5 (1.5)
Cal. Robust 77.5 (0.4) 92.6 (0.4) 93.3 (0.1) 90.8 (0.2) 66.0 (0.6) 94.1 (0.4) 90.1 (0.1)

ImNet-R ImNet-V2 ImNet-Sk iWildCam MNLI Waterbirds Comments

Cal. Standard 57.8 (-) 75.5 (-) 50.6 (-) 59.1 (-) 77.0 (-) 78.1 (-) 80.1 (-)
Cal. Robust 74.0 (-) 64.2 (-) 53.2 (-) 65.1 (-) 79.7 (-) 92.5 (-) 80.4 (-)

Table 12: ID ECE. The expected calibration error (ECE) of the standard and robust models on ID test data, before calibration
(the key difference from Table 8 is that this is before calibration). We can see that calibration on ID substantially reduces the
ECE on ID data (see Table 8)

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Standard 1.0 (0.1) 8.5 (0.7) 1.2 (0.1) 1.2 (0.1) 6.7 (1.2) 1.5 (0.3) 5.9 (0.5)
Robust 1.1 (0.3) 5.8 (1.3) 1.1 (0.2) 3.4 (0.4) 1.3 (0.1) 3.5 (0.1) 1.8 (0.2)

ImageNet iWildCam MNLI Waterbirds Comments

Standard 2.2 (-) 10.9 (-) 9.0 (-) 8.2 (-) 3.7 (-)
Robust 2.4 (-) 2.8 (-) 8.2 (-) 14.8 (-) 10.2 (-)

Table 13: OOD ECE: The expected calibration error (ECE) of the standard and robust models on OOD test data, before
calibration (the key difference from Table 9 is that this is before calibration). The calibration errors here are higher than the
ID calibration errors in Table 12. Comparing with Table 9 (which is after calibration on ID data), we see that calibrating ID
does help OOD calibration a little, although the models still remain miscalibrated OOD.

Ent30 DomNet CIFAR10 Liv17 Land Crop CelebA

Standard 19.1 (0.3) 29.5 (0.5) 10.1 (0.3) 11.7 (0.4) 24.7 (1.5) 8.3 (4.3) 17.6 (0.5)
Robust 14.3 (1.6) 1.8 (0.8) 8.4 (0.3) 6.8 (0.2) 7.1 (1.3) 8.4 (0.7) 12.7 (0.7)

ImNet-R ImNet-V2 ImNet-Sk iWildCam MNLI Waterbirds Comments

Standard 7.9 (-) 6.1 (-) 13.3 (-) 19.5 (-) 22.7 (-) 31.8 (-) 30.0 (-)
Robust 3.9 (-) 5.2 (-) 5.2 (-) 5.3 (-) 10.3 (-) 10.4 (-) 9.9 (-)
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