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Appendices570

A Notations571

Table 2: List of Notations

S,A, A State and action spaces, and A = |A|.
�(S) The set of distributions supported by S.
d̄ The expectation of any real-valued distribution d, i.e., d̄ = Ey⇠d[y].
[N ] {1, 2, . . . , N} for any natural number N .
Z

⇡

h
(x, a) Distribution of

P
H

t=h
ct given xh = x, ah = a rolling in from ⇡.

Q
⇡

h
(x, a), V ⇡

h
(x) Q

⇡

h
(x, a) = Z̄

⇡

h
(x, a) and V

⇡

h
= Ea⇠⇡(x)[Q

⇡

h
(x, a)].

⇡
? Optimal policy, i.e., ⇡? = argmin

⇡
V

⇡

1 (x1).
Without loss of optimality, we take ⇡

? : X ! A to be Markov & deterministic.
Z

?

h
, Q

?

h
, V

?

h
Z

⇡

h
, Q

⇡

h
, V

⇡

h
with ⇡ = ⇡

?, the optimal policy.
T

⇡

h
, T

?

h
The Bellman operators that act on functions.

T
⇡,D

h
, T

?,D

h
The distributional Bellman operators that act on conditional distributions.

V
⇡
, Z

⇡
, V

?
, Z

?
V

⇡ = V
⇡

1 (x1), Z⇡ = Z
⇡

1 (x1). V ?
, Z

? are defined similarly with ⇡
?.

d
⇡

h
(x, a) The probability of ⇡ visiting (x, a) at time h.

C
e⇡ Coverage coefficient maxh

��dde⇡
h/d⌫h

��
1.

D4(f k g) Triangular discrimination between f, g.
H(f k g) Hellinger distance between f, g.
DKL(f k g) KL divergence between f, g.

A.1 Statistical Distances572

Let f, g be distributions over Y . Then,573

D4(f k g) =
X

y

(f(y)� g(y))2

f(y) + g(y)
,

H(f k g) =

s
1

2

X

y

⇣p
f(y)�

p
g(y)

⌘2
,

DKL(f k g) =
X

y

f(y) log(f(y)/g(y)),

DTV (f k g) =
1

2

X

y

|f(y)� g(y)|.

The following standard inequalities will be helpful:574

H
2
 DTV 

p
2H,

2H2
 D4  4H2

, (Lemma A.1)

H 

p
DKL.

Lemma A.1. For any distributions f, g, we have 2H2(f k g)  D4(f k g)  4H2(f k g).575

Proof. Recall that576

D4(f k g) =
R
y

✓
f(y)�g(y)
p

f(y)+g(y)

◆2

.

Applying 1p
f(y)+

p
g(y)


1p
f(y)+g(y)



p
2p

f(y)+
p

g(y)
concludes the proof.577
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B Omitted Algorithms578

In this section, we present the O-DISCO algorithm with Uniform Action Exploration (UAE), as579

described in Section 5.2. We also present versions of O-DISCO and P-DISCO for the reward-580

maximizing setting (instead of the cost-minimizing setting studied throughout the paper); if SMALL-581

RETURN is turned on, we can derive small-return bounds in Appendix I.582

Algorithm 4 O-DISCO (with UAE and small return)
1: Input: number of episodes K, distribution function class F , threshold �, flag UAE, flag

SMALLRETURN.
2: Initialize Dh,0  ; for all h 2 [H], and set F0 = F .
3: Set op = max if SMALLRETURN else op = min.
4: for episode k = 1, 2, . . . ,K do
5: Set f (k) = arg op

f2Fk�1
op

a
f̄1(x1, a).

6: Set ⇡k

h
(x) = arg op

a
f̄
(k)
h

(x, a).
7: if UAE then
8: For each h 2 [H], collect xh,k ⇠ d

⇡
k

h
, ah,k ⇠ unif(A), ch,k ⇠ Ch(xh,k, ah,k), x0

h,k
⇠

Ph(xh,k, ah,k), and augment the dataset Dh,k = Dh,k�1 [

n
(xh,k, ah,k, ch,k, x

0
h,k

)
o

.
9: else

10: Roll out ⇡k and obtain a trajectory x1,k, a1,k, c1,k, . . . , xH,k, aH,k, cH,k.
For each h 2 [H], augment the dataset Dh,k = Dh,k�1 [ {(xh,k, ah,k, ch,k, xh+1,k)}.

11: end if
12: For all (h, f) 2 [H] ⇥ F , sample y

f

h,i
⇠ fh+1(x0

h,i
, a

0) and a
0 = arg op

a
f̄h+1(x0

h,i
, a),

where (xh,i, ah,i, ch,i, x
0
h,i

) is the i-th datapoint of Dh,k. Also, set zf
h,i

= ch,i + y
f

h,i
and

define the confidence set,

Fk =

(
f 2 F :

kX

i=1

log fh(z
f

h,i
| xh,i, ah,i) � max

ef2F

kX

i=1

log efh(zfh,i | xh,i, ah,i)� 7�, 8h 2 [H]

)
.

13: end for
14: Output: ⇡̄ = unif(⇡1:K).

Algorithm 5 P-DISCO (with small return)
1: Input: datasets D1, . . . ,DH , distribution function class F , threshold �, policy class ⇧, flag

SMALLRETURN.
2: For all (h, f,⇡) 2 [H] ⇥ F ⇥ ⇧, sample y

f,⇡

h,i
⇠ fh+1(x0

h,i
,⇡h+1(x0

h,i
)), where

(xh,i, ah,i, ch,i, x
0
h,i

) is the i-th datapoint of Dh. Then, set zf,⇡
h,i

= ch,i + y
f,⇡

h,i
and define

the confidence set,

F⇡ =

(
f 2 F :

NX

i=1

log fh(z
f,⇡

h,i
| xh,i, ah,i) � max

ef2F

NX

i=1

log efh(zf,⇡h,i
| xh,i, ah,i)� 7�, 8h 2 [H]

)
.

3: Set op = max if SMALLRETURN else op = min.
4: For each ⇡ 2 ⇧, define the pessimistic estimate f

⇡ = arg op
f2F⇡

Ea⇠⇡(x1)

⇥
f̄1(x1, a)

⇤
.

5: Output: b⇡ = arg op
⇡2⇧ Ea⇠⇡(x1)

⇥
f̄
⇡

1 (x1,⇡)
⇤
.
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C Proofs for DISTCB583

Lemma C.1 (Azuma). Let {Xi}i2[N ] be a sequence of random variables supported on [0, 1], adapted584

to filtration {Fi}i2[N ]. For any � 2 (0, 1), we have w.p. at least 1� �,585

NX

t=1

E[Xt | Ft�1] 
NX

t=1

Xt +
p
N log(2/�), (Standard Azuma)

NX

t=1

E[Xt | Ft�1]  2
NX

t=1

Xt + 2 log(1/�). (Multiplicative Azuma)

Proof. For standard Azuma, see Zhang [2023, Theorem 13.4]. For multiplicative Azuma, apply586

[Zhang, 2023, Theorem 13.5] with � = 1. The claim follows, since 1
1�exp(��)  2.587

Theorem 4.1. Fix any � 2 (0, 1) and set � = 10A _
r

40A(C?+log(1/�))

112(Regretlog(K)+log(1/�))
. Then, w.p. at588

least 1� �, DISTCB satisfies,589

RegretDISTCB(K)  232
q
AC? Regretlog(K) log(1/�) + 2300A

�
Regretlog(K) + log(1/�)

�
,

where C
? =

P
K

k=1 mina2A C̄(xk, a) is the cumulative cost of the optimal policy.590

Proof of Theorem 4.1. First, recall the per-step inequality of ReIGW Foster and Krishnamurthy591

[2021, Theorem 4], which states: for any bf and � � 2A, if we set p = ReIGW�( bf, �), then, for all592

f 2 [0, 1]A, we have593

P
a
p(a)(f(a)� f(a?))  5A

�

P
a
p(a)f(a) + 7�

P
a
p(a)

( bf(a)�f(a))2

bf(a)+f(a)
,

where a
? = argmin

a
f(a). For any k 2 [K], applying this to bf = f̄

(k)(sk, ·), p = pk and594

f = C̄(sk, ·), we have595

KX

k=1

Eak

⇥
C̄(sk, ak)� C̄(sk,⇡

?(sk))
⇤


KX

k=1

Eak

"
5A

�
C̄(sk, ak) + 7�

�
f̄
(k)(sk, ak)� C̄(sk, ak)

�2

f̄ (k)(sk, ak) + C̄(sk, ak)

#



KX

k=1

Eak


5A

�
C̄(sk, ak) + 7�D4(f (k)(sk, ak) k C(sk, ak))

�

(Eq. (41))

Since D4  4H2, we have596

KX

k=1

Eak

h
D4(f (k)(sk, ak) k C(sk, ak))

i

 4
KX

k=1

Eak

h
H

2
⇣
C(sk, ak) k f

(k)(sk, ak)
⌘i

 8
KX

k=1

H
2
⇣
C(sk, ak) k f

(k)(sk, ak)
⌘
+ 8 log(1/�) (Multiplicative Azuma, since H

2
2 [0, 1])

 8Regretlog(K) + 10 log(1/�). (Foster et al. [2021, Lemma A.14])

Hence, we have597

KX

k=1

Eak

⇥
C̄(sk, ak)� C̄(sk,⇡

?(sk))
⇤


5A

�

KX

k=1

Eak

⇥
C̄(sk, ak)

⇤
+ 70�

�
Regretlog(K) + log(1/�)

�
.
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Finally, recalling that 1/(1� ")  1 + 2" when " 
1
2 , and the fact that 5A

�


1
2 , we have598

KX

k=1

Eak

⇥
C̄(sk, ak)� C̄(sk,⇡

?(sk))
⇤


10A

�

KX

k=1

Eak

⇥
C̄(sk,⇡

?(sk))
⇤
+ 140�

�
Regretlog(K) + log(1/�)

�
.

By Azuma’s inequality, we have599

KX

k=1

C̄(sk, ak)� C̄(sk,⇡
?(sk))

 2
KX

k=1

Eak

⇥
C̄(sk, ak)� C̄(sk,⇡

?(sk))
⇤
+ 2 log(1/�)


20A

�

KX

k=1

Eak

⇥
C̄(sk,⇡

?(sk))
⇤
+ 140�

�
Regretlog(K) + log(1/�)

�
+ 2 log(1/�)


40A

�
(C? + log(1/�)) + 140�

�
Regretlog(K) + log(1/�)

�
+ 2 log(1/�).

Now set � =
r

40A(C?+log(1/�))

140(Regretlog(K)+log(1/�))
_ 10A.600

Case 1 is when
r

40A(C?+log(1/�))

140(Regretlog(K)+log(1/�))
 10A, i.e., (C? + log(1/�)) 601

280A
�
Regretlog(K) + log(1/�)

�
, we have the above is at most602

4(C? + log(1/�)) + 1120A
�
Regretlog(K) + log(1/�)

�
+ 2 log(1/�)

 2240A
�
Regretlog(K) + log(1/�)

�
+ 2 log(1/�).

Case 2 is when the left term dominates, then the bound is,603

2
q
4480A(C? + log(1/�))

�
Regretlog(K) + log(1/�)

�
+ 2 log(1/�)

 2
q
13440AC? Regretlog(K) log(1/�) + 4480A log2(1/�) + 2 log(1/�)

 232
q
AC? Regretlog(K) log(1/�) + 134

p

A log(1/�) + 2 log(1/�).

Putting these two cases together, we have the result.604

D Placeholder605

This section used to contain information that is no longer needed. We kept this placeholder section to606

ensure the main text’s references to the appendix are consistent.607
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E Maximum Likelihood Estimation608

This section reviews generalization bounds for the maximum likelihood estimator (MLE). We adopt609

the same sequential condition probability estimation setup as in Agarwal et al. [2020, Appendix E],610

which we now recall for completeness. Let X be the context/feature space and Y be the label space,611

and we are given a dataset D = {(xi, yi)}i2[n] from a martingale process: for i = 1, 2, ..., n, sample612

xi ⇠ Di(x1:i�1, y1:i�1) and yi ⇠ p(· | xi). Let f?(x, y) = p(y | x) and we are given a realizable,613

i.e., f?
2 F , function class F : X ⇥Y ! �(R) of distributions. The MLE is an estimate for f? that614

maximizes the log-likelihood objective over our dataset:615

bfMLE = argmax
f2F

nX

i=1

log f(xi, yi).

For our guarantees to hold for general hypotheses classes F , we use the bracketing number to quantify616

the statistical complexity of F [van de Geer, 2000].617

Definition E.1 (Bracketing Number). Let G be a set of functions mapping X ! R. Given two618

functions l, u such that l(x)  u(x) for all x 2 X , the bracket [l, u] is the set of functions g 2 G619

such that l(x)  g(x)  u(x) for all x 2 X . We call [l, u] an "-bracket if ku� lk  ". Then, the620

"-bracketing number of G with respect to k·k, denoted by N[](",G, k·k) is the minimum number of621

"-brackets needed to cover G.622

Since the triangular discrimination is equivalent to squared Hellinger up to universal constants, we623

now prove MLE generalization bounds in terms of squared Hellinger.624

Lemma E.2. Let f1 : X ! �(Y) and f2 : X ⇥ Y ! R+ satisfying sup
x2X

R
Y f2(x, y)dy  s,625

then for any distribution D 2 �(X ), we have626

Ex⇠D
⇥
H

2(f1(x) k f2(x, ·))
⇤
 (s� 1)� 2 logEx⇠D,y⇠f1(x) exp

✓
�
1

2
log(f1(x, y)/f2(x, y))

◆
.

Proof. This follows from the proof of Wu et al. [2023, Lemma C.1].627

Lemma E.3. Fix � 2 (0, 1). Then w.p. at least 1� �, for any f 2 F , we have628

nX

i=1

Ex⇠Di

⇥
H

2(f(x, ·) k f?(x, ·))
⇤

 6n✏|Y|+ 2
nX

i=1

log
�
f
?(xi, yi)/f(xi, yi)

�
+ 8 log

�
N[](✏,F , k · k1)/�

�
. (2)

Rearranging, we also have629

nX

i=1

log
�
f(xi, yi)/f

?(xi, yi)
�
 3n✏|Y|+ 4 log

�
N[](✏,F , k · k1)/�

�
. (3)

Proof. We take an ✏-bracketing of F , {[li, ui] : i = 1, 2, . . . }, and denote eF = {ui : i = 1, 2, . . . }.630

Applying Lemma 24 of Agarwal et al. [2020] to function class eF and using Chernoff method, w.p. at631

least 1� �, for all f̃ 2 eF , we have632

� log E
D0

exp(L(f̃(D), D0))
| {z }

(i)

 �L(f̃(D), D) + 2 log
�
N[](✏,F , k · k1)/�

�
| {z }

(ii)

. (4)

Now, fix any f 2 F and pick f̃ 2 eF as the upper bracket, i.e., f  f̃ . Now set L(f,D) =633 P
n

i=1�
1/2 log(f?(xi, yi)/f(xi, yi)). Then the right hand side of (4) is634

(ii) =
1

2

nX

i=1

log(f?(xi, yi)/f̃(xi, yi)) + 2 log
�
N[](✏,F , k · k1)/�

�


1

2

nX

i=1

log(f?(xi, yi)/f(xi, yi)) + 2 log
�
N[](✏,F , k · k1)/�

�
.
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On the other hand, since H is a metric, we have635

nX

i=1

E
x⇠Di

H
2 (f(x, ·), f?(x, ·)) 

nX

i=1

E
x⇠Di

⇣
H

⇣
f(x, ·), f̃(x, y)

⌘
+H

⇣
f̃(x, y), f?(x, ·)

⌘⌘2

2
nX

i=1

E
x⇠Di

H
2
⇣
f(x, ·), f̃(x, y)

⌘

| {z }
(iii)

+2
nX

i=1

E
x⇠Di

H
2
⇣
f̃(x, y), f?(x, ·)

⌘

| {z }
(iv)

.

For (iii), by the definition, we have f̃(x, y)� f(x, y) 2 [0, ✏] for all x, so636

(iii) =
nX

i=1

E
x⇠Di

H
2
⇣
f(x, ·), f̃(x, y)

⌘


nX

i=1

E
x⇠Di

2

Z

y

���f(x, y)� f̃(x, y)
���dy  2n✏|Y|.

For (iv), we apply Lemma E.2 with f1 = f
? and f2 = f̃ (thus s = 1 + ✏|Y|) and get637

(iv) =n✏|Y|� 2
nX

i=1

log E
x,y⇠f?(x,·)

exp

✓
�
1

2
log

⇣
f
?(x, y)/f̃(x, y)

⌘◆

=n✏|Y|� 2
nX

i=1

log E
x,y⇠Di

exp

✓
�
1

2
log

⇣
f
?(x, y)/f̃(x, y)

⌘◆

=n✏|Y|� 2 log E
x,y⇠D0

"
exp

 
nX

i=1

�
1

2
log

⇣
f
?(x, y)/f̃(x, y)

⌘!�����D
#

=n✏|Y|+ 2 · (i).

By plugging (iii) and (iv) back we get638

nX

i=1

E
x⇠Di

H
2 (f(x, ·), f?(x, ·))  6n✏|Y|+ 4 · (i).

Notice that (i)  (ii), so we complete the proof by plugging (ii) into the above.639

We first state the MLE generalization result for finite F .640

Theorem E.4. Suppose F is finite. Fix any � 2 (0, 1), set � = log(|F|/�) and define641

bF =

(
f 2 F :

nX

i=1

log f(xi, yi) � max
ef2F

nX

i=1

ef(xi, yi)� 4�

)
.

Then w.p. at least 1� �, the following holds:642

(1) The true distribution is in the version space, i.e., f
?
2 bF .643

(2) Any function in the version space is close to the ground truth data-generating distribution,644

i.e., for all f 2 bF645

nX

i=1

Ex⇠Di

⇥
H

2(f(x, ·) k f?(x, ·))
⇤
 22�.

Proof. These two claims follow from Lemma E.3 with ✏ = 0, and so N[](✏,F , k · k1) = |F|. For646

(1), apply Eq. (3) to f = bfMLE to see that f?
2 bF . For (2), apply Eq. (2) and note that the sum term647

is at most 4�. Thus, the right hand side of Eq. (2) is at most (6 + 8 + 8)� = 22�.648

We now state the result for infinite F using bracketing entropy.649
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Theorem E.5. Fix any � 2 (0, 1), set � = log(N[]((n|Y|)�1
,F , k · k1)/�) and define650

bF =

(
f 2 F :

nX

i=1

log f(xi, yi) � max
ef2F

nX

i=1

ef(xi, yi)� 7�

)
.

Then w.p. at least 1� �, the following holds:651

(1) The true distribution is in the version space, i.e., f
?
2 bF .652

(2) Any function in the version space is close to the ground truth data-generating distribution,653

i.e., for all f 2 bF654

nX

i=1

Ex⇠Di

⇥
H

2(f(x, ·) k f?(x, ·))
⇤
 28�.

Proof. These two claims follow from Lemma E.3 with ✏ = 1/n|Y|. For (1), apply Eq. (3) to f = bfMLE655

to see that f?
2 bF . For (2), apply Eq. (2) and note that the sum term is at most 7�. Thus, the right656

hand side of Eq. (3) is at most (6 + 14 + 8)� = 28�.657

F Confidence set construction with general function class658

In this section, we extend the confidence set construction of O-DISCO and P-DISCO to general F ,659

which can be infinite. Our procedure constructs the confidence set by performing the thresholding660

scheme on an "-net of F . While constructing an "-net for F is admittedly a computationally hard661

procedure, this is still information theoretically possible and our focus in O-DISCO and P-DISCO662

is to show that distributional RL information-theoretically leads to small-loss bounds.663

We first define some notations. Let F# and F
" denote a lower and upper "-bracketing of F ,664

i.e., for any f 2 F , there exists an "-bracket [f#
, f

"] such that for all h, f#
h
 fh  f

"
h

with665

f
#
2 F

#
, f

"
2 F

". Recall that a lower bracket g 2 F
# may not be a valid distribution, but since666

elements of F map to non-negative values, we can assume g has non-negative entires as well. Also,667

we have ↵g

h
(x, a) :=

R
gh(z | x, a) � 1� ", so for " small enough, g is normalizable. Hence, define668

eg(z | x, a) = ↵
g

h
(x, a)�1

g(z | x, a) as the normalized version, which is a valid distribution that we669

can sample from.670

Now, consider any martingale {xh,i, ah,i, ch,i}i2[n],h2[H], which could be the online data up to671

episode k or the offline data (consisting of N i.i.d. samples). We define the MLE with re-672

spect to a lower bracket element as follows. For any h 2 [H], g 2 F
#
,⇡ 2 ⇧, sample673

y
g,⇡

h,i
⇠ egh+1(x0

h,i
,⇡(x0

h,i
)), and z

g,⇡

h,i
= ch,i + y

g,⇡

h,i
, define the MLE solution for (g,⇡) at time674

h as,675

MLEg,⇡

h
= argmax

f2F

nX

i=1

log fh(z
g,⇡

h,i
| xh,i, ah,i).

Also, define the version space with respect to the above MLE as,676

Fg,⇡,h =

(
f 2 F :

nX

i=1

log fh(z
g,⇡

h,i
| xh,i, ah,i) �

nX

i=1

log MLEg,⇡

h
(zg,⇡

h,i
| xh,i, ah,i)� �

)
.

We now prove a key result that implies that T ⇡

h
f
#
h+1 falls into the confidence set Ff#,⇡,h.677

Theorem F.1. For any � 2 (0, 1) and suppose n � 2. Then, w.p. at least 1� �, for any h 2 [H], g 2678

F , f
#
2 F

#
,⇡ 2 ⇧, we have679

nX

i=1

log gh(z
f
#
,⇡

h,i
| xh,i, ah,i)� log T ⇡

h
f
#
h+1(z

f
#
,⇡

h,i
| xh,i, ah,i)  log(e4N[](n

�1
,F , k·k1)2|⇧|/�).

where z
f
#
,⇡

h,i
= ch,i + y

f
#
,⇡

h,i
and y

f
#
,⇡

h,i
⇠ ef#

h+1(· | x
0
h,i

,⇡h+1(x0
h,i

)).680
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Proof of Theorem F.1. Consider a "-bracketing of F where "  1/n  1/2; we will study each681

element and conclude with a union bound. For any lower bracket l and upper bracket u in the682

bracketing (note l, u need not correspond to the same bracket). Recall that ↵l

h+1(x, a) :=
R
lh+1(z |683

x, a), so we have 1� "  ↵
l

h+1  1 since l is a lower "-bracket of distributions. Therefore, we have684

E
"
exp

nX

i=1

log

 
uh(z

l,⇡

h,i
| xh,i, ah,i)

T ⇡

h
lh+1(z

l,⇡

h,i
| xh,i, ah,i)

!#
=

nY

i=1

E⌫h,i

"
uh(z
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h,i
| xh,i, ah,i)

T ⇡

h
lh+1(z

l,⇡

h,i
| xh,i, ah,i)

#
,

where ⌫h,i is the distribution of data from i-th round and time h. Note that ⌫h,i(x, a, c, x0) =685

dh,i(x, a)Ch(c | x, a)Ph(x0
| x, a) for some distribution dh,i(x, a). Now focus on each i, so for all i,686

we have687

E⌫h,i

"
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#

=
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0
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Z

z
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0
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0
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1R
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=
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Z

z
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�1


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1� "
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2"

1� "
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4

n
.

Therefore,688

E
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exp
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log
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| xh,i, ah,i)
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h
lh+1(z

l,⇡

h,i
| xh,i, ah,i)

!#
 (1 + 4/n)n  e

4
.

Thus, by Markov’s inequality, w.p. at least 1� �, we have689

nX

i=1

log

 
uh(z

l,⇡

h,i
| xh,i, ah,i)

T ⇡

h
lh+1(z

l,⇡

h,i
| xh,i, ah,i)

!
 ln(e4/�).

To conclude, apply union bound to get this result for all brackets.690

For the remainder of this section, we assume the policy class ⇧ is finite. However, it is possible691

to extend our results using policy covers in the Hamming distance; in that case, log|⇧| would be692

replaced by the log covering number or entropy integral of ⇧ [as in Zhou et al., 2023, Kallus et al.,693

2022]. We note that for the online case, we rely on the assumption that for any f 2 F we have694

⇡
f
2 ⇧, where recall that ⇡f

h
(x) = argmin

a
f̄h(x, a). This is because T

?,D is not a contraction695

so we cannot operate with T
?,D directly and instead operate with T

⇡
f
,D. We highlight that this696

assumption is automatically satisfied in tabular MDPs, since the whole policy space is finite, and697

log|⇧| = O(X log(A)) is lower order compared to log of the bracketing entropy of Ftab, which is698

O(X2
A

2). In contrast, in non-distributional methods such as GOLF, the regular Bellman optimality699

operator is a contraction so standard Lipschitz arguments for covering go through. We note that it is700

also possible to construct covers of F in the Hellinger distance, but the metric entropy of Ftab seems701

to be on the same order as its bracketing entropy.702

We now describe the version space construction for general F , first for the online setting. Fix any k,703

and define the set704

Ff#,⇡,h =
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f 2 F :

kX
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log fh(z
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)

Then, construct the version space as705

Fk =
�
f 2 F : fh 2 Ff#,⇡f ,h, 8h 2 [H]

 
.
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Theorem F.2. Fix any � 2 (0, 1) and suppose Assumption 5.1. Set � = log(KH ·N[](K
�1

,F , k ·706

k1)|⇧|/�). Then, w.p. at least 1� �, the following holds:707

(1) The optimal cost distribution is in the version space, i.e., Z
?
2 Fk.708

(2) For all f 2 Fk and h 2 [H],709
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Proof. First, we want to verify that Z
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2 Fk. Let f

# be the lower bracket of Z
? and set710

g = MLEf
#
,⇡

?

h
2 F ; note ⇡

? = ⇡
Z

?

. By Theorem F.1, we have
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h
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For the second claim, fix any f 2 Fk and h 2 [H]. Then,714
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The � comes from Theorem E.5, and for ", we used the fact that H2
 H  TV , and715

kX

i=1

E⇡i

h
TV (T ⇡

f
,D

h
ef#
h+1(xh, ah) k T

⇡
f
,D

h
fh+1(xh, ah))

i

=
kX

i=1

E⇡i

Z

z

���T ⇡
f
,D

h
ef#
h+1(z | xh, ah)� T

⇡
f
,D

h
fh+1(z | xh, ah))

���

=
kX

i=1

E⇡i

Z

z

X

c,x0

⌫(c, x0
| xh, ah)

��� ef#
h+1(z � c | x

0
,⇡

f (x0))� fh+1(z � c | x
0
,⇡

f (x0))
���



kX

i=1

3" = 3k",

since for any x, a, we have
R
z

��� ef#
h+1(z | x, a)� fh+1(z | x, a)

���  3". There are two cases. If716

ef#
h+1(z | x, a) � fh+1(z | x, a), then ef#

h+1(z | x, a) � fh+1(z | x, a)  (1 � ")�1
f
#
h+1(z |717

x, a) � fh+1(z | x, a)  2"fh+1(z | x, a) since (1 � ")�1
 1 + 2". If ef#

h+1(z | x, a) <718

fh+1(z | x, a), then fh+1(z | x, a) � ef#
h+1(z | x, a)  fh+1(z | x, a) � f

#
h+1(z | x, a)  ". Thus,719 R

z
max(2"fh+1(z | x, a), ") 

R
z
2"fh+1(z | x, a) + " = 3". Thus, setting " = 1/K gives720

kX

i=1

E⇡i

h
H

2(fh(xh, ah) k T
?,D

h
fh+1(xh, ah))

i
 59�.

721

For the offline setting, fix any ⇡ and define its general version space as,722

F⇡ =
�
f 2 F : fh 2 Ff#,⇡,h, 8h 2 [H]

 
.

723
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Theorem F.3. Fix any � 2 (0, 1) and suppose Assumption 5.1. Set � = log(H|⇧| ·724

N[]((n|Y|)�1
,F , k · k1)/�). Then, w.p. at least 1� �, the following holds for all policies ⇡ 2 ⇧:725

(1) The policy cost distribution is in the version space, i.e., Z
⇡
2 F⇡ .726

(2) Any function in the version space has bounded triangular discrimination with the ground727

truth data-generating distribution, i.e., for all f 2 F⇡ and h 2 [H],728

E⌫h

h
H

2(fh(xh, ah) k T
⇡,D

h
fh+1(xh, ah))

i
 60�N�1

.

Proof. The proof is the same as in Theorem F.2, but instead of ⇡f , we fix any ⇡.729
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G Proofs for Online RL730

G.1 Preliminary Lemmas731

Lemma G.1. For any policy ⇡, conditional distribution d and h 2 [H], we have732

T
⇡,D

h
d(x, a) = T

⇡

h
d̄(x, a),

T
?,D

h
d(x, a) = T

?

h
d̄(x, a).

Proof.

T
⇡,D

h
d(x, a) = E

y⇠T ⇡,D
h d(x,a)[y]

= Ec⇠Ch(x,a),x0⇠Ph(x,a),a0⇠⇡h+1(x0),y0⇠d(x0,a0)[c+ y
0]

= C̄h(x, a) + Ex0⇠Ph(x,a),a0⇠⇡h+1(x0),y0⇠d(x0,a0)[y
0]

= C̄h(x, a) + Ex0⇠Ph(x,a),a0⇠⇡h+1(x0)

⇥
d̄(x0

, a
0)
⇤

= T
⇡

h
d̄(x, a).

733

T
?,D

h
d(x, a) = E

y⇠T ?,D
h d(x,a)[y]

= E
c⇠Ch(x,a),x0⇠Ph(x,a),a0=argminea d̄(x0,ea),y0⇠d(x0,a0)[c+ y

0]

= C̄h(x, a) + E
x0⇠Ph(x,a),a0=argminea d̄(x0,ea),y0⇠d(x0,a0)[y

0]

= C̄h(x, a) + E
x0⇠Ph(x,a),a0=argminea d̄(x0,ea)

⇥
d̄(x0

, a
0)
⇤

= C̄h(x, a) + Ex0⇠Ph(x,a)

h
min
a0

d̄(x0
, a

0)
i

= T
?

h
d̄(x, a).

734

Lemma G.2 (Performance Difference Lemma (PDL)). For any f : (X ⇥A! R)H and policies735

⇡,⇡
0
, we have736

V
⇡
� Ea⇠⇡0(x1)[f1(x1, a)] =

HX

h=1

E⇡

h
T

⇡
0

h
fh+1(xh, ah)� fh(xh,⇡

0)
i
. (5)

Proof. We proceed by inducting on the following claim: for all h = H + 1, H, . . . , 1,737

V
⇡

h
(xh)� fh(xh,⇡

0) =
HX

t=h

E⇡,xh

h
T

⇡
0

t
ft+1(xt, at)� ft(xt,⇡

0)
i
.

The base case of H + 1 is trivially true as everything is 0. Now fix any h and suppose the IH at h+ 1738

is true. Then739

V
⇡

h
(xh)� fh(xh,⇡

0)

= E⇡,xh

⇥
ch + V

⇡

h+1(xh+1)� fh+1(xh+1,⇡
0) + fh+1(xh+1,⇡

0)� fh(xh,⇡
0)
⇤

= E⇡,xh

⇥
V

⇡

h+1(xh+1)� fh+1(xh+1,⇡
0)
⇤
+ E⇡,xh [ch + fh+1(xh+1,⇡

0)� fh(xh,⇡
0)].

By the IH, the first term is equal to
P

H

t=h+1 E⇡,xh

h
T

⇡
0

t
ft+1(xt, at)� ft(xt,⇡

0)
i
. The second term740

is exactly E⇡,xh

h
T

⇡
0

h
fh+1(xh, ah)� fh(xh,⇡

0)
i
, which concludes the proof.741
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G.2 General Regret and PAC Bounds742

For our analysis, we define a complexity measure inspired by the Sequential Extrapolation Coefficient743

(SEC) of Xie et al. [2023]. The SEC measures how well a function can be extrapolated on the k-th744

episode, using data from the first k � 1 episodes, and has interesting connections to the coverability745

of the MDP. Recall the definition of SEC for function class  , distribution class D, both indexed by746

h, and number of episodes K:747

SEC( ,D,K) = max
8k:f(k)2 ,d(k)2D

KX

k=1

�
Ed(k)

⇥
f
(k)(z)

⇤�2

1 _
P

i<k
Ed(i)

⇥
f (k)(z)2

⇤ .

Xie et al. [2023] showed that the regret of standard (non-distributional) GOLF can be captured by the748

SEC. However, for our distributional algorithm, we need to define a slightly different term, which we749

call the Linear SEC (LSEC):750

LSEC( ,D,K) := max
8k:f(k)2 ,d(k)2D

KX

k=1

Ed(k)

⇥
f
(k)(z)

⇤

1 _
P

i<k
Ed(i)

⇥
f (k)(z)

⇤ . (6)

The difference with the SEC is that our quantity does not have squares, hence we call it “linear”. By751

Jensen’s inequality, we have SEC(
�
f
2 : f 2  

 
,D,K)  LSEC( ,D,K), which shows that our752

LSEC is in general a larger quantity. Nonetheless, we will show that it is controlled for tabular MDPs.753

For our regret bound, the function class and distribution class are instantiated as, for each h,754

Dh(⇧) = {z 7! d
⇡(z) : ⇡ 2 ⇧} (7)

 h =
�
z 7! D4(f(z) k T ?,D

f(z)) : f 2 F
 
,

where z = (s, a). So let us denote LSEC(K) = maxh LSEC( h,Dh(⇧),K). This quantity will755

appear in our small-loss regret bounds.756

We can also define V-type analogs of LSEC, which we will use for obtaining small-loss PAC bounds757

for latent variable models. The key difference in the V-type LSEC is that the distributions in Dh(⇧)758

are in the form d
⇡(s) · unif(a),i.e.,759

Dh,v(⇧) = {(s, a) 7! d
⇡(s)/A : ⇡ 2 ⇧} (8)

LSECv( ,D,K) = max
h

LSEC( h,Dh,v(⇧),K).

We now prove the our main regret bound.760

Theorem G.3. Assume Assumption 5.1. Fix any � 2 (0, 1) and set � = log(HK|F|/�) and761

�
0 = 60�. Then, w.p. at least 1� �, running O-DISCO (Algorithm 4) with UAE = FALSE yields762

the following small-loss regret bound,763

RegretO-DISCO(K)  5H
p
KV ? LSEC(K)�0 + 18H2 LSEC(K)�0

.

If instead UAE = TRUE, the outputted policy ⇡̄ enjoys the following small-loss PAC bound,764

V
⇡̄
� V

?
 5H

r
AV ? LSECv(K)�0

K
+ 18H2ALSECv(K)�0

K
.

Proof. We first prove the regret bound (UAE = FALSE); the PAC bound follows from the765

same argument. For shorthand, let �h,k(x, a) := D4(f (k)
h

(x, a) k T
?,D

h
f
(k)
h+1(x, a)) and766

�k :=
P

H

h=1 E⇡k [�h,k(xh, ah)]. Notice that since ⇡
k

h+1(x) = argmin
a
f̄
(k)
h+1(x, a), we have767

T
⇡
k
,D

h
f
(k)
h+1(x, a) = T

?,D

h
f
(k)
h+1(x, a), so �h,k(x, a) = D4(f (k)

h
(x, a) k T ⇡

k
,D

h
f
(k)
h+1(x, a)) as well.768

By Theorem F.2, we have the following two facts for all k 2 [K],769

(i) Optimism: mina f̄
(k)
1 (x1, a)  V

? (since Z
?
2 Fk) and770

(ii)
P

i<k
E⇡i [�h,k(sh, ah)]  �

0 for all h. If UAE=TRUE, then ah is sampled from unif(A) rather771

than ⇡
i, i.e., we have

P
i<k

Esh⇠⇡i,ah⇠unif(A)[�h,k(sh, ah)]  �
0, where �

0 . �. Theorem F.2 and772

the fact that D4  4H2 certifies that �0 = 240� is sufficient.773
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Now, fix any episode k 2 [K].774

V
⇡
k

� V
?

 V
⇡
k

�min
a

f̄
(k)
1 (x1, a) (Fact (i))

=
HX

h=1

E⇡k

h
T

⇡
k

h
f̄
(k)
h+1(xh, ah)� f̄

(k)
h

(xh,⇡
k

h
(xh))

i
(PDL Lemma G.2)

=
HX

h=1

E⇡k

h
T

⇡k,D

h
f
(k)
h+1(xh, ah)� f̄

(k)
h

(xh, ah)
i

(Lemma G.1)



HX

h=1

r
E⇡k

h
4f̄ (k)

h
(xh, ah) + �h,k(xh, ah)

i
·

q
E⇡k [�h,k(xh, ah)] (Eq. (42))



HX

h=1

vuut4eV ⇡k + 17H
HX

t=h

E⇡k [�t,k(xt, at)] ·
q
E⇡k [�h,k(xh, ah)]

(Lemma G.4 and E⇡[Q⇡

h
(sh, ah)]  V

⇡)



p
4eV ⇡k + 17H�k ·

p
H�k (F)



p
4eHV ⇡k�k + 5H�k

 2
p

H⌘
�1

V
⇡
k

+ 2
p

H⌘�k + 5H�k.

In F, we used Cauchy Schwartz. Setting ⌘ = 4
p
H and rearranging, we have775

V
⇡
k

 2V ? + 16H�k + 10H�k  2V ? + 26H�k.

Plugging this into F, and noting 104e+ 17  300, we have776

V
⇡
k

� V
?


p
8eV ? + 300H�k

p
H�k.

Thus, summing the instantaneous regrets over all episodes, we get777

KX

k=1

V
⇡
k

� V
?


KX

k=1

p
8eV ? + 300H�k

p
H�k



s
8eKV ? + 300H

X

k

�k

s
H

X

k

�k (Cauchy-Schwartz)

 5

s
HKV ?

X

k

�k + 18H
X

k

�k.

Finally it remains the bound the sum of �k,778

KX

k=1

�k =
HX

h=1

KX

k=1

E⇡k [�h,k(xh, ah)]

1 _
P

k�1
i=1 E⇡i [�h,k(sh, ah)]

·

 
1 _

k�1X

i=1

E⇡i [�h,k(sh, ah)]

!

 H LSEC(K) · �0
. (Fact (ii))

If UAE=TRUE, we instead bound the sum of �k using the V-type LSEC:779

KX

k=1

�k 

HX

h=1

KX

k=1

E⇡k [�h,k(xh, ah)]

1 _
P

k�1
i=1 Esh⇠⇡i,ah⇠unif(A)[�h,k(sh, ah)]

·

 
1 _

k�1X

i=1

Esh⇠⇡i,ah⇠unif(A)[�h,k(sh, ah)]

!

 AH LSECv(K) · �0
. (Fact (ii))

This concludes the proof for both the regret and PAC bounds.780
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Lemma G.4 (Self-bounding lemma). Let f 2 F and let ⇡ be any policy. Let us denote �h(x, a) :=781

D4(fh(x, a) k T
⇡,D

h
fh+1(x, a)). Then, for all h 2 [H], for all xh, ah, we have782

f̄h(xh, ah)  eQ
⇡

h
(xh, ah) + 4H

HX

t=h

E⇡,xh,ah [�t(xt, at)].

Proof. We prove the following refined subclaim inductively: for all h 2 [H], for all xh, ah, we have783

f̄h(xh, ah) 
HX

t=h

✓
1 +

1

H

◆t�h

E⇡,xh,ah [c̄t(xt, at) + 2H�t(xt, at)]. (IH)

For H + 1 this is trivially true. Now fix any h and suppose IH is true for h+ 1. By Eq. (42), for any784

h, xh, ah, we have,785

f̄h(xh, ah)� T
⇡

h
f̄h+1(xh, ah) 

q
4T ⇡

h
f̄h+1(xh, ah) + �h(xh, ah)

p
�h(xh, ah)



q
4T ⇡

h
f̄h+1(xh, ah)�h(xh, ah) + �h(xh, ah)


1

H
T

⇡

h
f̄h+1(xh, ah) + (H + 1)�h(xh, ah). (AM-GM)

In particular, we have that786

f̄h(xh, ah)



✓
1 +

1

H

◆
T

⇡

h
f̄h+1(xh, ah) + 2H�h(xh, ah)

=

✓
1 +

1

H

◆⇣
c̄h(xh, ah) + Exh+1⇠P

?
h (xh,ah)

⇥
f̄h+1(xh+1,⇡)

⇤⌘
+ 2H�h(xh, ah)



✓
1 +

1

H

◆ 
c̄h(xh, ah) + Exh+1⇠P

?
h (xh,ah)

"
HX

t=h+1

✓
1 +

1

H

◆t�h�1

E⇡,xh+1 [c̄t(xt, at) + 2H�t(xt, at)]

#!

(IH)
+ 2H�h(xh, ah),

which proves the inductive claim. Noting that
P

H

t=1(1 + 1/H)t  e, we have proven the lemma.787

G.3 Bounding the LSEC788

In this section, we show that the LSEC quantity is bounded for tabular MDPs and latent variable789

models. First, recall the notion of Coverability from Xie et al. [2023],790

CCov := inf
µ

max
⇡

max
h,x,a

d
⇡

h
(x, a)

µh(x, a)
.

Let µ
? be the measure that realizes this infimum. CCov was shown to be equivalent to791

maxh
P

x,a
sup

⇡
d
⇡

h
(x, a) by Xie et al. [2023, Lemma 3]. For example, in tabular MDPs with792

X states and A actions, we have CCov  XA, and in low-rank MDPs (and hence latent variable793

models) with rank d, we have CCov  d [Huang et al., 2023, Proposition 3].794

Bounding the LSEC in Tabular MDPs First, consider any function class  and distribution795

class D. For all k, let f
(k)
2  and d

(k)
2 D. Define ed(k) =

P
i<k

d
(i) and ⌧(z) :=796

min
n
k | ed(k)(z) � CCovµ

?(z)
o

. Then, for any f 2  and d 2 D, we have797

KX

k=1

Ed(k)

⇥
f
(k)
⇤

1 _
P

i<k
Ed(i)

⇥
f (k)

⇤

=
KX

k=1

Ed(k)

⇥
f
(k)(z)I [k < ⌧(z)]

⇤

1 _
P

i<k
Ed(i)

⇥
f (k)

⇤

| {z }
Term 1

+
KX

k=1

Ed(k)

⇥
f
(k)(z)I [k � ⌧(z)]

⇤

1 _
P

i<k
Ed(i)

⇥
f (k)

⇤

| {z }
Term 2

.
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Focusing on Term 1, we have it is at most,798

KX

k=1

Ed(k)

h
f
(k)(z)I [k < ⌧(z)]

i


KX

k=1

Ed(k) [I [k < ⌧(z)]]  2CCov,

by the proof of Proposition 13 of Xie et al. [2023].799

For Term 2, we need to specialize D. If the MDP is tabular, we can set D as defined in Eq. (7). Then,800

for z = (x, a),801

KX

k=1

Ed(k)

⇥
f
(k)(z)I [k � ⌧(z)]

⇤
P

i<k
Ed(i)

⇥
f (k)

⇤

=
KX

k=1

X

z

d
(k)(z)f (k)(z)I [k � ⌧(z)]
P

z
ed(k)(z)f (k)(z)



KX

k=1

X

z

d
(k)(z)f (k)(z)I [k � ⌧(z)]

ed(k)(z)f (k)(z)
(terms are non-negative)

=
KX

k=1

X

z

d
(k)(z)I [k � ⌧(z)]

ed(k)(z)

 2
X

z

KX

k=1

d
(k)(z)I [k � ⌧(z)]

ed(k)(z) + CCovµ?(z)

 2
X

z

2 log(K + 1) (Xie et al. [2023, Lemma 4])

= 4Z log(K + 1).

Since the MDP is tabular we have Z = XA. We have proven the following lemma,802

Lemma G.5. Suppose the MDP is tabular. Then, for any  ,K, we have803

LSEC( ,Dh(⇧),K) 2 O(XA log(K)).

Combining this with Theorem G.3 directly implies Theorem 5.2.804

Bounding V-type LSEC in Latent Variable Models Now suppose the MDP is a latent variable805

model (LVM), i.e., an MDP with small non-negative rank d Modi et al. [2021]. The sampling806

procedure for latent variable model is, start with a distribution over d latent states p1, sample an807

unobserved latent state s1 ⇠ p1, observe x1 ⇠ o(s1), take action a1 ⇠ ⇡1(s1) and transition to the808

next distribution of latent states p2. This process repeats H times. Note that the observation set X809

can be very large or infinite, so instead of having a bound that depends on X , we’d like to depend on810

the number of latent states S. To do so, we make a simple modification to our previous argument.811

Set ⌧(s, a) = min
n
k | ed(k)(s, a) � CCovµ

?(s, a)
o

, where we’ve abused notation to use s as input812

instead of x, denoting that we are considering distributions over latent states rather than observa-813

tions. For any distribution, we have d(x, a) = o(x | s)d(s, a) where s is the encoded latent state814

corresponding to x. Crucially, ⌧ depends on s rather than x.815
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In this case, we can take D as the V-type distributions Dh,v(⇧). So d
(k)(s, a) = d

⇡
k

(s)/A and we816

can bound Term 2 as follows,817

KX

k=1

Ed(k)

⇥
f
(k)(x, a)I [k � ⌧(s, a)]

⇤
P

i<k
Ed(i)

⇥
f (k)

⇤

=
KX

k=1

X

s,a

d
(k)(s, a)Ex⇠o(s)

⇥
f
(k)(x, a)

⇤
I [k � ⌧(s, a)]

P
s,a

ed(k)(s, a)Ex⇠o(s)

⇥
f (k)(x, a)

⇤



KX

k=1

X

s,a

d
(k)(s, a)Ex⇠o(s)

⇥
f
(k)(x, a)

⇤
I [k � ⌧(s, a)]

ed(k)(s, a)Ex⇠o(s)

⇥
f (k)(x, a)

⇤ (terms are non-negative)

=
KX

k=1

X

s,a

d
(k)(s, a)I [k � ⌧(s, a)]

ed(k)(s, a)

 2
X

s,a

KX

k=1

d
(k)(s, a)I [k � ⌧(s, a)]

ed(k)(s, a) + CCovµ?(s, a)

 2
X

s,a

2 log(K + 1) (Xie et al. [2023, Lemma 4])

= 4SA log(K + 1).

We highlight that this argument only works for the V-type LSEC, since the uniform action a does818

not depend on the observation generating process, x ⇠ o(s), while the action from the Q-type LSEC819

does. This dependence in the Q-type LSEC is what prevents us from doing the decomposition in the820

first step. This is why uniform action exploration is needed for our theory to extend to latent variable821

models. Thus, we’ve shown the following lemma,822

Lemma G.6. Suppose the MDP is a latent variable model. Then, for any  ,K, we have823

LSECv( ,Dh,v(⇧),K) 2 O(SA log(K)).

Combining this with Theorem G.3 directly implies Theorem 5.4.824
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H Proofs for Offline RL825

Theorem 6.1 (Small-Loss PAC bound for P-DISCO). Assume Assumption 5.1. Fix any � 2 (0, 1)826

and set � = log(H|⇧||F|/�). Then, w.p. at least 1� �, P-DISCO learns a policy b⇡ such that for827

any comparator policy e⇡ 2 ⇧, we have828

V
b⇡
� V

e⇡
 9H

r
Ce⇡V e⇡�

N
+

30H2
C

e⇡
�

N
.

Proof of Theorem 6.1. For shorthand, let �⇡
h
(x, a) = D4(f⇡

h
(x, a) k T ⇡,D

h
f
⇡

h+1(x, a)) and �⇡ =829
P

H

h=1 E⇡[�⇡h(xh, ah)]. Also, let f(x,⇡) = Ea⇠⇡(x)[f(x, a)].830

By Theorem F.3, we have the following two facts, for all ⇡ 2 ⇧,831

(i) Pessimism: V ⇡
 f̄

⇡

1 (x1,⇡) (since Z
⇡
2 F⇡) for all ⇡ 2 ⇧, and832

(ii) E⌫h [�
⇡

h
(xh, ah)]  �

0
N

�1 for all h where Theorem F.3 and the fact that D4  4H2 certifies833

that �0 = 240� is sufficient.834

With these two facts, we can bound the suboptimality of b⇡ as follows:835

V
b⇡
� V

e⇡

 f̄
b⇡
1 (x1, b⇡)� V

e⇡ (Fact (i))

 f̄
e⇡
1 (x1, e⇡)� V

e⇡ (Policy selection scheme in Algorithm 3 (Line 4))

=
HX

h=1

Ee⇡

h
f̄
e⇡
h
(xh, e⇡)� T

e⇡
h
f̄
e⇡
h+1(xh, ah)

i
(PDL Lemma G.2)



HX

h=1

q
Ee⇡

⇥
4f̄e⇡

h
(xh, ah) + �

e⇡
h
(xh, ah)

⇤q
Ee⇡

⇥
�
e⇡
h
(xh, ah)

⇤
(Eq. (42))



HX

h=1

vuut4eV e⇡ + 17H
HX

t=h

Ee⇡
⇥
�
e⇡
t
(xt, at)

⇤q
Ee⇡

⇥
�
e⇡
h
(xh, ah)

⇤
(Lemma G.4)



p
4eV e⇡ + 17H�e⇡

p

H�e⇡

 4
p

HV e⇡�e⇡ + 5H�e⇡
.

Finally, we can bound �e⇡ by a change of measure,836

�e⇡ =
HX

h=1

Ee⇡

h
�
e⇡
h
(xh, ah)

i

 C
e⇡

HX

h=1

E⌫h [�h(xh, ah)]

 C
e⇡
H · �

0
N

�1
. (Fact (ii))

Therefore,837

V
b⇡
� V

e⇡
 4H

r
Ce⇡V e⇡�0

N
+

5H2
C

e⇡
�
0

N
.

838
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I Extension: Small-Return Bounds839

In this section, we show that O-DISCO and P-DISCO can also be used to obtain small-return840

bounds. Compared to the algorithms presented in the main text for minimizing cost, we simply have841

to replace min with max (and vice versa) for maximizing reward, i.e., see Appendix B and enable the842

SMALLRETURN flag. The proofs are also largely the same, with slight changes to the first few steps.843

Theorem I.1. Assume Assumption 5.1 and suppose we want to maximize returns (instead of minimize844

cost), so enable the SMALLRETURN flag. Fix any � 2 (0, 1) and set � = log(HK|F|/�) and845

�
0 = 60�. Then, w.p. at least 1� �, running O-DISCO (Algorithm 4) with UAE = FALSE yields846

the following small-loss regret bound,847

RegretO-DISCO(K)  5H
p
KV ? LSEC(K)�0 + 18H2 LSEC(K)�0

. (9)

If instead UAE = TRUE, the outputted policy ⇡̄ enjoys the following small-loss PAC bound,848

V
?
� V

⇡̄
 5H

r
AV ? LSECv(K)�0

K
+ 18H2ALSECv(K)�0

K
.

Proof. Adopt the same notation as in the proof of Theorem G.3. By Theorem F.2, we have the849

following two facts for all k 2 [K],850

(i) Optimism: V ?
 maxa f̄

(k)
1 (x1, a) (since Z

?
2 Fk) and851

(ii)
P

i<k
E⇡i [�h,k(sh, ah)]  �

0 for all h. If UAE=TRUE, then ah is sampled from unif(A) rather852

than ⇡
i, i.e., we have

P
i<k

Esh⇠⇡i,ah⇠unif(A)[�h,k(sh, ah)]  �
0, where �

0 . �. Theorem F.2853

certifies that �0 = 60� is sufficient.854

Fix any episode k 2 [K]. Then,855
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⇡
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a

f̄
(k)
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(Fact (i))

=
HX

h=1

E⇡k

h
f̄
(k)
h

(xh,⇡
k

h
(xh))� T

⇡
k

h
f̄
(k)
h+1(xh, ah)

i
(PDL Lemma G.2)

=
HX

h=1

E⇡k

h
f̄
(k)
h

(xh, ah)� T
⇡k,D

h
f
(k)
h+1(xh, ah)

i
(Lemma G.1)



HX
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h
4f̄ (k)

h
(xh, ah) + �h,k(xh, ah)

i
·

q
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p
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Thus, summing the instantaneous regrets over all episodes, we get856
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V
⇡
k

� V
?


KX
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4eV ? + 17H�k
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k
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X

k

�k + 18H
X

k

�k.

The bounds for �k are the same as in Theorem G.3.857
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In some sense, the proof for the small-returns bound is actually easier than the small-loss bound.858

Recall that in the cost-minimizing setting, we needed to perform a crucial Cauchy-Schwartz step to859

rearrange terms at the step labelled |. However, in the reward-maximizing setting, we simply bound860

V
⇡
k

 V
?, without needing to rearrange terms.861

Theorem I.2. Assume Assumption 5.1 and suppose we want to maximize returns (instead of minimize862

cost), so enable the SMALLRETURN flag. Fix any � 2 (0, 1) and set � = log(H|⇧||F|/�). Then,863

w.p. at least 1� �, P-DISCO (Algorithm 4) learns a policy b⇡ such that for any comparator policy864

e⇡ 2 ⇧, we have865

V
e⇡
� V

b⇡
 9H

r
Ce⇡V e⇡�

N
+

30H2
C

e⇡
�

N
.

Proof of Theorem I.2. Adopt the same notation as in the proof of Theorem 6.1. By Theorem F.3, we866

have the following two facts, for all ⇡ 2 ⇧,867

(i) Pessimism: f̄⇡

1 (x1,⇡)  V
⇡ (since Z

⇡
2 F⇡) for all ⇡ 2 ⇧, and868

(ii) E⌫h [�
⇡

h
(xh, ah)]  �

0
N

�1 for all h where �
0
 60�.869

With these two facts, we can bound the suboptimality of b⇡ as follows:870
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� f̄

b⇡
1 (x1, b⇡) (Fact (i))
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� f̄
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(PDL Lemma G.2)



HX

h=1
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⇥
4f̄e⇡

h
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e⇡
h
(xh, ah)

⇤q
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⇤
. (Eq. (42))

From here, the same argument in the proof of Theorem 6.1 finishes the proof.871
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J Experiment Details872

Experiment Settings873

In our experiments, as outlined in Foster and Krishnamurthy [2021], our � learning rate at each time874

step t is set to �t = �0t
p where �0 and p are hyperparameters. We use batch sizes of 32 samples875

per episode, and the King County and Prudential experiments run for 5, 000 episodes while the876

CIFAR-100 experiment runs for 15, 000.877

For each dataset, we select the hyperparameter configuration with the best performance for each878

algorithm. As we report two metrics, performance over the last 100 episodes and over all episodes, we879

choose the best hyperparameters for each metric as well. While it is often the same hyperparameters880

that give the best last 100 episodes and all episodes results for a model, that is not always the case.881

We use the WandB (Weights and Biases) library to run sweeps over hyperparameters.882

Oracles883

For our regression oracles, we use ResNet18 [He et al., 2016], with a modified output layer (so884

that the output is suited for 100 prediction classes) for CIFAR-100, and a simple 2 hidden-layer885

neural network for the Prudential Life Insurance and King’s County Housing datasets. For DistCB,886

the oracle’s output layer has size AC where A is the number of actions and C is the number of887

potential costs. This is reshaped so that for each action, there are predictions associated with each888

potential cost, which then have a softmax function applied to them to represent cost probabilities. For889

SquareCB and FastCB, the output size is A because there is just a single prediction associated with890

each action. As per Foster and Krishnamurthy [2021], a sigmoid function is applied to this output891

layer. All experiments were implemented using PyTorch.892

Datasets893

We now provide an overview table as well as additional details and context to our setups for each894

dataset. Note that the number of items in each dataset in the table is the count after preprocessing.

Datasets
Dataset Items Number of

Actions
Number of
Costs

CIFAR-100 50, 000 100 3
Prudential Life Insurance 59, 381 8 9
King County Housing 20, 148 100 101

Table 3: Overview of the three datasets and their experimental setups

895

Prudential Life Insurance This dataset is from the Prudential Life Insurance Kaggle competition896

[Montoya et al., 2015]. It is featured in Farsang et al. [2022], which inspires our experimental setup.897

The risk level in [8] directly determines the price charged to the customer. Thus, we can consider the898

chosen risk level as the action taken. If the model overpredicts the risk level, we get a cost of 1.0899

because this is considered over charging the customer and not getting a sale. Otherwise, the model’s900

prediction is charging too little for the customer. To reiterate, the cost in this case is .1 ⇤ (y � ŷ)901

where y is the actual risk level, and ŷ is the predicted risk level.902

King County Housing The King County housing dataset is also used in Farsang et al. [2022]. An903

interesting part of the setup is that the cost construction in the case of not overpredicting differs from904

the Prudential experiment, even though they’re both effectively about predicting a price point. Here,905

the model’s chosen price is considered the gain, which is why the cost is 1.0 minus the chosen price.906

On the other hand, in the Prudential experiment, the cost is a linear function of the difference between907

the chosen value and the actual value.908

CIFAR-100 For the CIFAR-100 experiment, we use the training dataset of 50, 000 images as our909

dataset. The inclusion of the superclass is critical, as it lets us delineate 3 possible costs that DISTCB910

can learn. Without the super class, the cost construction would be a pure binary of correct vs.911

incorrect. If this were the case, the ability to test the effectiveness of learning the distribution would912

be nullified. The distribution would just be whether an action is correct or not, which means our913

algorithm would essentially be predicting the mean directly.914
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Results915

The largest advantages DISTCB had over the next best algorithm were in the Prudential experiment,916

with DISTCB having a .086 advantage over the last 100 episodes and a .045 advantage over all917

episodes. While the gaps were not as large for the other two datasets, they are still statistically918

significant and further showcase the benefit of distribution learning.919
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