
Supplement: Efficient Generalization with Distributionally Robust Learning

Our main objectives in this paper are to devise an algorithmic approach and theoretical results that
efficiently solve DRL formulations and that improve generalization more consistently and more
quickly than alternative methods. This supplement contains additional theoretical and empirical
results, together with corresponding technical details and discussions, in support of the main body
of the paper. Specifically, Section A first covers supporting theoretical results and all the proofs of
our theoretical results, including associated technical details. Then, Section B covers supporting
empirical results from our numerous numerical experiments and all related technical details.

A Theoretical Results

Our presentation of additional theoretical results and proofs is organized as follows. Section A.1
presents the proofs of Proposition 1 and Proposition 5, whereas Section A.2 describes Algorithm 2
and presents the proof of Proposition 2. The proof of Theorem 3 is considered in Section A.3, while
Section A.4 presents the proofs of Theorem 4 and Theorem 6. Each of these sections includes
statements of the theoretical results from the main body of the paper in a self-contained manner,
together with discussion of the theoretical results and associated technical details. Throughout this
supplemental section, the following additional notation is used extensively. We write aT where T
denotes the transpose operator. For a sequence of positive-valued random variables (r.v.s) {An}: We
write An = op(1) if An

p→ 0 as n→∞; We write An = Op(1) if {An} is stochastically bounded,
that is, for a given ε > 0 there exists c(ε) ∈ (0,∞) with P(An < c(ε)) > 1− ε for sufficiently large
n; If {Bn} is another sequence of positive-valued r.v.s, we write An = Op(Bn) if An/Bn = Op(1).

A.1 Uniqueness of P ∗(θ), Form of ∇θR(θ), and Lipschitzness Conditions for∇θR(θ)

We start by establishing some basic properties of φ-divergences.

Lemma 7. Consider probability mass functions over a support of size M1. Suppose

P(M2) =

{
P = (pm) ∈ RM1

∣∣∣ ∑
m

pm = 1, pm ≥ 0, pm′ = 0, ∀m′ = M2 + 1, . . . ,M1

}
to be the subset of all probability mass functions that place positive mass in only a subset of size

M2 < M1 of the full support size M1. Define UM2
:=

 1

M2
, . . . ,

1

M2︸ ︷︷ ︸
M2

, 0, . . . , 0︸ ︷︷ ︸
M1−M2

. Then, we have

that UM2
= arg minP∈P(M2)Dφ(P,UM1

).

Proof. For any P ∈ P(M2), we conclude

Dφ(P,UM1
) =

∑
m≤M2

1

M1
φ(M1pm) +

∑
m>M2

1

M1
φ(0) =

M2

M1

∑
m≤M2

1/M1

M2/M1
φ(M1pm) +

∑
m>M2

1

M1
φ(0)

≥ M2

M1
φ

 ∑
m≤M2

1/M1

M2/M1
M1pm

+
∑
m>M2

1

M1
φ(0) = Dφ(UM2

, UM1
),

where in the last step Jensen’s inequality is applied to the convex function φ.

Lemma 7 shows that the Dφ-distance between the uniform distribution UN , which assigns equal
mass to all N support points, and any probability mass function (pmf) on an M -subset is minimized
by the probability distribution UM , and that the minimal distance is given by

Dφ(UM , UN) =
M

N
φ

(
N

M

)
+

(N −M)

N
φ(0).

14

If Dφ(UM , UN) > ρ, then the feasibility set admitted by the Dφ-constraint in

P =
{
P |D(P, Pb) ≤ ρ,

∫
dP (ξ) = 1, P (ξ) ≥ 0

}
does not admit any pmf with mass only on M support points. Note that Dφ(UM , UN) is also
decreasing in M , because Dφ(UM , UN) is a convex mixture of φ(0) and φ(N/M). Since φ(s) is
strictly increasing for s > 1, we have that φ(N/M2) > φ(N/M1) > 1 for M1 > M2. Hence,
any convex combination of the form above will satisfy Dφ(UM2 , UN) ≥ Dφ(UM1 , UN), and thus,
for a given ρ, there exists an M ′(ρ) such that the constraint in (3) only admits pmfs with mass on
M ≥M ′(ρ) support points. As a consequence, the optimal solution of the problem (3) may lie on the
intersection of up to N −M ′(ρ) hyperplane constraints of the form pi = 0, ∀i = M ′(ρ) + 1, . . . , N .
This may in turn lead to degenerate optimal solutions for some objective coefficients l(θ, ξi) of the
linear program (3). We preclude this possibility by assuming that the parameter ρ in (3) satisfies

ρ < ρ̄(N,φ) =

(
1− 1

N

)
φ

(
N

N − 1

)
+

1

N
φ(0). (5)

This assumption is included in Proposition 1.

Another cause for degeneracy in an optimization solution is if the objective function does not depend
on the decision variables, in which case the entire feasible set is optimal. In the problem (3), this
could happen if l(θ, ξn) = `,∀n, since the objective would be

∑
n l(θ, ξn)pn = `

∑
n pn = `.

Define the set Θ∅ := {θ : l(θ, ξn1) = l(θ, ξn2), ∀n1, n2} and, for a small ς > 0, let the set
Θ∅,ς := ∪θo∈Θ∅{θ : |θ − θo| < ς} define the ς-neighborhood of Θ∅. Then, we assume in
Proposition 1 that Θ ⊆ Θc

∅,ς for some small ς > 0. In other words, for each θ ∈ Θ, there exists two
sample points ξn1

and ξn2
such that l(θ, ξn1

) 6= l(θ, ξn2
).

Proposition 1. Let the feasible region Θ be compact and assume Θ ⊆ Θc
∅,ς , for a small ς > 0.

Further suppose φ in the Dφ-constraint has strictly convex level sets, and let ρ < ρ̄(N,φ) with
ρ̄(N,φ) defined in (5). Then: (i) the optimal solution P ∗ of R(θ) = supP∈P{LP (θ)} is unique, and
the gradient is given by∇θR(θ) =

∑
n∈N p

∗
n(θ)∇θl(θ, ξn); and (ii) for all ρ, the gradient∇θR(θ)

is a sub-gradient of R(θ).

Proof of Proposition 1: From the preceding discussion, our assumption that ρ < ρ̄(N,φ) only
admits feasible pmfs that assign non-zero mass to all support points. For strictly convex functions
φ(·), this then ensures that the problem (3) has a unique optimal solution P ∗ when combined
with the assumption that the objective coefficients l(θ, ξn) 6= ` for all n and some `. Moreover,
Dφ(P ∗, UN) = ρ.

For part (ii), first recall from the introduction that Ben-Tal et al. [1] describe the typical Lagrangian
dual algorithm used for the convex-concave case, which is given by

R(θ∗rob) = min
θ∈Θ

max
pn≥0

min
α≥0,λ

{
LP (θ) + α(ρ−Dφ(P,UN)) + λ

(
1−

N∑
n=1

pn

)}
= min
θ∈Θ,α≥0,λ

αρ+ λ+
α

N

N∑
n=1

φ∗
(l(θ, ξn)− λ

α

)
(6)

where the convex conjugate of φ, namely φ∗(s) = maxu≥0{su−φ(u)}, is known in closed form for
various φ-divergences such as modified χ2-divergence and KL-divergence. Now define L(θ, α, λ, P)
as the Lagrangian in (6):

L(θ, α, λ, P) = LP (θ) + α(ρ−Dφ(P,UN)) + λ(1−
∑
n

pn). (7)

By (i), there exists a unique solution P ∗(θ), and by Lagrangian duality principles [27, Lemma
2.1], a corresponding unique pair (α∗, λ∗) exists. We collectively call the primal and dual variables
v∗(θ) = (α∗(θ), λ∗(θ), P ∗(θ)), and thus R(θ) = L(θ, v∗(θ)) where the first term LP∗(θ) =∑
n p
∗
n(θ)l(θ, ξn). Differentiating using the chain rule, we have

∇θR(θ) = ∇θLP∗(θ)(θ) +∇θv∗(θ) ∇vL(θ, v∗(θ)) (8)

=
∑
n∈N

p∗n(θ)∇θl(θ, ξn),

15

where the second term on the right in (8) vanishes because ∇vL(θ, v∗(θ)) = 0 by the first order
optimality conditions of v∗. The same result is obtained in a more general setting that allows for
multiple solutions to the maximization problem [29, Theorem 7.21, p. 352]. �

Proposition 5. Assume the conditions in Proposition 1 hold. Further suppose that the Hessians
∇2
θl(θ, ξn) exist, ∀θ and each ξn, and are bounded in Frobenious norm ‖∇2

θl(θ, ξn)‖F ≤ L, ∀θ, n.
Then, the robust loss also follows ‖∇2

θR(θ)‖F ≤M for some positive M <∞.

Proof of Proposition 5: Further differentiating (8) using the chain rule and again applying the first
order optimality conditions for v∗, we obtain

∇2
θR(θ) =

∑
n∈N

p∗n∇2
θl(θ, ξn) +∇θv∗(θ) [∇2

θvL(θ, v∗(θ))]T . (9)

Since the P ∗ are bounded, we have our desired result from the triangle inequality if we can show that
the second term has bounded components.

Following [27, Lemma 2.2], the gradient∇θv∗(θ) can be expressed as

∇θv∗(θ) = −∇2
θvL(θ, v∗(θ))[∇2

vvL(θ, v∗(θ))]−1.

Let µ = (α, λ). Further let φ′(s) = dφ(s)/ ds and φ′′(s) = d2φ(s)/ ds2 be the first and second
derivative of φ(s) w.r.t. s, respectively. For (6), we then obtain the following components:

∇2
µµL = 0, ∇2

ppL = −NαDiag(φ′′(NP)),

∇2
pµL = −

[
e

φ′(NP)

]
, ∇2

θvL =


∇θl1(θ, ξ1)

. . .
∇θlN (θ, ξN)

0
0

 ,
where φ′(NP) and φ′′(NP) represent the vectors of first and second derivatives of φ at the compo-
nents of the vector NP , and e represents the vector of all ones.

We calculate the inverse of ∇2
vvL using the Schur complement of ∇2

ppL in ∇2
vvL, along with the

components ∇2
µµL and ∇2

pµL. Note that, for a square matrix M which can be partitioned into
submatrices A,B,C,D (as shown below) and where A is invertible as A−1, the Schur complement
of A is given by M/A = D − CA−1B. We then have

M =

[
A B
C D

]
, and

M−1 =

[
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

]
.

Applying this to M = ∇2
vvL with A = ∇2

ppL, we obtain D = ∇2
µµ and C = BT = ∇2

pµL. Given
the form of ∇2

θvL, we need only compute the top-left element of M−1 = [∇2
vvL]−1 in order to

compute the second term in (9). The Schur complement is given by

M/A =
1

Nα

[
e

φ′(NP)

]
Diag

(
1

φ′′(NP)

)[
eT φ′(NP)T

]
=

1

Nα

[∑
n(1/φ′′(Npn))

∑
n(φ′(Npn)/φ′′(Npn))∑

n(φ′(Npn)/φ′′(Npn))
∑
n(φ′(Npn))2/φ′′(Npn)

]
.

Note that M/A is a 2×2 matrix, and the inverse of a 2×2 matrix
[
a b
c d

]
is
[
d −b
−c a

]
(ad− bc)−1.

Since the φ are strictly convex, φ′′(Npn) ≥ δ > 0 for some δ and any pn. Then the term (ad− bc)
is the variance of a random variable taking values φ′(Npn) with probability 1/φ′′(Npn), and thus it
is strictly positive, again because of the strict convexity of φ. Finally, the terms a, b, c, d are all finite
because their denominators are strictly away from zero by δ.

The term A−1 + A−1B(M/A)−1CA−1 can similarly be found to have elements that are all finite
(the optimal α∗ <∞ as seen in the proof of Proposition 2 below), and hence the second term in (9)
also has finite elements, rendering the desired result. �

16

A.2 Solving for P ∗(θ) in Dφ-Constrained Inner-Maximization

Let φ′(s) = dφ(s)/ ds be the derivative of φ(s) w.r.t. s, where (φ′)−1 denotes its inverse. By
assumption, φ is strictly convex, and thus φ′(s) is strictly increasing in s, which provides us with
the existence of its inverse. The derivative φ′(s) plays a key role in the proof of Proposition 2 below.
Refer to Figure 2 for an illustration of plots of φ as a function of s, φ′ as a function of s, its inverse
(φ′)−1(y) as a function of y, and finally (φ′)−1((zi − λ)/α) as a function of λ. The plots illustrate
both cases where φ′(s) → −∞ (e.g., KL-divergence φ(s) = s log s − s + 1) on the top row and
lims→0+ φ

′(s) > −∞ (e.g., modified χ2-divergence φ(s) = (s− 1)2) on the bottom row.

Recall that the inner maximization problem in (3) for a random subsample of size Mt, with a target
Dφ-divergence of ρt, uses a decision variable P = (pm) of dimension Mt. Writing the Lagrangian
objective of (3) as

L(α, λ, P) =
∑

m∈Mt

zmpm + λ

(
1−

∑
m∈Mt

pm

)
+

α

Mt

(
Mtρt −

∑
m∈Mt

Φ(Mtpm)

)
, (10)

we then have the optimal objective value R̂∗t (θ) = minα≥0,λ maxp̂m≥0 L(α, λ, P); refer to [18].
The optimal primal and dual variables can be obtained for various φ functions by a general procedure
to solve the Lagrangian formulations (10) for a given iteration t. In particular, we use the following
general procedure, summarized in the main body of the paper as Algorithm 2 and expressed in
expanded form below, noting that this basic approach has been pursued, either explicitly or in a
similar spirit, in previous work such as Ben-Tal et al. [1], Namkoong and Duchi [20, 21], Ghosh and
Lam [9].

Algorithm 2. (Restated in expanded form.)

1. Case: α∗ = 0 along with constraint Dφ(P ∗t , Pb) ≤ ρt.
(a) LetM′t = {m ∈Mt : zm = maxu∈Mt zu} andM ′t = |M′t|. Set α∗ = 0 in (10), and

then an optimal solution is P ∗ where p∗m = 1
M ′t
, ∀m ∈M′t, and p∗m = 0, ∀m /∈M′t;

see Proposition 2.
(b) If Dφ(P ∗, Pb) ≤ ρM , then stop and return P ∗.

2. Case: constraint Dφ(P ∗t , Pb) = ρt with α∗ ≥ 0.

(a) Keeping λ, α fixed, solve for the optimal P ∗t (as a function of λ, α) that maximizes
L(α, λ, P), applying the constraint pm ≥ 0.

(b) Keeping α fixed, solve for the optimal λ∗ using the first order optimality condition on
L(α, λ, P ∗t). Note that this is equivalent to satisfying the equation

∑
m∈Mt

p∗m = 1.
Proposition 2 shows that this step is at worst a bisection search in one dimension, but in
some cases (e.g., KL-divergence) a solution λ∗ is available in closed form. The proof
of Proposition 2 also provides finite bounds [λ, λ̄] on the range over which we need to
search for λ∗.

(c) Apply the first order optimality condition to the one-dimensional function
L(α, λ∗(α), P ∗t) to obtain the optimal α∗ ≥ 0. This is equivalent to requiring that α∗
satisfies the equation

∑
m∈M φ(p∗t,m) = ρt. Proposition 2 shows that this is at worst a

one-dimensional bisection search which embeds the previous step in each function call
of the search.

(d) Define the index set N := {m ∈ Mt | λ∗ ≤ zm − α∗φ′(0)}, with N = ∅ if
φ′(s)→ −∞ as s→ 0+. Set

p∗t,m =

{
1
Mt

(φ′)−1
(
zm−λ∗
α∗

)
, m ∈ N

0 m /∈ N
. (11)

(Note that the proof of Proposition 2 explains the expression in (11).) Return P ∗t .

Proposition 2. For any φ-divergence, Algorithm 2 finds a feasible primal-dual solution (P̃ ∗t , α̃
∗, λ̃∗)

to (3) with an objective function value R̃∗t such that |R̂∗t (θ)−R̃∗t | < ε with a worst-case computational
effort bounded by O(Mt logMt + (log 1

ε)2), where ε is a small precision parameter.

17

Figure 2: The plots on the top row are for the Kuhlback-Leibler divergence, and those on the
bottom are for the modified χ2-divergence. Specifically, the top row from left-to-right considers:
φ(s) = s log s − s + 1, s ≥ 0; φ′(s) = log s, s > 0; (φ′)−1(y) = ey, y ∈ R; p∗z,α(λ) =

(φ′)−1((z − λ)/α), λ ∈ R. The bottom row from left-to-right considers: φ(s) = (s− 1)2, s ≥ 0;
φ′(s) = 2(s − 1), s ≥ 0; (φ′)−1(y) = 1 + y/2, y ∈ R; p∗z,α(λ) = (φ′)−1((z − λ)/α), λ ∈ R.
Note: On the top, φ′(s)→ −∞, so the inverse is always positive; for modified χ2-divergence on the
bottom, it is positive only when y ≥ −2. The last column plots p∗m from (11) for three zm and two α.

Proof of Proposition 2: We eliminate the subscript t in this proof for clarity of exposition; thus, the
support is indexed over m = 1, . . . ,M .

To start, order all the zm into the increasing sequence z(1) ≤ z(2) ≤ . . . ≤ z(M), where the subscript
notation (i) denotes the index of the ith smallest zm value. The tightest bound on the cost of sorting
the vector (zm) in increasing order is O(M logM).

We first handle the case when the φ-divergence constraint is not tight and α∗ = 0. Substituting this
in (10) shows that any optimal solution P̂ ∗ places mass only within the setM′ as defined in Step
1(a). Consider any such P ∗, and let UM be as defined in the statement of Lemma 7. Then the lemma
provides that, among all optimal solutions, UM ′ obtains the smallest divergence, and thus it is the best
optimal candidate to meet the divergence constraint with slack. This is why the solution procedure
stops in Step 1(b). The computational complexity of Step 1 is mainly due to determining the set M ′,
which can be part of the sorting operation that determines the sequence z(m) above.

Note that this case is basically precluded by the assumptions of Proposition 1. With the assumption
that ρ < ρ̄(N,φ), we have that the feasible region only allows for pmfs that have non-zero mass over
the full support M . This in turn implies that for this case to hold, we need l(θ, ξn) = ` for all n,
which is also ruled out by the assumptions of Proposition 1.

For the case when the φ-divergence constraint is tight, we proceed according to the corresponding
three steps in Algorithm 2.

Step 2(a). Identify the set of indices N as defined above. Setting to zero the gradient of L(α, λ, P)
w.r.t. P , we obtain the expression in (11) for P ∗(λ, α). For the case where φ′(s)→ −∞, all p∗m > 0
since N = ∅. In the case where φ′(s) → K for some constant K > −∞, the probability values
need to observe the check on (λ, α) as given in (11) in order to satisfy the non-negativity constraint
on P ∗. The set N = N (λ, α) can be equivalently represented as N = {(m) | (m) ≥ (mg)}
where (mg) = infm{(m) | z(m) ≥ λ + αφ′(0)}, i.e., the smallest ordered value z(m) satisfying
the defining condition of N . From (11), we observe that p∗(m) are strictly increasing in m for any
fixed (λ, α). Hence, the optimal probability allocation to support points increases in accordance with
their zm values.

18

Step 2(b). Define

hα(λ) :=
∑

p̂∗m =
1

M

∑
(m)≥(mg)

(φ′)−1

(
z(m) − λ

α

)
.

We seek the λ that attains hα(λ) = 1, i.e.,
∑
p̂∗m = 1. The above expression for hα(λ) is a

decreasing function of λ for fixed α, given the strict convexity of φ. When φ′(0) > −∞, at
λ̄ = λ̄(α) = z(M) − αφ′(0), the summation hα(λ̄) = 0. For the φ′(0)→ −∞ case, it is sufficient
to consider a point λ̄(α) = z(M) − α(z(1) − z(M)) to obtain that hα(λ̄) < 1. On the other hand, at
λ = z(1), we have (note the properties of φ′ in Figure 2) that

hα(z(1)) =
1

M

(
(φ′)−1

(z(1) − z(1)

α

)
︸ ︷︷ ︸

=1

+
∑
m>1

(φ′)−1
(z(m) − z(1)

α

)
︸ ︷︷ ︸

>1

)
> 1.

Hence, we only need to perform a bisection search on [λ, λ̄], which can be performed with a
computational effort of at most O(log 1/ε) to get to within ε precision. The size |λ̄− λ| of the search
interval appears in the order constant, but does not change with M .

Step 2(c). To obtain α∗, substitute the P ∗ from (11) into the divergence constraint satisfied as an
equality, which yields

Dφ(α) =
1

M

∑
m

φ(Mp∗m(α)) = ρ.

We show below that the function Dφ(α) is decreasing in α, and hence a bisection search leads us
to the optimal α∗. The total computational effort then in estimating the correct α∗ involves log(1

ε)
function calls to the bisection search to find the λ(α) for the current iterate of α. As noted before,
each of these function calls takes at most log(1

ε). This, in addition to the time taken to sort the zm
once in each run of the complete algorithm, provides us with the bound on the computational effort.

Consider any pair of α1 < α2. Let λ∗(αi) = λ∗i be the optimal value that attains hαi(λ
∗
i) = 1, i =

1, 2. The summation hα(λ) is decreasing in α for a fixed λ, and thus hα2(λ∗1) < 1. Since hα(λ) is a
decreasing function of λ for a fixed α, we have that λ∗2 < λ∗1.

Now, let λ2 be the value that satisfies the equality (z(M) − λ2)/α2 = (z(M) − λ∗1)/α1, so that at λ2
the support point corresponding to the largest value z(M) has the same probability allocation (11)
under α2 as under α1. For any m < M , we then have

z(m) − λ2

α2
=
z(m) − z(M)

α2
+
z(M) − λ2

α2
= (z(M) − z(m))

(
1

α1
− 1

α2

)
︸ ︷︷ ︸

>0

+
z(m) − λ∗1

α1
.

Therefore, at λ2, we have that hα2
(λ2) > 1 and that λ∗2 ∈ [λ2, λ

∗
1]. As a consequence, the mass

allocated to p∗(M) also decreases. Define ∆ := p∗(M)(α1)− p∗(M)(α2), and then from the preceding
discussion ∆ > 0. Moreover, we have p∗(M)(α2) > 1/M , else given the strict ordering of (11)
over {(m)}, the total probability assigned over all support points will sum up to less than 1. Hence,
M p∗(M)(α2) > 1, to the right of the minima at s = 1 of φ(s).

The change in Dφ is bounded as follows:

M (Dφ(α2)−Dφ(α1)) =
(
φ(p∗(M)(α2))− φ(p∗(M)(α1))

)
+
∑
m<M

(
φ(p∗(m)(α2))− φ(p∗(m)(α1))

)
= φ′(ξM)(−∆) +

∑
m<M

(
φ(p∗(m)(α2))− φ(p∗(m)(α1))

)
≤ −φ′(ξM)∆ +

(
φ(p∗(M)(α2))− φ(p∗(M)(α2)−∆)

)
= −φ′(ξM) ∆ + φ′(ξ

M
) ∆ < 0.

Here, the second equality applies the mean value theorem for some ξM ∈ [p∗(M)(α2), p∗(M)(α1)]. The
first inequality is due to the highest increase in φ occurring if all the reduction in probability ∆ is

19

picked up by the next support point p∗(M−1). Since the mass allocations are ordered, the best case is
that p∗(M−1)(α1) = p∗(M)(α2)−∆ increases to p∗(M−1)(α2) = p∗(M)(α2). The third equality again
applies the mean value theorem for some ξ

M
∈ [p∗(M)(α2)−∆, p∗(M)(α2)], and the last inequality is

due to the strict convexity of φ.

Therefore, Dφ(α) is a decreasing function of α. To obtain a finite range [α, ᾱ] that contains α∗,
first consider the φ′(s) > −∞ case. There exists an ατ such that λ∗τ = λ∗(ατ) = z(M) − τ ,
for a small τ > 0, and the corresponding P ∗τ places mass 1 on z(M) and zero elsewhere; this
leads to Dφ(ατ) = Dφ(U1, UM), which is the highest distance possible as per the discussion
following Lemma 7. On the other hand, as α → ∞, each p∗m → 1/M as observed from (11)
and Figure 2, and thus Dφ(α)→ 0 as α→∞. Hence, there exists a range [α, ᾱ] that contains α∗.

The upper limit ᾱ also applies when φ′(s)→ −∞ , so only the lower limit α needs be modified for
this case. There exists a small δτ such that P ∗τ places mass 1−Mδτ on z(M) and at most δτ mass on
z(m), m < M . As τ → 0, then δτ → 0 and Dφ(ατ)→ Dφ(U1, UM1).

Note that when the conditions for Case 1 and Case 2 both hold, then the steps of Case 1 and Case 2
will both result in the same final outcome. �

A.3 Small-Sample Approximation of∇θR(θ)

We solve the DRL formulation by assembling the mini-batch through sampling without replacement
from the training dataset [11], in strong contrast to the sampling with replacement employed in [20,
21, 15], and we analyze a general progressively increasing subsampling-based approach in the context
of DRL and bias reduction. Indeed, the setup of the robust loss function enables us to extensively
exploit the mathematical properties of statistically sampling a finite set without replacement. We
therefore provide a brief summary here, together with a brief summary of the alternative sampling
with replacement.

Without-replacement Sampling: Let {x1, . . . , xN} be a set of N one-dimensional values with
mean µ = 1

N

∑
n xn and variance σ2 = 1

N−1

∑
n(xn − µ)2. Suppose we sample M < N of these

points uniformly without replacement to construct the setM = {X1, . . . , XM}. The probability that
any particular set of M subsamples was chosen is given by

(
(N−M)!
N !

)
. Denote by EM the expectation

under this probability measure, and let X̄ = 1
M

∑M
m=1Xm and S̄2 = 1

M−1

∑M
m=1(Xm − X̄)2

represent the sample mean and sample variance, respectively. We then know that the expectation of
the sample mean EM[X̄] = µ and of the sample variance EM[S̄2] = σ2 are both unbiased; refer
to [35]. On the other hand, the variance of the sample mean

EM[(X̄ − µ)2] =

(
1

M
− 1

N

)
σ2

reduces to zero as M → N . The term on the right above is fundamental to our results.

With-replacement Sampling: Suppose we have drawn M < N samples from a training set of
size N uniformly, that is with replacement, to constitute the subsampleM. Let In = I{ξn ∈M},
n ∈ [N], take the value 1 ifM contains ξn at least once, and zero otherwise. Define Y :=

∑N
n=1 In,

which represents the number of unique support points inM. We then compute its expected value as

EY =

N∑
n=1

EIn =

N∑
n=1

P(ξn ∈M) =

N∑
n=1

1− P(ξn /∈M) =

N∑
n=1

1−
(
N − 1

N

)M

= N

(
1−

(
N − 1

N

)M)
= N

1−

((
1− 1

N

)N)M
N

 u N
(

1− e−MN
)
.

This slow exponential decay in the number of support points that can be sampled at least once in a
subset of size M shows that approximations of robust loss and its gradient constructed from a set
Mt sampled with-replacement can suffer from slow convergence properties. Indeed, [15] assert

20

via constructing an example of a full dataset and associated loss functions l that the variance of the
estimate∇R̂ of the robust loss gradient can be bounded away from zero for any M .

With this overview, we now begin our proof of Theorem 3 by addressing the feasibility of the
restriction P̃ ∗ of the (unique, by assumption) optimal solution P ∗ of the full-data problem onto the
(randomly sampled) subsetMt, where

p̃∗m =
p∗m∑
j∈Mt

p∗j
, ∀m ∈Mt.

Denote by Pt the feasibility set of (3) for the sampledMt, and recall from Section 2.1 the notational
simplification that Et = EMt

and Pt = PMt
.

Lemma 8. Suppose the φ-divergence function has strictly convex level sets and ρ < ρ̄(N,φ), where
ρ̄(N,φ) is defined in (5). Let the Dφ-constraint target ρt of the restricted problem (3) be set as stated
in Theorem 3. Then, for M ≥M ′t , we have

Pt(P̃ ∗ ∈ Pt) ≥ max {0, 1− τ1} ·max {0, 1− τ2} , (12)

where

τ1 := η
2δ/(1−δ)
t σ2(P ∗), τ2 := η

2δ/(1−δ)
t

σ2(φ)

c23
,

σ2(P ∗) :=
1

N − 1

N∑
n=1

(Np∗n − 1)2, σ2(φ) :=
1

N − 1

N∑
n=1

(φ(Np∗n)− ρ)2,

M ′ := min

{
M | ηt ≤ max

{
1− 1

k0
, ζ0,

1

k0κ1

}}
, c3 :=

c− k0(κ1ρ+ κ2)

2
, (13)

and the constants c and k0 are chosen to yield c3 > 0.

Note here that σ2(φ) calculates the variance in the vector φ(Np∗n) for any φ, though the formula
makes it resemble the modified χ2-divergence φ(s) = (s − 1)2. Recall that the constants ζ0, κ1

and κ2 arise from the local continuity of Assumption 1, and that ηt = c(1
M −

1
N)(1−δ)/2 from the

statement of Theorem 3. Then M ′ is defined in (13) as the smallest support size M that leads to a
prescribed positive value for the difference (1

M −
1
N). Hence, as N →∞, M ′ = o(N) in order to

match this positive difference.

Proof of Lemma 8: In the notation of sampling without-replacement introduced above, define a set
of scalar values xn(P ∗) = Np∗n, ∀n = 1, . . . , N . We use µ(P ∗) = 1

N

∑
nNp

∗
n = 1 and use the

variance σ2(P ∗) as in the statement of the lemma. By Chebychev’s inequality, the sample-average X̄
of an M -subsample chosen uniformly without replacement from this set satisfies

Pt
(∣∣X̄(P ∗)− 1

∣∣ > ηt
)
≤ 1

η2
t

Et[(X̄(P ∗)− µ)2] ≤
(

1

Mt
− 1

N

)δ
σ2(P ∗).

Hence, |X̄(P ∗) − 1| ≤ ηt with probability at least (1 − τ1). One implication of this is that∑
Mt

p∗j ≥ (Mt/N)(1 − ηt) with probability at least (1 − τ1), and thus the restriction P̃ ∗ of P ∗
to Mt is a pmf (i.e., its denominator is greater than zero) with probability converging to one as
M → N .

We now check if the restriction P̃ ∗ is feasible for the problem (3), namely whether
Pt(Dφ(P̃ ∗, UMt

) > ρt) is small. Note that ηt ↘ 0 as Mt → N ; and rearrange |X̄ − 1| ≤ ηt
to yield X̄−1 = (1

Mt

∑
j∈Mt

Np∗j)
−1 ≤ 1 + k0ηt for all Mt ≥ M ′t . Then for all Mt ≥ M ′t , we

obtain on the event G := {|X̄(P ∗)− 1| ≤ ηt} that

Dφ(P̃ ∗, UMt
) =

1

Mt

∑
m

φ

(
Mt

p∗m∑
j p
∗
j

)
=

1

Mt

∑
m

φ

(
Np∗m

1
1
Mt

∑
j∈Mt

Np∗j

)

≤ 1

Mt

(∑
m

φ(Np∗m)(1 + κ1k0ηt)

)
+ κ2k0ηt, (14)

21

where the last inequality follows from Assumption 1, applied in the form φ(s(1 + ζ)) ≤ φ(s)(1 +
κ1ζ) + κ2ζ.

Let {xn(φ) = φ(Np∗n)}Nn=1 be a vector of values associated with the N support points.
Then, for the (random) set of indices Mt chosen uniformly without replacement, EtX̄(φ) =
Et[1

Mt

∑
m∈Mt

φ(Np∗m)] = µ(φ) = 1
N

∑
n φ(Np∗n) = Dφ(P ∗, UN) = ρ, again exploiting the fact

that the Dφ-constraint is tight at the optimal solution P ∗ for the full-support optimization problem.
Note that the corresponding population variance is given by σ2(φ) as defined in the statement of the
lemma.

Now define the desired event as D := {Dφ(P̃ ∗, UMt) ≤ (ρ+ cηt)}. Then, inequality (14) renders
the following bound on its complement

Pt (Dc|G) = Pt
(
Dφ(P̃ ∗, UMt

) > (ρ+ cηt) | G
)

≤ Pt
(

1 + κ1k0ηt
Mt

∑
m∈Mt

φ(Np∗m) + κ2k0ηt > (ρ+ cηt)

)
≤ Pt

(∣∣∣ 1

Mt

∑
m∈Mt

φ(Np∗m)− ρ
∣∣∣ > (c− κ2k0 − ρκ1k0)

1 + κ1k0ηt
ηt

)

≤ Pt
(∣∣∣ 1

Mt

∑
m∈Mt

φ(Np∗m)− ρ
∣∣∣ > c3ηt

)
≤ η

2δ/(1−δ)
t

σ2(φ)

c23
,

where c3 = (c− κ1k0ρ− κ2k0)/2 > 0 by the assumptions on c and the minimum M ′t , and where
Chebychev’s inequality is used in the last step. This yields the desired high probability guarantee
from the elementary probability identity that Pt(D) ≥ Pt(D|G)Pt(G). �

Lemma 8 shows that the specific choice of ρt leads to the restriction P̃ ∗t of the unique optimal P ∗ to
be feasible for (3) with probability converging to 1 as M → N . We next establish that the bias in the
estimation of the optimal objective is Op(ηt).
Lemma 9. Under the assumptions of Lemma 8, there exists a c1 > 0 such that

Pt
(
ηt
−1|R̂t(θ)−R(θ)| ≤ c1

)
≥ τ̄t

where

τ̄t := max{0, 1− τ3} · τ̂ , τ3 := η
2δ/(1−δ)
t

σ2(R)

c21/4
,

τ̂ := max {0, 1− τ1} ·max {0, 1− τ2} , σ2(R) :=
1

N − 1

N∑
n=1

((znNp
∗
n)− µ(R))2,

µ(R) :=
1

N

∑
n

znNp
∗
n.

Note the definition of τ̄t in Lemma 9, which appears in the statement of Theorem 3. Further note that
C in Theorem 3 corresponds to c1 in Lemma 9. The term τ̂ is the probability on the right hand side
of (12).

Proof of Lemma 9: We split the optimality gap as |R̂t(θ)−R(θ)| ≤ |zTP ∗t − zT P̃ ∗|+ |zT P̃ ∗t −
zTP ∗|, where P ∗ is the (unique) solution to the full-support problem (1), P̃ ∗t its restriction to a
sampled subsetM of size M , and P ∗t the (unique) solution to the optimization problem (3) on the
subsampled supportMt. We then rewrite the required probability and analyze each summand as

Pt
(
|R̂t(θ)−R(θ)| > c1ηt

)
≤ Pt

(
|zTP ∗t − zT P̃ ∗| >

c1
2
ηt

)
+ Pt

(
|zT P̃ ∗t − zTP ∗| >

c1
2
ηt

)
.

(15)

For the first term, note that zT P̃ ∗ ≤ zTP ∗t since P̃ ∗ is a feasible solution to the restricted problem (3)
with probability τ̂ as shown in Lemma 8, while P ∗t is its optimal solution. On the other hand, P ∗t

22

satisfies the Dφ-divergence constraint at ρ+ ηt, using the same arguments as for P ∗ at ρ. Following
along the same lines that lead up to the expression (8) of ∇θR(θ), we can similarly derive that
dR/dρ = dL/dρ = α∗. As noted in the proof of Proposition 2, α∗ > 0. Thus, for sufficiently large
Mt such that ηt is small, we obtain from a first-order Taylor expansion that zTP ∗t ≤ zTP ∗ + c2ηt
for some c2 ≥ 1.

Hence, there exists a c1 > 2c2 such that

Pt
(
|zTP ∗t]− zT P̃ ∗| > c1

2
ηt

)
= 0.

We rewrite the second term on the right hand side of (15) as

zT P̃ ∗t − zTP ∗ =
∑

m∈Mt

zm
p∗m∑
j p
∗
j

−
N∑
n=1

znp
∗
n =

1
Mt

∑
m∈Mt

zmNp
∗
m

1
Mt

∑
j Np

∗
j

− 1

N

N∑
n=1

znNp
∗
n

=
X̄(R)

X̄(P ∗)
− µ(R)

µ(P ∗)
, (16)

where the last equality makes use of the sample and population means of the two N -dimensional
vectors, namely {xn(R) = znNp

∗
n} and the vector with components xn(P ∗) introduced in the proof

of Lemma 9.

The Taylor expansion of any smooth function h(u, v) is given by

h(u, v) = h(uo, vo) +∇θh(uo, vo)

(
(u− uo)
(v − vo)

)
+

(
(u− uo)
(v − vo)

)T
∇2
θh(uo, vo)

(
(u− uo)
(v − vo)

)
+ r(u, v, uo, vo),

where the higher order terms r(u, v, uo, vo) are o(‖u−uo‖·‖v−vo‖). Applying this to h(u, v) = u/v
with u = X̄(R), uo = µ(R), v = X̄(P ∗), vo = µ(P ∗) and Y = r(u, v, uo, vo), we obtain

|h(u, v)− h(uo, vo)| =
∣∣∣∣ X̄(R)

X̄(P ∗)
− µ(R)

µ(P ∗)

∣∣∣∣
≤ 1

µ(P ∗)

∣∣X̄(R)− µ(R)
∣∣+

µ(R)

µ(P ∗)2

∣∣X̄(P ∗)− µ(P ∗)
∣∣

+

∣∣∣∣ 2µ(R)

µ(P ∗)3
(X̄(P ∗)− µ(P ∗))2 − 1

µ(P ∗)2
(X̄(R)− µ(R))(X̄(P ∗)− µ(P ∗)) + Y

∣∣∣∣ .
Note that µ(P ∗) = 1 and µ(R) > 0 since the individual scenario losses are non-negative. Further,
the proof of Lemma 8 shows that X̄(P ∗) > 0 with probability at least (1− τ1) as assumed here. This
avoids the pathological case where the Taylor expansion of h(u, v) above is undefined because v or
vo is zero. The above expression then yields

Pt
(
η−1
t

∣∣∣zT P̃ ∗t − zTP ∗∣∣∣ > c1
2

)
≤ Pt

(
η−1
t

∣∣X̄(R)− µ(R)
∣∣ > c1

6

)
+ Pt

(
η−1
t

∣∣X̄(P ∗)− 1
∣∣ > c1

6|µ(R)|

)
+ Pt

(
η−1
M

∣∣∣∣ 2µ(R)

µ(P ∗)3
(X̄(P ∗)− µ(P ∗))2 − 1

µ(P ∗)2
(X̄(R)− µ(R))(X̄(P ∗)− µ(P ∗)) + Y

∣∣∣∣ > c1
6

)
.

From the previous applications of Chebychev’s inequality in the proof of Lemma 8, we have that the
first two terms are of order η2δ/(1−δ)

t . The probability of the second term is already included in τ̂
of Lemma 8, and thus τ3 is the additional probability term that arises from the first term. Hence, each
of the random variables in the first two terms are Op(ηt). The last term involves higher powers of the
same random variables that appear in the first two terms. We show that, as expected, the probability
of these terms is o(η2δ/(1−δ)

t), or in other words, the random variables represented in these terms are
op(ηt).

Taking the symmetric random variable Z = |X̄(P ∗)− 1| and an integer j > 1, then P(|Z|j > ηt) =

P(|Z| > η
1/j
t) ≤ P(|Z| > η1−δ′

t), where δ′ < δ is smaller than the δ used in the definition of ηt.
Applying Chebychev’s inequality renders P(|Z|j > ηt) ≤ O(η

2δ/(1−δ)+2δ′/(1−δ)
t) = o(η

2δ/(1−δ)
t).

23

The same logic holds for each of the other summands in the remainder, and thus the last term is of
smaller order than the first two. Hence, the total probability in this tail term is o(η2δ/(1−δ)

t), which
yields the final result. �

Theorem 3. Suppose Assumption 1 and the assumptions of Proposition 1 hold, and further suppose
the gradient∇R̂t(θ) is the optimal solution to (3) over a subsampleMt of sizeMt sampled uniformly
without replacement from a set of sizeN . Define ηt = c(1

Mt
− 1
N)(1−δ)/2 for small constants c, δ > 0,

and set the Dφ-target in (3) to be ρt = ρ+ ηt. Then, there exists a small positive M ′ defined in (13)
and of order o(N) such that, for all Mt ≥M ′, the subgradient∇θR̂t(θ) and full-gradient∇θR(θ)

satisfy for any C <∞ and 1− τ̄t = O(η
2δ/(1−δ)
t):

Pt(η−2
t ‖∇θR̂t(θ)−∇θR(θ)‖22 ≤ C) ≥ τ̄t.

Proof of Theorem 3: Recall that the constants M ′ and τ̄t are defined in the statements of Lemma 8
and Lemma 9, respectively. Given the robust loss function R(θ) =

∑
n l(θ, ξn)p∗n and our approxi-

mation R̂t(θ) =
∑
m∈M l(θ, ξm)p̂m constructed from the subsampledM, the mean-value theorem

of calculus yields

(∇θl(θ, ξn))u =
∂l(θ, ξn)

∂θu
=

1

hu,n
(l(θ + hu,neu, ξn)− l(θ, ξn)),

where hu,n is a small positive value that depends on the component θu and on the sample ξn, with eu
the unit-vector in the uth coordinate. Let h = minu,n hu,n. We then have∣∣∣(∇θR̂t(θ)−∇θR(θ))u

∣∣∣ ≤ 1

h

∣∣∣∣∑
n

l(θ + hu,neu, ξn)T (p∗n − p̂n)− l(θ, ξn)T (p∗n − p̂n)

∣∣∣∣
≤ 1

h

∣∣∣∣[∑
n

l(θ + hu,neu, ξn)T (p∗n − p̂n)
]∣∣∣∣+

1

h

∣∣∣∣[l(θ, ξn)T (p∗n − p̂n)
]∣∣∣∣.

Applying the same arguments as those used in the proof of Lemma 9, together with squaring and
combining these terms over all u, renders the desired final result. �

A.4 Convergence of Algorithm 1

We start with the proof of Theorem 4, the first part of which is given by the following lemma.

Lemma 10. Suppose the assumptions of Theorem 4 hold. Then, the variance of the estimate ∇R̂t(θ)
calculated over the sampled-without-replacementMt with subsample size Mt obeys

E[‖∇R̂t(θ)− E[∇R̂(θ)]‖22] ≤ Cσ
(

1

Mt
− 1

N

)
.

Proof. Fix the sample size Mt and the parameter θ for this proof, and letM1 andM2 represent two
subsets of size Mt sampled without replacement from the full dataset of size N . Respectively denote
by R̂` and P ∗` = (p∗`,i`) the estimate of the robust loss and the worst case probability allocation at θ
constructed fromM`, for ` = 1, 2. We then use the following equivalent form for variance:

E[‖∇R̂t(θ)− E[∇R̂(θ)]‖22] = E[‖∇R̂1(θ)−∇R̂2(θ)‖22]

= E[‖
∑

i1∈M1

∇l(θ, ξi1)p∗1,i1 −
∑

i2∈M2

∇l(θ, ξi2)p∗2,i2‖
2
2]

≤ E[‖
∑

i1∈M1

∇l(θ, ξi1)p∗1,i1‖
2
2] + E[‖

∑
i2∈M2

∇l(θ, ξi2)p∗2,i2‖
2
2] ≤ 2L E

∑
i∈M

(p∗1,i)
2,

where the third line uses the L-Lipschitz assumption on ∇l. The final expression also applies the
fact that the solutions P ∗` , for ` = 1, 2, are Mt-dimensional i.i.d. random variables because they are

24

functions of the Mt-sized vector of objective coefficients Z` := (zm,`) in the inner maximization
formulation (3), each of which are in turn sampled i.i.d. via the setsM`.

To estimate the variance in the solution P ∗, note first that (P ∗, Z) obey (along with the accompanying
dual variables (α∗, λ∗)) the first order optimality conditions on the Lagrangian L(θ, α, λ, P) in (7)
that ∇PL = ∇αL = ∇λL = 0. Only the first set of equations ∇PL = Z − λe + αφ′(MP) = 0
involve Z, and the Jacobian of these equations w.r.t. Z is a constant non-singular matrix. From the
implicit function theorem, a continuous differentiable g(·) exists such that the relation P ∗ = g(Z)
holds.

Consider a generic function g(Y) of a random variable Y such that g′(·) exists. Let Y1 and Y2 be
two i.i.d. replications of Y , and observe from the mean value theorem that

E[|g(Y1)− g(Y2)|2] = E[|g(Y1)− g(ζ) + g(ζ)− g(Y2)|2] ≤ |g′(ζ)|2E[|Y1 − Y2|2].

Thus, the variance in g(Y) follows at least the same rate as the variance in Y1 if the gradient g′ exists.
Applying this to our case, note that the vector Z is sampled without replacement from the full dataset
{Zm, m ∈ N} implicitly by the subsampled datasetM, which leads us to the desired result.

Theorem 4. Suppose the constant step size γt = γ satisfies γ ≤ 1
2L , a lower bound Rinf exists for

the robust loss function R(θ), ∀θ ∈ Θ, and the conditions of Theorem 3 hold. Then, the variance
of the estimate ∇R̂t(θ) calculated over the sampled-without-replacementMt with subsample size
Mt obeys E[‖∇R̂t(θ) − E[∇R̂(θ)]‖22] ≤ C(1

Mt
− 1

N). Further assume the gradient ∇θR(θ) is
L-Lipschitz. Then, at termination,

T∑
t=1

‖∇θR(θt)‖22 ≤
R(θ0)−Rinf
γ
2 (2− Lγ)

+ C
Lγ + 1

2− Lγ

T∑
t=1

η2
t . (4)

Proof of Theorem 4: For any θ and a setMt sampled to have Mt support points, Theorem 3
and Lemma 10 show that

Et
[
‖∇θR̂t(θ)−∇θR(θ)‖22

]
≤ Et

[
‖∇θR̂t(θ)− Et[∇θR̂t(θ)]‖22

]
+ ‖Et[∇θR̂t(θ)]−∇θR(θ)‖22

≤ O(η
2/(1−δ)
t) +O(η2

t) = O(η2
t).

Hence, the slower rate of decrease in the bias prevails as the rate at which the mean squared error
decreases to zero. Elementary algebraic manipulations yield the following two implications:

Et
[
‖∇θR̂t(θ)‖22

]
≤ Cη2

t + ‖∇θR(θ)‖22 , and (17)

−Et
[(
∇θR̂t(θ)

)T
∇θR(θ)

]
≤ Cη2

t − ‖∇θR(θ)‖22 − Et
[
‖∇θR̂t(θ)‖22

]
. (18)

We can therefore bound the expected robust loss at step (t+ 1) using
Rinf ≤ Et[R(θt+1)]

≤ Et[R(θt)]− γEt[∇θR(θt)
T∇θR̂t(θt)] +

Lγ2

2
Et
[
‖∇θR̂(θt)‖22

]
≤ Et[R(θt)] +

Cγη2
t

2
− γ

2
‖∇θR(θt)‖22 +

(
Lγ2 − γ

2

)(
‖∇θR(θt)‖22 + Cη2

t

)
= Et[R(θt)] +

Cγη2
t

2
(Lγ + 1)− γ

2
(2− Lγ)‖∇θR(θt)‖22. (19)

Upon rearranging (19) and telescoping back to the initial iterate θ0, we obtain the desired result. �

The main implication of the result in (4) of Theorem 4 is that if the summation term∑T
t=1

(
1
Mt
− 1

N

)(1−δ)
remains finite as T → ∞, then the sum of the norm of the gradients of

R(θt) at iterates visited by the algorithm is bounded above, and hence the gradients ∇θR(θt) con-
verge to 0; in other words, the algorithm converges to a local optimal solution. Even moderately
increasing the subsample growth sequences {Mt} can satisfy this condition, and in fact the sequences
can be designed such that they satisfy this condition in addition to Mt ↗ N as t→∞ (that is, T is
not finite), thus realizing a local optimal solution within the run of Algorithm 1.

25

Example 1. Let Mt = Ntk(1−δ)/(N + tk(1−δ)) for any k ≥ 2. The sequence can be seen to be
increasing (assumingMt is a continuous function of t) from ∂Mt(t)/∂t = k(1−δ)Ntk(1−δ)−1/(N+
tk(1−δ))2 > 0 for all t. Moreover, Mt < N and limt→∞Mt = limt→∞N · (1/(1 +N/tk(1−δ))) =
N . Therefore Mt ↗ N and T is not finite. In addition,

∑
t<∞

(
1

Mt
− 1

N

)(1−δ)

=
∑
t<∞

1

tk
<∞,

by the assumption that k ≥ 2. Thus, if all the other conditions of Theorem 4 are satisfied, this growth
sequence yields∇θR(θt)→ 0 as t→∞.

Example 1 shows that the progressively sampled subgradient algorithm can converge to locally
optimal solutions. However, it may do so at the expense of heavy computational effort, since the
sequence in the example grows at a diminishing rate with the iterations. Theorem 6 teases out the
tradeoffs inherent in this question of computational efficiency for the class of strongly convex losses.

We now present a series of structural lemmas that build up to the proof of Theorem 6. We start with
the first part of the result, which pertains to the strong convexity of the robust loss function R(θ)
arising from the strong-convexity of the individual loss functions l(θ, ξ).

Lemma 11. Suppose all the conditions of Theorem 4 are satisfied and the loss functions l(θ, ξn) are
c-strongly convex. Then the function R(θ) is c-strongly convex.

Proof. Since each l(θ, ξn) is c-strongly convex, we have

l(θ1, ξn) +∇θl(θ1, ξn)T (θ2 − θ1) +
c

2
‖θ2 − θ1‖22 ≤ l(θ2, ξn).

Taking any pmf P with components pn and summing up each side, we obtain∑
n

pn

(
l(θ1, ξn) +∇θl(θ1, ξn)T (θ2 − θ1) +

c

2
‖θ2 − θ1‖22

)
≤
∑
n

pnl(θ2, ξn).

Since the above holds for any P , apply this for P ∗(θ1), the optimal pmf for the inner maximization
that defines R(θ1), with components p∗n(θ1). As previously discussed, if the Dφ-constraint is tight
enough, i.e., ρ < ρ1, then P ∗(θ1) is unique for θ1, and thus the subgradient ∇θR(θ) corresponds
with the gradient from Danskin’s Theorem (see Shapiro et al. [29, Theorem 7.21, p. 352]). We then
derive(∑

n

p∗n(θ1)l(θ1, ξn)

)
+
∑
n

p∗n(θ1)∇θ (l(θ1, ξn))
T

(θ2 − θ1) +
c

2
‖θ2 − θ1‖22 ≤

∑
n

p∗n(θ1)l(θ2, ξn),

which leads to

R(θ1) +∇θR(θ1)T (θ2 − θ1) +
c

2
‖θ2 − θ1‖22 ≤ max

P∈P

∑
n

pnl(θ2, ξn) = R(θ2),

thus verifying that R(θ) is c-strongly convex.

The strong convexity of R(θ), along with the strict convexity of the feasible set P posited in
Proposition 1(i), implies that there exists a unique minimizer θrob such that R(θrob) = Rinf . This
leads to a stronger version of the convergence shown in Theorem 4. Recall that the definition of the
expected optimality gap in this case is Et := Et[R(θt)]−R(θrob), and the sample size sequences are
defined as Mt(ν) = Πs≤tνs where νs > 1 to ensure the subsample size grows starting with M0 = 1.

Lemma 12. Suppose the assumptions of Proposition 1(i), Theorem 4 and Lemma 11 hold. Let
r = 1− γ

4c < 1. Then, the expected optimality gap Et+1 after t iterations satisfies

Et+1 ≤ rt+1E0 +
CLγ2

2

t∑
s=0

rt−s

(
s∏

u=0

ν−(1−δ)
u

)
. (20)

26

Proof. Returning to the inequality (19) at the end of the proof of Theorem 4, we rewrite this for the
strongly convex R(θ) as

Et+1 = Et[R(θt+1)]−R(θrob)

≤
(
Et[R(θt)]−R(θrob)

)
− γEt[∇θR(θt)

T∇θR̂t(θt)] +
Lγ2

2
Et
[
‖∇θR̂(θt)‖22

]
≤ Et +

Cγη2
t

2
− γ

2
‖∇θR(θt)‖22 +

(
Lγ2 − γ

2

)(
‖∇θR(θt)‖22 + Cη2

t

)
≤ Et

(
1− 2γ − Lγ2

4c

)
+
CLγ2η2

t

2
≤

(
1− γ

4c

)
Et +

CLγ2η2
t

2
. (21)

The first inequality starts with the L-Lipschitzness of∇θR(·), and the second inequality substitutes
the relations in (17) and (18). The third inequality uses the c-strong convexity of R(θ), specifically
the implication that ‖∇θR(θ)‖22/2c ≥ (R(θ)−R(θrob)). The final inequality utilizes the conditions
imposed on γ.

The form of (21) is quite informative, in that it clearly displays the tradeoff being addressed by
the algorithm: the first summand provides a geometric reduction in the optimality gap, which is
to be balanced with the stochastic error in the second summand. Note that, for growth sequences
Mt = Mo

∏t
s=1 νs where νs > 1, we have

η2
t

η2
t−1

=

(
1
Mt
− 1

N
1

Mt−1
− 1

N

)(1−δ)

=
1

ν
(1−δ)
t

 1
M0

∏t
s=1 νs

− 1
N

1
M0

∏t
s=1 νs

− 1
N + 1

N

(
1− 1

νt

)
(1−δ)

≤ 1

ν
(1−δ)
t

.

Therefore, the η2
s decreases at least as fast as (1 − 1/N)

∏s
u=0 ν

−(1−δ)
u ≤

∏s
u=0 ν

−(1−δ)
u , where

the term (1− 1/N) arises from η2
0 . We combine this with telescoping the optimality gap in the first

summand of (21), which leads to the expression in (20) as follows:

Et+1 ≤ rEt +
CLγ2η2

t

2
≤ rt+1E0 +

CLγ2

2

t∑
s=0

η2
sr
t−s

≤ rt+1E0 +
CLγ2

2

t∑
s=0

rt−s

(
s∏

u=0

ν−(1−δ)
u

)
.

From (20), we observe that the error after t steps is a result of the balance between r and νt, and
the summation in the second term is key to analyzing this tradeoff. We denote the summation as
I in the sequel. The rate at which the overall optimality gap drops to zero is then governed by the
balance achieved between the fast geometric (or linear as termed by the optimization literature) drop
in deterministic error by the factor r and the rate at which the stochastic error, driven by the growth
sequences νs, recedes. We start by showing that diminishing-growth subsample sequences lead to a
slow drop in the second term, that is the stochastic error, which in turn implies a slow decay of the
overall expected optimization gap Et+1. Recall that a sequence is said to have diminishing-growth if
νs ↘ 1 as s→∞, and that Wt =

∑
s≤t ws represents the total computational effort expended up

until the tth iterate, where wt = keMt logMt represents the computational effort of the tth iterate
for some constant ke.

Theorem 6 Suppose all the conditions of Theorem 4 are satisfied and the loss functions l(θ, ξn)
are c-strongly convex. Then the function R(θ) is c-strongly convex. Further suppose that γ ≤
min{ 1

4L , 4c} is fixed. Then: (i) For diminishing growth sequences Mt, we have that ETWT →∞
as νt → 1+; and (ii) For constant growth sequences, we have that the total effort WT (ν) is a
decreasing function over ν ∈ (1,∞), with limν→1+(ν − 1)WT (ν) = ke(N logN − (N − 1)).
Moreover, ET (ν) ≤ ĒT (ν) where ĒT (ν) is an increasing function over ν ∈ (1,∞) with its infimum
Ē∗ = infν ĒT (ν) = (1/N1−δ)(E0 + 8CLc2) attained as ν → 1+. Finally, we have

lim
ν→1+

WT (ν) (ĒT (ν)− Ē∗) = 8CLc2(1− δ)(1− γ

4c
) · ke

(
Nδ logN − (Nδ −N−(1−δ))

)
.

27

Proof of Theorem 6(i): Since νs ↘ 1, there exists sufficiently large so such that ν(1−δ)
s r < 1 for

all s ≥ so. Then the term I in (20) can be written as

I ≤
so∑
s=0

rt−s

(
s∏

u=0

ν−(1−δ)
u

)
+

1

ν
(t−so)(1−δ)
so

[
1 + rν(1−δ)

so + . . .+ (rν(1−δ)
so)t−so

]

≤
so∑
s=0

rt−s

(
s∏

u=0

ν−(1−δ)
u

)
+

1

ν(t−so)(1−δ)

[
1

1− rν(1−δ)
so

]
.

Thus, the term I forms the dominating term in determining the rate of convergence of Et+1, which is∏t
s=so

ν
−(1−δ)
so ≤

∏t
s=so

ν
−(1−δ)
s = O(M

−(1−δ)
t).

We will now show that the computational effort wt = O(Mt logMt) is also wt = o(Wt). These
together imply the desired result for the case of Theorem 6(i). Consider the function hε(k) =

(1/kε)1/k2ε over k ∈ [1,∞) for any ε > 0. Several properties of hε are apparent: hε(k) = h1(εk)
for any ε > 0; h1(k) ∈ (0, 1] for all k ∈ [1,∞); and lim

k→1+
h1(k) = lim

k→∞
h1(k) = 1. Moreover,

arg mink h1(k) = e1/2, where h1(e1/2) = 0.832. Hence, the family of functions {hε} (indexed by
ε) can be used to bound the sequence ν−1

s ↗ 1 in the following sense: for a sufficiently large t0 there
exists an ε = ε(t0) > 0 such that

1 ≥ ν−1
s ≥ hε/2(t) =

(
1

tε/2

)1/tε

≥ 0, ∀t ≥ s ≥ t0(ε).

We then obtain

Wt

wt
=

∑t
s=1Ms logMs

Mt logMt
≥

t∑
s=t−tε

t∏
u=s+1

ν−1
u ≥ tε

t∏
u=t−tε

ν−1
u ≥ tε/2.

Hence, as t → ∞, we have that Wt/wt → ∞. The total work Wt performed up until iteration t
therefore grows faster than the instantaneous work wt (as represented by the instantaneous sample
size Mt), but the second term in (20) does not drop any faster than the subsample size M (1−δ)

t , which
leads to the desired result in Theorem 6(i). �

In the sequel, we limit our discussion to the constant growth sequences that are relevant to the
remaining parts of Theorem 6. A constant growth sequence has Mt = bνtc for ν ∈ (1,∞), and the
iteration when the growth sequence reaches the full training dataset size N is T (ν) = dlogN/ log νe.
As stated before, we ignore the requirement that Mt and T be integers for the rest of the section
for simplicity of exposition. The total number of iterations T (ν) for any ν ∈ (1,∞) is finite. At
termination T (ν), we write the cumulative computational effort by iteration T (ν) as WT (ν) :=∑T
s=0 ws. We begin by establishing the size of WT (ν).

Lemma 13. We have:
(a) for any ν > 1,

WT (ν) = ke

{(
ν

ν − 1

)
N logN − (N − 1)

(
ν

ν − 1

)(
log ν

ν − 1

)}
;

(b) WT (ν) is strictly decreasing over ν ∈ (1, N]; and
(c) limν→1+(ν − 1)WT (ν) = ke {N logN − (N − 1)} .

28

Proof. From the definition of WT (ν), we derive

WT (ν) = ke
∑
s≤T

Ms logMs = ke
∑
s≤T

νs log(νs) = ke log ν
∑
s≤T

sνs = keν log ν
∑
s≤T

(s)ν(s−1)

= keν log ν
∂

∂ν

∑
s≤T

νs

 = ke
ν log ν

(ν − 1)2

(
T ν(T +1) − νT (T + 1) + 1

)
= ke

ν log ν

(ν − 1)2

(
T νT (ν − 1)− νT + 1

)
= ke

ν log ν

(ν − 1)2

(
logN

log ν
N(ν − 1)− (N − 1)

)
,

where the last expression uses the relation νT = N . Simplifying the expression leads to the first
result (a).

Turning to (b), consider the derivative

W ′T (ν) =
−(N − 1)

(ν − 1)2

(
N logN

N − 1
+ 1 − log ν(ν + 1)

ν − 1

)
.

To establish the desired result, it is sufficient to show that the expression within the parentheses is
always positive. Note that we need only consider the cases ν ≤ N because any larger value is in
effect truncated to N . Define

ω(ν) :=
log ν(ν + 1)

ν − 1
and calculate its derivative ω′(ν) =

1

(ν − 1)2

[
ν − 1

ν
− 2 log ν

]
.

The derivative is non-negative since the term ω2(ν) = ν − 1/ν − 2 log ν within the parentheses
takes the value 0 as ν → 1+ and it is increasing in ν ∈ (1, N], since ω′2(ν) = (1− 1/ν)2. Thus, the
function ω(ν) is increasing in ν; this, in combination with the fact that ω(N) = (N logN)/(N −
1) + logN/(N − 1) < (N logN)/(N − 1) + 1, yields the desired result.

Finally, the limit in (c) is readily obtained by multiplying both sides of the equation in (a) with (ν−1)
and noting from L’Hospital’s rule that limν→1+ log ν/(ν − 1) = 1 for the second term.

Following (20), we establish an upper bound ĒT on how the expected optimality gap ET at iteration
T drops as a function of the various parameters related to the algorithm and the objective function.
Lemma 14. For any ν ∈ (1,∞), the expected optimality gap at termination T (ν) is bounded by

ET (ν) ≤ ĒT (ν) =


1

N(1−δ)

[
E0 + CLγ2

2
1−r(logN/log ν)N(1−δ)

1−rν(1−δ)

]
, ν < (1/r)(1/(1−δ))

1
N(1−δ)

[
E0 + CLγ2

2

(
logN
log ν

)]
, ν = (1/r)(1/(1−δ))

r(logN
log ν)

[
E0 + CLγ2

2
1−r(−logN/log ν)N−(1−δ)

1−(ν−(1−δ)/r)

]
, ν > (1/r)(1/(1−δ))

.

Proof. We analyze the summation term I in (20) of Lemma 12 for the three cases listed in the above
result. For the top case where ν(1−δ) < 1/r, the term I can be written as

I =
1

νt(1−δ)

[
1 + rν(1−δ) + . . .+ (rν(1−δ))(t−1)

]
=

1

νt(1−δ)

[
1− (rν(1−δ))t

1− rν(1−δ)

]
.

The last expression in turn shows that the optimality gap Et+1 decreases at the dominating (slower)
rate of νt(1−δ) such that the term I vanishes to zero. Upon substituting t = T = logN/ log ν, we
obtain the corresponding expression for the top case in the theorem.

Now, for the bottom case, assume that ν(1−δ) > 1/r, which allows the term I to be written as

I = rt

[
1 +

1

rν(1−δ) + . . .+
1

(rν(1−δ))(t−1)

]
= rt

[
1− 1

(rν(1−δ))t

1− 1
rν(1−δ)

]
.

29

The last expression shows that the optimality gap Et+1 is dominated by the (slower) rate of the deter-
ministic convergence rt. Once again, substituting t = T = logN/ log ν renders the corresponding
expression for the bottom case in the theorem.

Finally, for the middle case ν(1−δ) = 1/r, we start by observing that

lim
f→1−

1− f (t+1)

1− f
= lim
f→1−

(t+ 1)f t = (t+ 1), (22)

where the second expression applies L’Hospital’s rule. The corresponding desired result for the
middle case can now be obtained by taking the left- or right-limit as appropriate of the top or bottom
cases.

The total number of iterations T (ν) for any ν ∈ (1,∞) is finite, i.e., T (ν) <∞, and thus we cannot
expect to match the corresponding guarantee ĒT (ν) to any arbitrarily desired optimality precision.
We can in fact establish that the infimum of ĒT (ν) over ν ∈ (1,∞), denoted by Ē∗, exists and is
available in closed form.

Lemma 15. The upper bound ĒT (ν) in Lemma 14 is increasing in ν, and attains its infimum when
ν → 1+ as

Ē∗ = inf
ν∈(1,∞)

ĒT (ν) =
1

N (1−δ)

[
E0 +

CLγ2

2(1− r)

]
.

Proof. For this proof, we respectively denote by f ′(ν) and f ′′(ν) the first and second derivatives of
a function f of ν. We begin by establishing that the error bound ĒT (ν) ≥ Ē∗ for all ν ∈ (1,∞).
Let us rewrite the difference between them for ν1−δ ∈ (1, 1/r) using the expression in Lemma 14 as

∆ĒT (ν) := ĒT (ν)− Ē∗ =
CLγ2

2
N−(1−δ)

[
1− (r ν1−δ)T

1− r ν1−δ − 1

1− r

]
, (23)

where T = T (ν) = logN/ log ν →∞ as ν → 1+. We mainly present the analysis for the case of
rν < 1 above, noting that the rν > 1 case follows analogously by the symmetry of their respective
expressions, as we further explain below.

First observe that lim
ν→1+

∆ĒT (ν) = 0. Denote by t1(ν) the first term within the brackets in (23). We

then establish that t1(ν) is increasing in ν by showing that t′1(ν) > 0, which establishes that ĒT is
increasing in ν1−δ ∈ (1, 1/r).

Substituting ν̃ = ν1−δ , since t′1(ν̃) = t′1(ν)(1− δ)ν−δ , it is sufficient to show that t′1(ν̃) > 0 for all
ν1−δ ∈ (1, 1/r). The corresponding range for ν̃ is (1, 1/r), and T (ν̃) = (1− δ) logN/ log ν̃. Let
fn(ν) = 1− (rν̃)T (ν̃) and fd(ν̃) = 1− rν̃. Then, to establish that t′1(ν̃) > 0, it is sufficient to show
that g(ν̃) := f ′n(ν̃)fd(ν̃)− f ′d(ν̃)fn(ν̃) > 0. We derive that f ′n(ν̃) = −(rν̃)T (T ′(ν̃) log r) and
f ′d(ν̃) = −r, which yields

g(ν̃) = r − (rν̃)T [r + log r T ′(ν̃)(1− rν̃)] ,

where T ′(ν̃) = − logN/(ν̃(log ν̃)2)(1− δ) < 0 and log r < 0. We now have that lim
ν̃→1/r̃

g(ν̃) = 0,

and thus the desired result that g(ν̃) ≥ 0 over ν̃ ∈ (1, 1/r) is obtained if its derivative in turn can
be shown to satisfy g′(ν̃) < 0. Denote by g1(ν̃) = (rν̃)T and g2(ν̃) = log r T ′(ν̃)(1 − rν̃), and
rewrite g(ν̃) = r − g1(ν̃)[r + g2(ν̃)]. We therefore conclude that

g′(ν̃) = −[g′1(ν̃)(r + g2(ν̃)) + g′2(ν̃)g1(ν̃)].

Since g1(ν̃) and g2(ν̃) are each non-negative, we have the desired outcome if their derivatives are
also non-negative. To see that this holds, we simplify their expressions to obtain

g′1(ν̃) = T ′(ν̃) log r g1(ν̃) and g′2(ν̃) = T ′′(ν̃)(1− rν̃)− rT ′(ν̃),

where T ′′(ν̃) = (1 − δ) logN(log ν̃ + 2)/(ν̃2(log ν̃)3) > 0 for all ν̃ ∈ (1,∞). Hence, both
g′1(ν̃) ≥ 0 and g′2(ν̃) ≥ 0, thus rendering that the first term t1(ν̃) is increasing, and implying in turn
that ĒT (ν) is also increasing in ν1−δ ∈ (1, 1/r).

30

For the case when ν1−δ ∈ (1/r,∞), observe that

∆ĒT (ν) := ĒT (ν)− Ē∗ = E0

[
rT − 1

N1−δ

]
+
CLγ2

2
rT

[
1− (r(ν)1−δ)−T

1− (rν1−δ)−1
− 1

1− r

]
.

(24)

The first term is increasing in ν since T (ν) is decreasing in ν and r < 1; note that rT > N−(1−δ) =
ν−T (1−δ) by the supposition that ν(1−δ) > 1/r. Observe the similarity of the second term to the
expression for ∆Ē that was analyzed for the ν(1−δ) < 1/r case. In particular, if we let y = 1/ν1−δ ,
then y ≤ r and we are interested in how the term changes as y ↘ 0 receding away from the critical
value of r. The properties of the term can be analyzed analogously to the above case to show that
their behaviour is reciprocated, in that as ν →∞ the error gap ∆ĒT grows. We omit the details for
the sake of brevity, since the results follow in an analogous manner from the above analysis.

Hence, the error ĒT (ν) is bounded below by Ē∗ everywhere in ν ∈ (1,∞), and moreover the
analysis above shows that this infimum is obtained as ν → 1+.

Lemma 15 shows that there exists an infimum beyond which our Algorithm 1 cannot be guaranteed to
reduce the upper bound ĒT (ν) on the optimality gap ET (ν) for any constant-factor growth parameter
ν or step size γ. Figure 3 provides an illustration of the results provided by Lemmas 14 and 15.

Figure 3: Illustration of guaranteed expected optimality gap at finite-step T termination when Al-
gorithm 1 is run with a constant growth sequence Mt = bνtc for ν > 1. The critical value νr
satisfies ν1−δ

r = 1/r. The three regimes obeyed by the guaranteed optimality gap Ē(ν) as described
in Lemma 14 is depicted on and to either side of this critical value νr. The best error guarantee Ē∗,
defined in Lemma 15, is attained as ν → 1+.
Note that the proof of Lemma 15 defines ∆ĒT (ν) := ĒT (ν)− Ē∗ to be the attainable gap at any
ν ∈ (1,∞), and shows that ∆ĒT (ν)→ 0 as ν → 1+. Our next lemma characterizes a finer analysis
by providing a rate for this convergence.

Lemma 16. We have the limit

lim
ν→1+

(ν(1−δ) − 1)−1∆ĒT (ν) =
1

N (1−δ)
CLγ2r

2(1− r)2
.

Proof. Since ∆ĒT (ν) increases as ν increases, we need only be concerned with the left limit
of ∆ĒT (ν) and therefore we again focus on the top expression in Lemma 14. Define f(ν) :=

31

rlogN/ log νN1−δ to obtain
∆ĒT (ν)

(ν(1−δ) − 1)
=

1

N (1−δ)
CLγ2

2
(ν(1−δ) − 1)−1

[
1− f(ν)

1− rν(1−δ) −
1

1− r

]
=

1

N (1−δ)
CLγ2

2
(ν(1−δ) − 1)−1

[
r(ν(1−δ) − 1)− (1− r)f(ν)

(1− rν(1−δ))(1− r)

]
=

1

N (1−δ)
CLγ2

2

[
r

(1− rν(1−δ))(1− r)
− (1− r)f(ν)

(ν(1−δ) − 1)(1− rν(1−δ))(1− r)

]
.

Then, for the second term within the brackets containing f(ν), we have

lim
ν→1+

r(logN
log ν)

ν(1−δ) − 1
= − lim

ν→1+
r(logN

log ν) logN

(1− δ)ν(1−δ)(log ν)2
= − lim

y→∞

logN

(1− δ)
y2r(y logN)e

1−δ
y = 0,

where the first equality applies L’Hospital’s rule, the second equality makes the variable transformation
y = 1/ log ν, and the limit follows from r < 1. Applying the limit ν → 1+ to the first term within
the brackets then yields the desired result.

The proof of the final part of Theorem 6 follows from Lemma 13 and Lemma 16.

Proof of Theorem 6 (ii): By multiplying and dividing each term within the limits of Lemmas 13
and 16 by (ν − 1) and (ν(1−δ) − 1), respectively, we rewrite the left hand side as

WT (ν) ∆ĒT (ν) = ((ν − 1)WT (ν))
ν(1−δ) − 1

ν − 1

(
∆ĒT (ν)

ν(1−δ) − 1

)
.

Then, upon applying the limits in Lemmas 13 and 16 and noting that the limit of ν
(1−δ)−1
ν−1 as ν → 1+

is (1− δ) by L’Hospital’s rule, we obtain the desired result. �

As explained in the main body of the paper, we have from (21) that a strongly-convex objective R
would enjoy a linear (i.e., constant factor) reduction of size r in the error R(θt)−R(θrob) if the full
batch-gradient method is applied in each iteration (Mt = N), for a step-size γ chosen to satisfy the
conditions of Theorem 6. The average optimality gap for our algorithm can then be written as a
sum of this deterministic error and an additional term representing the stochastic error induced by
the subsampling of the support. We establish in Theorem 6(i) that any general diminishing-factor
growth of Mt will lead to the stochastic error decreasing to zero much slower than the geometric
drop in the deterministic error, and thus the stochastic error dominates. It follows that there is a
suboptimal reduction in the optimality gap ET w.r.t. the total computational effort WT , which grows
in proportion to the sample size as opposed to constant-factor growth sequences.

However, constant factor sequences can trade off the rate of reduction in stochastic error against
the drop in deterministic error. For strongly convex R(θ), Theorem 6 shows that our progressively
sampled method is guaranteed to achieve any optimality gap of size ε+Ē∗ withO(ε−1) computational
effort, where the constants contain only poly-log terms in N . Hence, we are able to match the
guarantees on SGD for standard optimization formulations to the DRL formulation within the
error limit Ē∗, which itself drops at the rate O(N−(1−δ)). This is summarized in our corollary of
Theorem 6.

Corollary 2. Suppose all the conditions of Theorem 6 are satisfied and a solution with guar-
anteed expected optimality gap within Ē∗ + ε is desired. Then, there exists a νε ∈ (1,∞)
such that when Algorithm 1 is run with sample size sequence Mt = bνtεc, it terminates with
T (ε) = dlogN/ log νεe steps and produces the desired solution with total computation effort
WT (ε) = 1

ε

(
κ1 νε + κ2 νε(ν

1−δ
ε − 1) + o(ν1−δ

ε ˘1)
)
, where κ1, κ2(νε) ∈ (η,∞) for a fixed

η > 0 and for all ε ≥ 0. Moreover, νε ↘ 1 as ε→ 0.

Proof of Corollary 2: Lemma 14 shows that the attainable expected optimality gap ĒT (ν) is an
increasing function of ν, along with an infimum of Ē∗. Thus, for a given ε, there exists a parameter
choice νε such that ĒT (νε) = Ē∗ + ε. The increasing nature of ĒT (ν) also renders that νε ↘ 1 as
ε→ 0.

For ease of exposition, we drop the subscript ε in νε for the rest of this proof. We provide the desired
result for ν1−δ ∈ (1, 1/r), that is the case where ν is in a neighbourhood close to 1; the case where

32

rν1−δ > 1 follows analogously by symmetry, as observed in the proof of Lemma 15. From the same
proof, we again make the substitution ν̃ = ν1−δ and note that

∆ĒT (ν̃) =
CLγ2

2
N−(1−δ)

[
t1(ν̃)− 1

1− r

]
,

where t1(ν̃) = (1− rTN1−δ)/(1− rν̃) and T = T (ν̃) = (1− δ) logN/ log ν̃. Given that r < 1, it
follows that limν→1+ rT = 0 and hence limν→1+ t1(ν̃) = 1/(1− r). We further follow the proof
of Lemma 15 to note that

t′1(1) := lim
ν→1+

t′1(ν̃) = lim
ν→1+

g(ν̃)

(1− rν̃)2
=

r

(1− r)2
,

where the function g(ν̃) is is defined within the body of the proof as

g(ν̃) = r − rTN1−δ
(
r − log r

logN

ν̃(log ν̃)2(1− δ)
(1− rν̃)

)
.

The limit is obtained as above by noting that limν→1+ rT /(log ν̃)2 = 0, following the arguments in
the proof of Lemma 16. Moreover, higher order derivatives can also be obtained to be finite from the
arguments in Lemma 15. Thus, we have the Taylor expansion of the optimality gap as

∆ĒT (ν̃) =
CLγ2

2
N−(1−δ)

[
r

(1− r)2
(ν1−δ − 1) +O((ν1−δ − 1)2)

]
. (25)

On the other hand, we have from Lemma 13 that

WT (ν) = ke

(
ν

ν − 1

){
N logN − (N − 1)

(
log ν

ν − 1

)}
= ke

(
ν

ν − 1

){
N logN − (N − 1)

(
1− 1

2
(ν − 1) +O((ν − 1)2)

)}
. (26)

The last expression is obtained from the Taylor expansion of f(ν) := log ν/(ν − 1) around ν = 1.
Note that f(ν) < 1 and decreasing as ν ↗, and thus f ′(ν) < 0 for ν > 1. Moreover, we have that
limν→1+ f(ν) = 1 and limν→1+ f ′(ν) = −1/2.

Combining (25) and (26), and using the Taylor expansion ν1−δ− 1 = (1− δ)(ν− 1)− δ(1− δ)(ν−
1)2 +O((ν − 1)3), we obtain

WT (ν)∆ĒT (ν)

=
CLγ2keν

2N (1−δ)

{(
N logN − (N − 1)

)
t′1(1)

(
ν1−δ − 1

ν − 1

)
+
N − 1

2
t′1(1)

(
ν1−δ − 1

)
+ o
(
ν1−δ − 1

)}
=
CLγ2keν

2N (1−δ)

{(
N logN − (N − 1)

)
t′1(1)(1− δ) +

N − 1

2
t′1(1)

(
ν1−δ − 1

)
+ o
(
ν1−δ − 1

)}
.

This yields the desired result, with the constants

κ1 :=
(1− δ)CLγ2ker

(
N logN − (N − 1)

)
2N (1−δ)(1− r)2

and κ2 :=
CLγ2ker(N − 1)

4N (1−δ)(1− r)2
. �

We note that, upon substituting r = 1− γ/4c (refer to the statement of Lemma 12)), the value of κ1

is seen to match the constant on the right hand side in the last line of Theorem 6(ii). This, of course,
is as expected under the limit ν → 1+.

In practical terms, Lemma 16 shows that the performance at T improves as ν → 1+, but this also
increases the value of T and hence the total effort WT . The expression in Lemma 13(a) provides
practitioners with a strong grasp on the total effort that is expended up until termination T (ν) for
any ν, and since this relation is monotonic, it can be inverted to obtain the ν closest to 1 that can be
used for a fixed computational budget W . This in turn allows the user to obtain the best ĒT (ν) error
bound for the given budget W .

A forthcoming article extends these theoretical results to the case of convex losses.

33

B Empirical Results

We present additional empirical results that complement those in the main body of the paper, organized
as follows. Section B.1 presents numerical comparisons among the various algorithms used to solve
the DRO formulation (1), namely our PSSG algorithm, the FG algorithm of Namkoong and Duchi
[21], the Giles algorithm of Levy et al. [15] and Ghosh and Squillante [10], the SGD method
of Namkoong and Duchi [20] and the standard SGD (fixed minibatch Mt = M) method, together
with the 10-fold CV regularized ERM method. Given the benefits that we established in this paper
(as well as in [10]) for sampling without replacement over sampling with replacement, our empirical
results focus on the Giles algorithm of Ghosh and Squillante [10]. This collection of algorithmic
comparisons is performed over the datasets considered in the main body of the paper, and also
includes further discussions of the results and technical details. Section B.2 provides additional
details on the collection of datasets used to support our empirical results.

B.1 Additional Results

We first present detailed empirical results that compare the performance of PSSG against FG and
Giles in solving (1) over thirteen publicly available datasets, all of which are also included in Table 1
of the main body of the paper. Our aim is to study the impact of the key algorithmic parameters for
each method together with that of the main tunable parameter ρ of the DRO formulation (1).

PSSG. We investigate the impact of two key parameters of Algorithm 1, namely the sample growth
ν and step length γ, on the quality of the solution produced by the PSSG method, as a function the
parameter ρ of the DRO formulation. Theorem 6 establishes the rate at which the expected optimality
gap drops as the sample constant-growth factor ν → 1+, and also provides how the step length γ for
the iterates affect this rate. We therefore start by keeping γ = 0.5 fixed, and present in Table 2 and
Table 3 misclassification percentage results for ν varying over {1.001, 1.01, 1.1}. For each dataset,
the PSSG setting(s) that produced the best performance for each value of ρ are highlighted in bold,
with an emphasis towards providing guidance on one setting of ν that performed well over all ρ
values; and the best mean outcome(s) over all methods for each dataset is further highlighted in red.
Additional settings are highlighted in italics if they match the highlighted setting in bold. The results
firstly show that the value of ν seems to have a moderate impact on the solution quality over each
fixed ρ in a vast majority of cases. For many datasets (e.g., hiv1, la1s.wc, MNIST, rcv1, riccardo
and tr31.wc), the misclassification error is seen to basically follow the trend of increasing with
ν, which is consistent with the prediction from Theorem 6 for the (expected) robust loss function.
Moreover, the results for the value of ρ from the O(

√
d/N) principle seem to do well in almost all

datasets. The same holds in the reverse direction when ν is fixed and ρ is varied. It is also clear that
ν = 1.001 performs best most consistently, thus motivating our use of this value in the results of the
main body of the paper. We lastly note that PSSG provides the best mean outcomes (highlighted in
bold red) for all but two datasets, and even in the case of these latter two particular datasets (fabert,
imdb.drama), PSSG provides comparable quality performance with overlapping confidence intervals
(CIs) (highlighted in bold).

Next, for the RCV1 dataset, Figure 4 (left) contrasts the performance of PSSG keeping γ = 1.0 fixed
while varying ν. Our results show that the performance is insensitive to ν for values smaller than
1.001. Theorem 6, which applies only when individual losses l(θ, ξ) are strongly convex, predicts the
existence of an error floor Ē∗ as ν → 1+; the results in the plot suggest that a similar error floor is
reached for ν = 1.001. Figure 4 (right) contrasts the performance of PSSG by fixing ν = 1.001 and
varying γ, where our results show that, while γ has some effect, PSSG is relatively insensitive to the
chosen step length beyond γ = 0.5. This motivates our choice of γ = 0.5 for all experiments in the
main body of the paper.

FG. This method uses the classical Armijo backtracking line-search algorithm [22] to compute
the step length to follow in each iteration. The maximum (initial) step length forms an important
parameter for the Armijo line-search, since a small initial value might subject the iterates to the local
irregularities of the optimization surface and lead to suboptimal local optima, while too aggressive
of an inital step length might produce significant variability. Accordingly, Table 2 and Table 3
present our study of the impact of varying the initial maximum step length over {0.1, 0.5, 1.0} on the
quality of the solution produced by the FG method, as a function of the set of ρ values of the DRO
formulation. We observe that the step length of 0.1 seems to more consistently produce poorer quality

34

Algorithm FG Giles PSSG

Maximum step-length Minimum Mt = 2k + 1, where k is Sample growth factor ν
Dataset ρ 0.1 0.5 1.0 1 2 3 4 1.001 1.01 1.1

adult 0.001 18.5±1.2 17.6±0.0 17.4±0.0 16.7±0.1 16.7±0.1 16.9±0.2 17.0±0.1 16.6±0.1 16.7±0.1 17.2±0.0
45222 0.01 17.9±0.2 17.4±0.1 17.3±0.1 16.7±0.1 16.7±0.1 16.8±0.1 17.0±0.1 16.6±0.1 16.7±0.1 17.1±0.0

0.1 17.7±0.0 17.3±0.0 17.1±0.1 16.7±0.1 16.8±0.1 16.8±0.1 17.0±0.2 16.6±0.1 16.6±0.1 17.0±0.0
1.0 19.0±0.3 19.6±0.6 19.6±0.6 18.0±0.2 17.4±0.5 17.2±0.1 17.4±0.2 22.8±0.6 23.7±0.1 16.9±0.1

fabert 0.001 20.7±0.4 20.9±0.3 19.2±0.8 10.0±0.3 10.2±0.3 10.7±0.3 11.2±0.3 9.8±0.1 10.9±0.3 16.6±0.2
8237 0.01 19.9±0.3 18.5±0.3 16.6±0.8 9.9±0.2 10.1±0.2 10.6±0.3 11.0±0.2 9.6±0.1 10.3±0.2 15.2±0.2

0.1 14.4±0.2 13.6±0.4 12.8±0.3 9.9±0.3 10.0±0.3 10.5±0.2 10.8±0.3 9.6±0.3 9.9±0.1 11.8±0.3
1.0 9.5±0.2 9.2±0.2 9.1±0.2 11.1±0.6 10.9±0.2 12.1±1.2 11.5±0.6 9.4±0.3 9.2±0.2 9.3±0.2

gina_agnostic 0.001 14.6±0.1 13.2±0.3 13.7±0.3 16.3±1.1 19.2±2.4 16.4±0.6 16.9±0.7 15.0±0.3 13.8±0.2 13.2±0.2
3468 0.01 14.6±0.2 13.8±0.2 13.9±0.2 15.5±0.4 15.7±0.3 16.1±0.7 16.5±0.6 15.3±0.3 13.7±0.3 13.4±0.1

0.1 14.2±0.2 14.0±0.2 14.2±0.2 15.8±0.8 15.4±0.5 16.7±0.6 17.7±0.3 15.3±0.5 14.7±0.4 13.1±0.2
1.0 17.4±1.0 16.9±0.9 16.5±0.9 23.2±3.7 20.3±0.7 20.6±2.1 19.9±1.0 15.1±0.4 17.2±1.0 13.1±0.3

gina_prior 0.001 15.3±0.6 13.7±0.4 13.7±0.4 14.3±1.0 14.9±0.8 15.0±0.5 16.5±1.0 13.6±0.3 13.0±0.4 12.9±0.5
3468 0.01 15.2±0.6 14.0±0.5 14.0±0.5 14.5±1.0 14.9±0.6 15.5±0.8 15.6±1.0 14.0±0.3 13.3±0.7 12.7±0.5

0.1 14.8±0.5 14.2±0.6 14.2±0.6 14.8±0.7 14.9±0.8 15.0±0.5 16.3±0.5 14.6±0.5 14.7±0.5 12.7±0.4
1.0 15.4±0.7 16.5±0.9 16.5±0.8 16.5±0.9 17.5±1.8 20.4±1.6 17.7±1.3 14.4±0.5 16.9±0.5 12.8±0.5

guillermo 0.001 33.6±0.8 31.3±0.2 31.4±0.2 35.5±1.2 34.3±0.3 34.7±0.4 34.1±0.5 32.2±0.2 33.2±0.3 30.7±0.3
20000 0.01 32.4±0.3 31.2±0.2 31.0±0.2 34.1±0.4 34.6±0.3 35.0±0.3 34.8±0.1 32.7±0.3 34.2±0.4 31.0±0.3

0.1 30.7±0.3 31.0±0.3 31.2±0.3 35.7±0.2 35.6±0.5 35.1±0.4 35.0±0.5 34.5±0.8 37.4±0.2 31.0±0.3
1.0 40.9±1.5 41.1±0.6 41.5±0.8 37.5±0.6 36.4±0.5 36.1±0.4 36.0±0.6 39.2±0.3 40.8±0.2 30.8±0.5

hiv1 0.001 15.0±0.2 8.5±0.3 7.6±0.2 6.4±0.3 6.5±0.2 6.6±0.1 7.2±0.4 6.0±0.0 6.0±0.1 6.7±0.2
5830 0.01 7.1±0.6 8.5±0.1 7.1±0.1 6.4±0.3 6.6±0.4 7.0±0.3 7.0±0.2 6.1±0.0 6.2±0.1 6.5±0.2

0.1 8.3±0.9 6.9±0.2 6.7±0.1 6.3±0.2 6.7±0.3 7.1±0.3 7.4±0.5 6.0±0.2 6.3±0.1 6.3±0.1
1.0 6.1±0.5 6.0±0.2 5.9±0.1 7.6±0.4 8.2±0.6 8.5±0.6 9.1±0.6 5.8±0.1 6.1±0.1 6.3±0.0

IMDB.drama 0.001 36.2±0.1 36.2±0.1 36.1±0.1 37.0±0.1 37.6±0.2 38.2±0.2 39.1±0.3 36.7±0.0 36.8±0.1 36.8±0.1
120919 0.01 36.2±0.1 37.1±0.5 36.5±0.3 37.2±0.1 37.6±0.1 38.3±0.2 39.3±0.3 36.7±0.1 36.8±0.1 36.9±0.1

0.1 38.8±0.1 39.4±0.6 38.5±0.2 37.2±0.1 37.8±0.1 38.1±0.2 39.3±0.2 36.2±0.1 36.2±0.1 36.2±0.1
1.0 43.8±0.3 42.9±0.4 42.9±0.9 41.3±0.5 40.4±0.2 39.3±0.3 39.8±0.4 36.3±0.1 36.2±0.1 36.2±0.1

la1s.wc 0.001 28.4±0.2 12.4±0.0 11.2±0.1 9.3±0.4 8.3±0.3 8.7±0.5 9.1±0.4 8.6±0.1 9.2±0.1 10.7±0.1
3204 0.01 26.6±2.0 12.2±0.2 11.1±0.2 8.7±0.5 9.6±1.0 8.3±0.3 8.7±0.5 8.6±0.1 8.9±0.1 10.4±0.2

0.1 15.1±0.6 11.0±0.2 10.8±0.2 10.5±0.9 8.5±0.4 8.8±0.6 10.0±1.0 8.2±0.2 8.5±0.2 9.8±0.2
1.0 9.7±0.3 9.8±0.4 9.3±0.1 14.0±2.0 14.4±4.1 13.4±2.5 13.9±3.0 8.3±0.2 8.7±0.2 9.0±0.2

MNIST 0.001 3.7±0.2 2.8±0.2 2.7±0.3 3.3±1.6 1.7±0.1 3.6±3.2 2.6±0.6 1.6±0.1 1.8±0.1 2.0±0.1
3001 0.01 3.4±0.2 2.2±0.1 2.0±0.1 2.2±0.3 1.9±0.1 1.9±0.3 2.0±0.2 1.5±0.0 1.6±0.1 2.1±0.1

0.1 3.0±0.2 2.4±0.2 2.5±0.2 2.4±0.6 1.8±0.3 2.2±0.4 2.1±0.3 1.6±0.1 1.6±0.2 1.9±0.2
1.0 2.7±0.2 3.1±0.4 3.1±0.2 3.1±1.2 4.3±1.1 2.4±0.4 2.4±0.6 1.7±0.1 1.6±0.2 2.0±0.1

OVA_Breast 0.001 3.3±0.1 3.2±0.1 3.2±0.1 6.4±0.5 7.5±1.4 8.3±3.5 11.3±4.9 3.1±0.1 3.3±0.1 3.4±0.1
1545 0.01 3.2±0.1 3.2±0.1 3.2±0.1 4.5±0.5 5.8±4.1 3.9±0.7 3.8±0.4 3.2±0.1 3.2±0.1 3.3±0.1

0.1 3.2±0.1 3.2±0.1 3.2±0.1 5.7±1.0 3.9±0.7 3.8±0.6 5.1±1.9 3.2±0.1 3.1±0.1 3.0±0.1
1.0 3.5±0.3 3.6±0.4 4.2±0.5 6.8±0.0 12.2±4.2 8.3±2.0 5.7±1.1 3.3±0.2 3.2±0.1 3.1±0.2

Table 2: Comparisons of the three DRO algorithms (FG, Giles, PSSG) over the first 10 of the 13
publicly available machine learning datasets; refer to B.2 for details on these datasets. Each algorithm
solves DRO formulations for ρ = 0.01, ρ = 0.1 and ρ = 1.0. For the FG algorithm, the critical
parameter of the maximum step length given to the line-search subroutine is varied over 0.1, 0.5 and
1.0. In the Giles algorithm experiments, the minimum sampled batch size, constructed as 2k + 1,
is varied over k = 1, 2, 3, 4. The PSSG algorithm experiments vary the sample growth factor ν
over 1.001, 1.01 and 1.1, keeping the step-lengths fixed at γ = 0.5. All other algorithm settings are
held constant over all the experimental runs. Each column provides the 95% confidence interval of
the percentage misclassified over the withheld test datasets. In the collection of columns for each
algorithm, the settings with either the best or next-best performance are highlighted for each ρ value,
if they are close to or overlapping with the overall best. We suggest the best setting to use for each
method in each dataset over all values of ρ by highlighting in bold where a clear winner is apparent,
and the rest are highlighted in italics. The result with the best mean outcomes over all methods in
each dataset is additionally colored red.

35

Algorithm FG Giles PSSG

Maximum step-length Minimum Mt = 2k + 1, where k is Sample growth factor ν
Dataset ρ 0.1 0.5 1.0 1 2 3 4 1.001 1.01 1.1

rcv1 0.001 13.6±0.2 10.3±0.2 9.0±0.1 6.1±0.0 6.2±0.0 6.2±0.0 6.4±0.0 6.1±0.0 8.1±0.0 11.2±0.0
804414 0.01 12.1±0.1 9.8±0.2 8.7±0.2 6.0±0.0 6.0±0.0 6.1±0.0 6.2±0.0 6.0±0.0 7.8±0.0 10.2±0.0

0.1 9.0±0.0 8.7±0.0 8.1±0.0 5.6±0.0 5.6±0.0 5.8±0.0 6.0±0.0 5.6±0.0 7.0±0.0 8.3±0.0
1.0 6.0±0.0 5.8±0.0 5.7±0.0 5.3±0.0 5.7±0.0 6.0±0.0 6.3±0.1 5.1±0.0 5.5±0.0 5.8±0.0

riccardo 0.001 24.1±0.1 7.9±0.5 5.1±0.4 2.7±0.1 2.5±0.2 2.6±0.1 3.1±0.2 1.6±0.1 2.9±0.1 8.6±0.1
20000 0.01 17.9±0.6 6.4±0.6 4.9±0.4 2.3±0.1 2.3±0.1 2.0±0.1 2.5±0.3 1.6±0.1 2.4±0.1 7.3±0.1

0.1 12.5±0.5 4.9±0.4 10.9±1.6 2.2±0.1 2.1±0.2 2.1±0.2 2.8±0.2 1.5±0.1 1.8±0.1 5.5±0.1
1.0 5.0±0.2 5.8±0.3 5.2±0.4 4.8±2.6 6.0±3.5 5.1±1.6 5.5±2.4 1.7±0.1 1.5±0.1 4.4±0.2

tr31.wc 0.001 19.0±1.6 9.1±1.0 6.3±0.4 6.8±2.6 5.9±2.6 6.8±3.7 4.2±0.8 2.8±0.2 2.7±0.3 4.2±0.5
927 0.01 13.5±0.5 6.9±0.6 4.7±0.7 4.7±1.2 3.4±0.8 3.6±0.8 3.1±0.4 2.8±0.2 2.8±0.2 3.1±0.4

0.1 9.8±0.5 4.9±0.4 3.7±0.4 5.3±1.9 2.7±0.7 3.1±0.5 3.2±0.9 3.1±0.3 2.8±0.4 2.8±0.4
1.0 2.8±0.5 2.7±0.3 3.1±0.4 9.5±3.9 13.1±5.8 7.6±5.3 9.6±4.2 2.7±0.3 3.2±0.5 2.8±0.3

Table 3: Comparisons of the three DRO algorithms (FG, Giles, PSSG) over the remaining 3 of the 13
publicly available machine learning datasets; refer to B.2 for details on these datasets. The details on
the experimental setup used to produce these results is exactly as given in the caption of Table 2.

Figure 4: The average misclassification performance of the FG (green lines, ‘deter’ in legend) and
PSSG (other colored lines) algorithms over the rcv1 dataset: (left) keeping γ = 1.0 fixed and varying
ν from 1.000001 to 1.001 for PSSG; and (right) keeping ν = 1.001 fixed and varying γ from 0.5 to
3 for PSSG. Log-scale computation time (in seconds) on x-axis.

solutions. The step lengths of 0.5 and 1.0 have an almost equal share of good quality solutions over
the datasets and differing ρ, and thus we employed 0.5 as the maximum step length in the results of
the main body of the paper. Here the DRO parameter ρ does have a more pronounced impact on the
solution quality in comparison with PSSG.

Giles. This method is subject to the most variability among the three DRO methods, primarily
due to the added noise of the mini-batch size randomization at each iteration and the form of its
gradient estimate. As evident from the Giles columns of Table 2 and Table 3, the CIs of the test
misclassification estimates produced by Giles are the widest of the three DRO methods.

A key parameter that allows some control on the variability of the Giles method is the minimum mini-
batch size that can be sampled. The mechanics of the method requires sizes of the form M = 2k + 1;
we refer to Levy et al. [15] and Ghosh and Squillante [10] for a detailed description. Table 2 and
Table 3 present our study of the impact of varying the value of k over {1, 2, 3, 4} on the quality of the
solution produced by the Giles method, as a function of the set of ρ values of the DRO formulation.
As apparent from the results, it is hard to pick one “good” setting for the value of k that provides
the best or near-best performance over all datasets, and for any value of k there are datasets where
performance is significantly worse for all values of ρ. The value of k also interacts markedly with the

36

Figure 5: Comparisons of PSSG (green), FG (red) and Giles (purple) on fraction of misclassification
in testing (y-axis) versus cumulative CPU times (x-axis in log-scale) over a representative collection
of five datasets with (left column of plots) ρ = 0.01, (middle column of plots) ρ = 0.1, and (right
column of plots) ρ = 1.0. The five datasets are (top row of plots) la1s.wc, (second row of plots)
hiv1, (third row of plots) MNIST, (fourth row of plots) OVA_Breast, and (bottom row of plots)
riccardo.

ρ values over each dataset, with many ρ settings producing drastically poorer results. These results
indicate that no single setting of k should be attempted, and instead parameter tuning needs to be
performed to identify the value of k that best fits the dataset and the ρ value.

37

Optimization Iterate Paths. Figure 5 presents a detailed comparison of the paths of the optimiza-
tion runs under the PSSG, FG and Giles algorithms over a representative collection of five publicly
available datasets also considered in Table 2 and Table 3. For each algorithm, the fractional misclas-
sification performance over the testing data from 10 experimental runs are presented, where each
run uses a different random partition of the data into training and testing datasets. An average over
these 10 runs is also plotted with a thicker line. For each dataset, the leftmost plot solves (1) with
ρ = 0.01, the middle plot solves (1) with ρ = 0.1, and the rightmost plot solves (1) with ρ = 1.0.
Each algorithm uses the best parameter setting overall judged from the results of Table 2 and Table 3,
and thus PSSG uses ν = 1.001 and γ = 0.5 in all cases. FG sets its maximum step length to 0.5 for
riccardo and to 1.0 for the remaining datasets. Giles sets its minimum mini-batch size parameter k
to 1 for hiv1, to 3 for MNIST and riccardo, and to 4 for OVA_Breast.

Consistent with our results in the main body of the paper, we observe that PSSG is significantly faster
than FG for every value of ρ considered. Each of the iterations of the FG method bears significant
computational cost, while the initial iterations of the PSSG method utilize small mini-batch sizes
with a light computational burden. This allows the PSSG method to open up a sizeable lead from the
start, and it reaches the best test-misclassification values faster than the other two methods. Further
consistent with our results in the main body of the paper, we observe that PSSG outperforms Giles
for each value of ρ considered. The iteration paths of the Giles method are visibly impacted by the
additional variance induced by the mini-batch Monte Carlo randomization step. This results in a
slowdown of the convergence of the method, and also in the wider CIs in the outcomes, as has been
noted earlier. We observe that Giles sometimes outperforms FG and other times FG outperforms
Giles, but once again PSSG outperforms both in each case.

Figure 6: Comparisons of PSSG (green), FG (red) and Giles (purple) on training robust loss (mini-
mization objective) (y-axis) versus cumulative CPU time (x-axis, differing ranges) over the riccardo
dataset with (left) ρ = 0.01, (center) ρ = 0.5 and (right) ρ = 1.0. Log-scale cumulative samples
x-axis.

Robust loss Objective R(θt). Figure 6 presents representative comparisons among the PSSG, Giles
and FG methods on the riccardo dataset with respect to the DRO formulation objective, i.e., the
obtained robust training loss. Note that the Giles estimate of the robust loss not only suffers a high
noise factor which remains relatively constant as the iteration count grows, but the iterations of this
method seem to indicate an initial phase where the objective function worsens. As ρ increases, the
noise and the magnitude of the initial movement in an adverse direction of the Giles method worsen
even further. This can potentially lead to premature termination of the algorithm if the criterion
were to monitor the training robust loss values; recall the our implementation terminates when the
mis-classification loss on a small held-out dataset from the training set shows no further signs of
improvement.

In strong contrast, the noise in the robust loss estimate under the PSSG algorithm shrinks. The latter
happens because of the increasing batch size under PSSG as the iterate count grows, which ensures
that algorithm termination with the robust loss criterion will perform well. The FG method shows
almost no variability, as can be expected; however, it is again prohibitively expensive to compute and
slow to converge.

SGD Comparisons. Theorem 3 in the main body of the paper identifies the bias faced
when a fixed mini-batch size SGD algorithm is employed to solve the DRO formula-

38

tion (1). The next set of results investigates the size of this bias over the rcv1 dataset.

Figure 7: An evaluation of the bias suf-
fered by standard SGD over the rcv1
dataset for different batch sizes com-
pared with that of the DRO formula-
tion solved by our PSSG algorithm.

Figure 8: Comparisons of PSSG (orange, dashed
lines), FG (green, solid lines), and a single run of the
Namkoong and Duchi [20] algorithm (blue) on fraction
of misclassification in testing (y-axis) versus computa-
tion times (x-axis) over the hiv1 dataset with ρ = 0.1
and log-scale x-axis.

Figure 7 presents a comparison of the performance of standard SGD over various mini-batch sizes
against our PSSG algorithm. Empirical CI estimates from 10 experimental runs for PSSG and the
fixed-batch (Mt = M) SGD are presented for the fractional misclassification performance over the
testing dataset. The results show that the SGD method reports a higher misclassification error than
the solutions of our PSSG method, which is as a result of the bias identified in Theorem 3. Recall
that this bias arises because a small fixed subsample size in each iteration can easily miss those
elements ξ of the training dataset that suffer from high loss l(θt, ξ) at the current iterate θt, thus
yielding an optimistic estimate of the robust loss R(θt) and prematurely terminating the search for a
robust solution to (1). The results show that, for the rcv1 dataset, this bias in the outcome drops to
insignificance only as M → 100. Hence, our DRO algorithm with its progressively grown subsample
size avoids the expense of the hyper-parameter tuning of the batch size required by standard SGD for
bias reduction.

This conclusion is further supported by the results in Figure 9, which presents the test misclassification
errors from the standard SGD and PSSG methods over the rcv1 dataset for various settings of ρ and
illustrate the relative insensitivity of the output of PSSG to values of ρ from 0.001 to 1. The batch size
of 10 for standard SGD does indeed produce bias, which in turn affects its performance in estimating
solutions for the DRO formulation (1). However, a complex dependency exists between the bias of
the standard SGD algorithm and the parameter ρ of the DRO problem formulation, which further
reiterates the message that PSSG saves on not having to tune the batch size of the standard SGD for
each instance of the DRO problem. Therefore, the main advantages of our DRO PSSG algorithm
include that it does not need any such parameter tuning and it efficiently provides a high-quality
solution to (1).

For one of the smallest datasets (hiv1), we also consider performance comparisons with the primal-
dual method proposed in Namkoong and Duchi [20] that attempts to address the bias in standard
SGD as a solver for the DRO formulation (1). Figure 8 compares the fractional test misclassification
loss of PSSG and FG against the corresponding results for a single run of the primal-dual proximal
algorithm of Namkoong and Duchi [20]. The latter algorithm is computationally prohibitive, running
for over 2 days, and the end results fall short of the optimal solution. This is as anticipated based on
the corresponding discussion in the introduction.

39

Figure 9: Comparisons of the misclassification performance of the standard SGD (red boxes) and
PSSG (blue boxes) algorithms over the rcv1 dataset, keeping algorithm parameters fixed and varying
ρ. The x-axis labels contain the algorithm name and the ρ value used.

Figure 10: Illustration of optimizing the parameter λ for the ERM regularized formulation by
enumeration, with the average test misclassification (%) over 10 partitions of the data plotted on the
y-axis versus λ on the x-axis (in log-scale). The left plot shows results for five datasets that achieve a
best performance of 15% or higher and the right plot shows results for five datasets that achieve a
best performance of 9% or lower.

40

Regularization of ERM. Figure 10 presents the outcome of the full set of enumerations for a
representative sample of 10 datasets to elicit the best value of the penalty parameter λ in the
regularized ERM objective of LUN (θ) + λ‖θ‖2. The SGD algorithm is used to solve each instance
of the regularized formulation in each of the 10 partitions of the dataset. A mini-batch size of 10 was
used along with a step size sequence γt = 0.25 ∗ (5000./(5000.+ t)). The plots on the left provide
the regularization enumeration for five datasets that achieved a best test misclassification error of 15%
or higher, whereas the plots on the right provide the regularization enumeration for five datasets that
achieved a best test misclassification error of 9% or lower. The λ value chosen by the backtracking
enumeration approach (described in Section 3) is marked for each dataset.

It is clear from these results in Figure 10 that the hyperparameter tuning of λ is non-trivial. The shape
of the curve of the mean outcomes of the regularization formulation varies significantly across the
datasets, and moreover the variability exhibited is significantly impacted by the dataset characteristics.
While generalization performance seems to improve as λ → 0 (except for imdb.drama), it is not
clear that a single λ value can be picked to perform well over all the datasets. This is in sharp contrast
to the DRO formulation, where the choice of ρ = 0.1 or ρ = 1.0 (as the most likely orders of the√
d/N values) provides good generalization performance.

Recall that PSSG provides this level of performance by solving a single instance of the DRO
formulation (1), thus avoiding the burdensome 10-fold CV enumeration. As observed in the
discussion of the CPU times provided in Table 1, the time taken by PSSG to solve each DRO
formulation is on average of the same order as that taken by SGD to solve a single instance of the
ERM formulation for a single λ value. This indicates a significant computational savings in using our
DRO approach because of the elimination of the expensive hyper-parameter tuning step, with the
time required under PSSG being one to two orders of magnitude superior to the time taken by the
ERM regularization (enumeration with backtracking) procedure.

In Summary. Our empirical results above and in Section 3 support our theoretical results and show
that PSSG achieves the main objectives of reaching optimal solutions of the DRO formulation and
improving model generalization more consistently and more quickly than other methods. In particular,
PSSG provides models of equal or better quality as those from FG, Giles and regularized ERM but
with significantly less computational effort, even orders of magnitude less effort in many cases, and
thus provides a strong alternative machine learning approach to improve model generalization. Once
again, the main advantages of our DRO algorithm include that it does not need any further parameter
tuning, it efficiently provides a solution to (1), and it naturally provides a strong generalization
guarantee.

B.2 Experimental Datasets

Our empirical results are based on thirteen publicly available machine learning datasets that were
obtained from UCI [17], OpenML [6], MNIST [14] and SKLearn [16]. We briefly highlight here
some of the details of a representative sample of these datasets. The HIV-1 Protease Cleavage dataset
helps develop effective protease cleavage inhibitors by predicting whether the HIV-1 protease will
cleave a protein sequence in its central position (y = 1) or not (y = −1). After preprocessing
following [25], this dataset has N = 5830 samples of d = 160 feature vectors using orthogonal
binary representation, of which 991 are cleaved and 4839 are non-cleaved. The Adult Income dataset
comprises N = 48842 observations of 14 attributes used to predict whether the annual income
of each adult is above $50K (y = 1) or not (y = −1). Using binary encoding of the categorical
attributes, the data is transformed into (d = 119)-dimensional features. The Reuters Corpus Volume
1 (RCV1) dataset comprisesN = 804414 samples each with d = 47236 features. The purpose of this
dataset is to classify each sample article as either belonging to a corporate/industrial category (y = 1)
or not (y = −1) based on its content. The Riccardo dataset has d = 4296 features and a moderate
count of N = 20000 samples, of which 5000 are labeled as class 1 (y = 1) and the remaining 15000
are not (y = −1).

Additional details on these four datasets, as well as full information on all thirteen publicly available
machine learning datasets considered in our experiments, can be obtained from the corresponding
publicly available sources UCI [17], OpenML [6], MNIST [14] and SKLearn [16], as noted in
Table 1.

41

