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A Further Related Work

Convergence in expectation. Convergence in expectation of stochastic methods for solving VIPs is
relatively well-studied in the literature. In particular, versions of SEG are studied under bounded vari-
ance [Beznosikov et al., 2020, Hsieh et al., 2020], smoothness of stochastic realizations [Mishchenko
et al., 2020], and more refined assumptions unifying previously used ones [Gorbunov et al., 2022a].
Recent advances on the in-expectation convergence of SGDA are obtained in [Loizou et al., 2021,
Beznosikov et al., 2022].

Gradient clipping. In the context of solving minimization problems, gradient clipping [Pascanu et al.,
2013] and normalization [Hazan et al., 2015] are known to have a number of favorable properties such
as practical robustness to the rapid changes of the loss function [Goodfellow et al., 2016a], provable
convergence for structured non-smooth problems with polynomial growth Zhang et al. [2020a], Mai
and Johansson [2021] and for the problems with heavy-tailed noise in convex [Nazin et al., 2019,
Gorbunov et al., 2020, 2021] and non-convex cases [Zhang et al., 2020b, Cutkosky and Mehta, 2021].
Our work makes a further step towards a better understanding of gradient clipping and is the first to
study the theoretical convergence of clipped first-order stochastic methods for VIPs.

Structured non-monotonicity. There is a noticeable growing interest of the community in studying
the theoretical convergence guarantees of deterministic methods for solving VIP with non-monotone
operators F'(x) having a certain structure, e.g., negative comonotonicty [Diakonikolas et al., 2021,
Lee and Kim, 2021, Bohm, 2022], quasi-strong monotonicity [Song et al., 2020, Mertikopoulos and
Zhou, 2019] and/or star-cocoercivity [Loizou et al., 2021, Gorbunov et al., 2022b,a, Beznosikov et al.,
2022]. In the context of stochastic VIPs, SEG (with different extrapolation and update stepsizes)
is analyzed under negative comonotonicity by Diakonikolas et al. [2021] and under quasi-strong
monotonicity by Gorbunov et al. [2022a], while SGDA is studied under quasi-strong monotonicity
and/or star-cocoercivity by [Loizou et al., 2021, Beznosikov et al., 2022]. These results establish
in-expectation convergence rates. Our paper continues this line of works and provides the first
high-probability analysis of stochastic methods for solving VIPs with structured non-monotonicity.
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B Auxiliary Results

Useful inequalities. For all a,b € R? and o > 0 the following relations hold:

2(a,0) = |lal|* + [IBI* = [|a — B[}, )

la+0l* < 2fal* +2[}B]%, 5)
1

—la=bl* < —Zlal®+ [Ib]*. (6)

Bernstein inequality. In our proofs, we rely on the following lemma known as Bernstein inequality
for martingale differences [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975].

Lemma B.1. Ler the sequence of random variables {X,;};>1 form a martingale difference se-
quence, ie. B[X; | X;_1,...,X1] = 0 for all i > 1. Assume that conditional variances

d . . .
01-2 Y [XZ2 | Xi—1,..., X 1] exist and are bounded and assume also that there exists deterministic

constant ¢ > 0 such that | X;| < ¢ almost surely for all i > 1. Then forallb > 0, G > 0andn > 1

n b2
=1

Bias and variance of clipped stochastic vector. We also use the following properties of clipped
stochastic estimators from [Gorbunov et al., 2020].

Lemma B.2 (Simgliﬁed version of Lemma F.5 from [Gorbunov et al., 2020]). Let X be a random
vector in R? and X = clip(X, \). Then,

H)?—]E[)?]H <2\ ®)
Moreover, if for some o > 0
E[X] =2 eRY, E[JIX — 2] < o ©
and x < X/2, then
_ 2
o] <
- 2
IE[H)(——xH } < 1802, (11)

IN

1802, (12)

s e -]

Proof. The proof of this lemma is identical to the original one, since Gorbunov et al. [2020] rely only

on X = clip(X, A) to derive (8), and to prove (10)-(12) they use only (9), X = clip(X,\) and
x < A2 O
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C Clipped Stochastic Extragradient: Missing Proofs and Details

C.1 Monotone Case

Lemma C.1. Ler Assumptions 1.1, 1.2, 1.3 hold for Q) = Byg(x*), where R > Ry 4 2% — 2,
and vy = v =7, 0 < v < V3L If 2% and T lie in Byg(z*) for all k = 0,1, ..., K for some
K >0, then for all u € Byg(x*) the iterates produced by clipped-SEG satisfy

0 _ 12 _ ||K+1 _ 112 K
P SR o] il ul| gl 0112+ 2l |12
(F(u), Ty —u) < KT +%K+Dg;mu|+uwu)
1 K
— Fw—~yF (" 1
+K+1k§<x u = yF(@*), 00), (13)
K
T 3ok (14)
avg K+1 ’
k=0
b & FE) - Fy @), (1s)
de ~
w, ¥ F(wk)—Fglf(.Tk). (16)

Proof. Using the update rule of clipped-SEG, for all u € By (z*) we obtain

25 —ul? = 2 —ul? = 2y(a* —u, Feg (@) + 92 Fes @)1
2% — ul|? = 2v(a® — u, F(Z*)) + 2y(z® — u, O;)
FPFEN)|? = 29 (F (@), 01) + 77|10l
= la* —ul® = 29(@" —u, F@")) - 29(z" - 3", F(2"))
+2y(a* —u = AF (@), 0) + * | F (@) + 210k

(Mon) - ~ .
< 2t —ul® = 29(@ - u, F(w)) — 29 (Fgy (2), F(&°))

+2y(z — u — yF(@*), 0) + 12| F @) + 216k ]1?
€ ot —ul)? - 297 —u, F(u))

72 | Fex () — F@) 2 = PIE@E)|? — 22 Fex ()]

+2y(a" — u— yF (@), 0) + 12| F@)|2 + 216k

®) _

< e —ul? = 29(@ —u, F(u))
+29% wk1? + 292(|F (2*) — F(@*)1 = 22| Fer (") |2
+29(z" — u—yF(Z*),01) + 2|0k

(Lip)

< ll7b —ull? = 29(@ —u, Fw) =47 (1= 29°L7) || Feg ()7
+27(a” — u = yF (&), 0) + 22 10xll* + 297 Jwr|®

where in the last step we additionally use z* — 2% = 'yf ¢h (x*) after the application of Lipschitzness
of F. Since v < 1/v2L, we have 7% (1 — 272L?) H}i:f(a:k)HQ > 0, implying

29(F(u), 2" —u) < [lz% —u|® = |2 = ul® + 42 ([|6k]® + 2||wr]|?)
+29(z* — u — yF(T%), 0k).
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Finally, we sum up the above inequality for £k = 0, 1, ..., K and divide both sides of the result by
2y(K +1):

K
1
~K o ~k
<F(u)7xavg 7u> - THI;)<F(U)VT 7u>
1 K . K
< 2 — | = |2 —u)?) + — 01|12
S o (1 = )+ sy oo 1)
1 K
k 2
—_— —u—~F 0 ;
+K+1kzzo<l‘ u—~F(z"),04) K ZH kll
_ el EKI (1061 + 2lonl)
B 2v(K + 1) K+1 ) = 4
1 X
k ~k
This concludes the proof. O

Theorem C.1. Let Assumptions 1.1, 1.2, 1.3 hold for Q = Bar(x*), where R > Ry «
and" YI="Y2="1,

1

b0 160L In SECED 4
R
/\1,k = )\Q,k =\ = W, (18)
10800(K + 1)720% In SEED
mi, =M =m > maxd 1, iz , (19)

for some K > 0 and B € (0,1] such that In (Kﬁﬂ) > 1. Then, after K iterations the iterates
produced by clipped-SEG with probability at least 1 — (3 satisfy

9R?
G — 20
a‘pR( zwg) — 2’)/(K+ 1) ( )
where T xwg is defined in (14).
Proof. We introduce new notation: Ry, = ||z¥ — z*|| for all k& > 0. The proof is based on

deriving via induction that R? < CR? for some numerical constant C' > 0. In particular, for
eachk=0,..., K +1we deﬁne probability event F;; as follows: inequalities

t—1 t—1
max {on —ul?+27) (al —u—yF@,0) +9°> (||91||2+2wl||2)} <9R2%, (21)

B *
u€Br(z") 1=0 1=0

Ay
t—1
70
1=0
hold for ¢t = 0,1,...,k simultaneously. Our goal is to prove that P{Fy} > 1 — k8/(k+1) for
allk = 0,1,..., K + 1. We use the induction to show this statement. For k& = 0 the statement

(22)

’In this and further results, we have relatively large numerical constants in the conditions on step-sizes,
batch-sizes, and clipping levels. However, our main goal is deriving results in terms of O(-), where numerical
constants are not taken into consideration. Although it is possible to significantly improve the dependence on
numerical factors, we do not do it for the sake of proofs’ simplicity.
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is trivial since |20 — u||? < 2[|2° — 2*||2 + 2||z* — u|]? < 4R? < 9R? and ||721 SOl =0
for any v € Bg(z*). Next, assume that the statement holds for k = T'— 1 < K, i.e., we have
P{Er_1} > 1 — (T-1B/(x+1). We need to prove that P{E;} > 1 — Tﬂ/(K+1) First of all, we
show that probability event Ep_; implies Ry < 3R forallt = 0,1,...,T. For ¢t = 0 we already
proved it. Next, assume that we have R; < 3R forallt = 0,1,...,t, where t' < T. Then, for all
t=0,1,...,t we have

2 =2 = 2" — 2" — yFg ()] < [l2" — 27| + || Fe ()]

R < 4R, (23)

18)
t L x e
o =l 9 < R ey <

IN

i.e., 7' € Byg(x*). This means that the assumptions of Lemma C.1 hold and we have that probability
event Fr_q implies

max{2(¢ + D(F(). Fog — 1) + 2+ — ]2}
uEBR(z*)

t'—1
< max {leo —ul?+2y ¥ (¢! —u— vF(fl),9z>}
=0

u€EBR(x*)

t'—1
72 ;O (16117 + 2[|n]|?)

21)
<

)

meaning that

e 2 < max {290 D), T — )+ [ — )
uEBR(x*) g

< 9R?,

i.e., Ry 11 < 3R. That is, we proved that probability event F_; implies R; < 3R and

max  {2v(t + 1)(F(u), Thye — u) + [|a"T" —u|*} < 9R? (24)
u€BR(z*)
forallt = 0,1,...,T. Moreover, in view of (23) E7_; also implies that ||z* — z*|| < 4R for all

t=0,1,...,T. Using this, we derive that Ep_; implies
t * ~t t * ~t (Lip) ~t *
2" —a* =y F@)| < 2" =2 +9[F@@)] < 3R+~Llz" — 27|
23) an
< 3R+4RyL < 5R, (25)
forallt =0,1,...,T. Consider random vectors

_ fat —a* —yF(3"), if |2t —2* —yF(@")| < 5R,
= 0, otherwise,

forallt =0,1,...,T. We notice that 7, is bounded with probability 1:
[nell < 5R (26)
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forallt =0,1,...,T. Moreover, in view of (25), probability event Er_; implies 1, = x* — 2* —
vF(zt) forallt = 0,1,...,T. Therefore, E_; implies

T-1
Ar =  max {||x0—u||2+272(x*—u,01>}

u€BRr(z*)

=0
T—1 T—1
+29 Y (@t =" —yF@),00) + 9> > (1607 + 2llw]?)
=0 =0
T—1
< 4R’ +2v max ¥ —u, 0,
’YUEBR(ZE*) {< ;
T—1 T—1
429> 00+ (1001 + 2l|ewr]|?)
=0 =0
T—1 T—1 T—1
= AR+ 29R () 0|+ 2y Y 0) + 92> (16017 + 2llwi]?)
1=0 1=0 1=0

where A7 is defined in (21). To continue our derivation we introduce new notation:

w def = (ad = b def o~ =l

0 = Eg [Fg; (@ )} —Fa (@), 0/ =F@)—-Eg [Fg; (@ )} ) (27
u def ~ ~ def ~

wif U By [Fy(ah)] - Fg (o), wf & F(a') — By [Fey (2], (28)

foralll =0,...,T — 1. By definition we have 6; = Hl“JrG?,wl = wl“+wlbforalll =0,...,7—-1.
Using the introduced notation, we continue our derivation as follows: Ep_1 implies

) -1 T-1 T—1
Ar < 4R>+24R Z 0| + 2+ ZW’ ) + 2 ZW’H?)
=0 =0 =0
] @
T-1
+292 " (Egy [16117) + 2By [l
=0
®
T-1
+292 Y (1671 + 2l — Egy [16711%] - 2Egy [ 2]
=0
@
T-1
+292 37 (16212 + 20w} 1) (29)
=0

®

The rest of the proof is based on deriving good enough wupper bounds for
2R Hzfgol 0./, @ ® ®,®,ie., we want to prove that 2¢ R HZIT;OI 0, H +D+O+B+D+B <
5R? with high probability.

b

Before we move on, we need to derive some useful inequalities for operating with 6}, 9;’, wit, wy.
First of all, Lemma B.2 implies that

16711 < 22X, [lw'[l < 2A (30)
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foralll =0,1,...,T — 1. Next, since {§i’l o {fé’l %, are independently sampled from D, we
have Egi [Fei (2')] = F ('), Egt [Fer (2')] = F(2'), and
1 1 2 2

1 & (1) o2

Ee, [IIFgg () — F(xl)llﬂ = — > Equ [IIFEi,l(xl) - F(xl)n?} <—,
=1

- ~ R N _ M) g2

Ee, [IIFg;(xl> - F(xl)llﬂ - WZ]EE;J {HFg;,Z(Il) - F(xl)||2] <
=1

foralll =0,1,...,7T — 1. Moreover, probability event Er_; implies
(Lip) « (17) R (18) A
[Fh| < L' —2*| <3LR < Sk 3
- (Lip) - " (23) (17) R (18) A
IF@E)| < L|jg' —2*| < 4LR < T SKED 3

foralll =0,1,...,T — 1. Therefore, in view of Lemma B.2, Fp_; implies that

402 402
b b
107 < —  lltll < —. 31)
2] _ 1802 2] _ 1802
s 7] <252, g ] < 22
w2l _ 1807 2] 1802
Eg, [1071°] < =, Eg [luil?] < —, (33)

foralll =0,1,...,7 — 1.

Upper bound for @.  Since E; [6;'] = 0, we have

Egi [27(m, 0;")] = 0.
Next, the summands in @ are bounded with probability 1:

u uy PL0 aw R
[29(ne, 610 < 29[l - 167 < 200vRA = — ey =c (34)
In 6( B+ )

. . def
Moreover, these summands have bounded conditional variances o7 = Eet [4’y2 (i, 9}‘)2] :

(26)
of <Eg [49*[ml® - 161]17] < 100v*R*Eg [|167]%] - (35)

That is, sequence {2y(n;, 6}') }1>0 is a bounded martingale difference sequence having bounded con-
ditional variances {07 };>0. Applying the Bernstein’s inequality (Lemma B.1) with X; = 2~(n;, 6,
4

cdefined in (34), b = R%, G = we get that

R
61n LKBH)

) T—1 ) R4 b2 ﬁ
<——i= 0 < - = :
P< |®| > R? and ;al S G(KBH) < 2exp< 2G_|_2cb/3) 3(K+1)

In other words, P{Egp} > 1 — ﬁ where probability event Eq is defined as
T-—1 R4
E@ = {either Z Ul2 > W or |®| < Rz} . (36)
1=0 n
Moreover, we notice here that probability event E7_; implies that
T-1 T-1
(35) (33),T<K+1 1800(K + 1)v2R2%02 (19) R*
> ol < 100°R*Y Eg [l61°] < ( ) < s G
1=0 1=0 m 6In ===
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Upper bound for @. Probability event Ep_; implies

T—-1
26),3),T<K+1 40(K + 1)yRo?
@ < 9 . 1ot < —_—
< V;Hmll 167 < Y
40(K + 1)7202 In 8EHD g
aw 40K+ 1y g (38)

m

Upper bound for ®. Probability event Er_7 implies

T-1
" (32),T<K+1 3672(K+1)02 19 1
272> " B []16}]|°] < e < R (39)
=0
T-1
u G),T<K+1  79~42(K +1)o2 19 1
12 Y gl PET AV L {0
=0
(39),(40)
< %RQ. 41)

Upper bound for @. First of all,
29°Egy gy 16112 + 20l I? — Bey [I67]%] - 2E¢q [Jlw2]] = 0.
Next, the summands in @ are bounded with probability 1:
297 1167117 + 2l [I* — Egy [167117] — 2B [Ile‘IIQ]‘ < 27200717 + 29 [1161]17]

H42 Wi 1? + 49 Egr [llwi'lI?]
(30)

< 48y2)2
a3 R? def
B
Moreover,  these summands have bounded conditional variances &7 &f
2
1By g UHW + 2l |2 — Egg [I07112] - 2Egy [Jot')?]| }
@ v R? u w u u
7S e Bel e [|I0F17 + 20t ~ By (16117] — 2Bg (It ]|
B
29 R? u u
WE&,&Q (11651 + 2|wi*]I?] - (43)
B

That is, sequence {272 <||19ZL||2 + 2w ||? — Eg [e:1%] — 2E¢t [||wf||2])} is a bounded mar-
1>0

tingale difference sequence having bounded conditional variances {7 };>0. Applying the Bernstein’s

inequality (Lemma B.1) with X; = 24?2 (||9l“||2 + 2/|wp|? = Eg [167]°] — 2E¢ [leuﬂz]) c de-

4
finedin (42), b= 1R2, G = — L& we get that

1, =, Rt b2 B
P{|® > -R®and ¥ 2< —— L <o . — _
Gl gal T 216 S [ exp< 2G+2C”/3) 3(K +1)

In other words, P{Eg} > 1 — %, where probability event Eg is defined as

T—1 R4 1
Ea = { either P> ————— or |®@<=-R%}. (44)
ot 350> st ot
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Moreover, we notice here that probability event Er_; implies that

T—1 T-1
- “3) 2v2R? u u
ZJ? < WZEGDQ [Hgl H2+2le ||2]
1=0 3n === 15
(33),T<§K+1 36(K +1)y2R%0? (2) R4
- m T 2161 HEED

(45)

Upper bound for ®. Probability event £ implies

T-1
GO.TSK+1 969204 (K + 1)
® = 22X (IOl +2lepr) ST LT
1=0 m
as) 384007404 (K + 1) In? w (2) 1R2

Yo < & (46)

Upper bound for 2vR HZZT:_Ol 0, H To handle this term, we introduce new notation:

-1 -1
VS0, if\wzeT <R
r=0 r=0

0, otherwise

¢ =

forl =1,2,...,T — 1. By definition, we have
Gl < R 47)
Therefore, in view of (22), probability event E7_; implies

T-1 T-1
>0 >0
1=0 1=0

2
2vR

= 2R\ 2

-1 T-1 / 11
= 2R,|~? Z [102]12 + 2 Z <7 GT,01>
1=0 1=0 =0

T-1 T-1
= 2R\ 62 +2v) (G0
=0 =0

T-1 T-1

2R @+ @+ ®+27 > (G.0/)+2v Y _(G.07). (48)
=0 =0

\ : 3

Following similar steps as before, we bound ® and @.

@7
<

Upper bound for ®. Since E,; [6;'] = 0, we have

Eg, [27(G, 01)] = 0.
Next, the summands in @ are bounded with probability 1:

u ICHNED (18) R2 def
129(C, 09 < 2vllmll - 107 < 4vRA < PG =c (49)
B

Moreover, these summands have bounded conditional variances &2 & Ee: [49°(C,01)%]:
52 < g (421012 16712] S 442 R2Eq [|l60]2 50
52 <Eg [121GI7 - 16117] C a2 PR (107 (50)
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That is, sequence {2v((;,0}") }i>0 is a bounded martingale difference sequence having bounded
conditional variances {67 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; = 2v((, /),
4

c defined in (34), b = RTQ, G = we get that

R
6(K+1)°
B

96 In
T-1
R4 b2 /8
@ R2 d L <92 _ = .
{| e Z _961H4(KB+1)}_ exp( 2G+2d’/3> S+

In other words, P{Eg¢} > 1 — ﬁ where probability event Fg is defined as
— R* 1
_ . ~2 2
Eg = {elther ; o; > W or |®| < KR } (1))
Moreover, we notice here that probability event Ep_; implies that
T—1 T—1
5 50 GHT<K+1 72(K + 1)y2R%0? (19 R4
- 2 2
> 67 < 4°R lz;]Egl 167112] < - < 961116([(;1). (52)
Upper bound for @. Probability event Ep_; implies
T—1
@n,6D,T<K+1 §(K + 1)yRo?
@ < 2 . 1g? <
< Xl S
160(K + 1)y202 In SEFD ()
(8 ( ) ER 1po (53)

m

Final derivation. Putting all bounds together, we get that E'7_; implies

T—1
Ap 2 AR’ + 29R || 0| + D+ @+ @ + @ + 6,
1=0
T—1 48)
29R||> 6| <2RVEO+®+6+©+®,
1=0
(38) @1 1 46) 1 (53) 1
@ < R?, ®<6R, @<6R2 @ < 32
T—1 T-1 T—
<37> R* o (49 (52) R*
a < ——, o < — g _—
g 61n 6(KB+1) ZZ; l 2161n 6(K+1 Z 961n 6(Kﬂ+1)
Moreover, in view of (36), (44), (51), and our induction assumption, we have
(T-1)p
P{Er 41} >1— ——2—
{Bra} 2 K+1 "'
P{E@}>1—L P{E@}>1—L IP’{E©}>1—L
- 3(K+1) - 3(K+1) - 3(K+1)
where probability events Eg, Ee, and Eg are defined as
R4
E@ = either Z Jl m or |®| § R2 ,
B
T71~2 R 1,
E@ = elther Z gy > W or ‘@l S ER s
1=0 B
= R 1,
E@ = either ; o; > W or |@| < ZR .
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Putting all of these inequalities together, we obtain that probability event Ep_; N Egp N Eg N Eg
implies

= 1 1 1 1 1
0 < ~R?2+-R?+_-R?+-R?2+-R?=R 54
vl; | < \/6 + R R R , (54)
1 1 1 1 1
Ap < 4R? 2R\/R2 “R24+ —R?2+ -R2+ -R?
T = + 6 +6 +6 +4 +4
1 1 1
2 2, tp2  tp2 12
+R°+R +6R +6R +6R
< 9R% (55)
Moreover, union bound for the probability events implies
— - = = T
]P{ET} > ]P’{ET,1 NEsNEaN E@} =1- ]P){ET,1 UFEsU FEg U E@} >1- Ki—fl (56)

This is exactly what we wanted to prove (see the paragraph after inequalities (21), (22)). Therefore,
forall k =0,1,..., K + 1 we have P{E}} > 1 — k8/(k+1)., 1.e., for k = K + 1 we have that with
probability at least 1 — 3 inequality

Gapp(Tag) = ueglgg;*){@ (u), Thg — )}

R i {2+ D), Bl — ) + [ — )
(24) 9R2
2y(K +1)
holds. This concludes the proof. O

Corollary C.1. Let the assumptions of Theorem C.1 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

1 27(K + 1) 2
Y= W, m :max{l K+1) } (57)

160L In 64L2R2 In

satisfies conditions (17) and ( 19). With such choice of v, m, and the chozce of X as in (18),
the iterates produced by clipped-SEG after K iterations with probability at least 1 — 3

satisfy

720LR? In S5
K+1

< & with probability at least 1 — (3 for some ¢ > 0

IN

(58)

GapR(Eavg)

In particular, to guarantee Gap (T

clipped-SEG requires,

avg)

LR? LR?
@ ( i In < l )) iterations, 59)
€ ep
2 _2p2 2
O | max ﬂ, o R In ﬁ oracle calls. (60)
€ g2 eB
2. Small stepsize/small batch. The choice of stepsize and batchsize
1
v = min R , m=1 (61)

160L In ®5H 600 /3(K + 1)In 2

satisfies conditions (17) and (19). With such choice of -y, m, and the choice of \ as in (18),
the iterates produced by clipped-SEG after K iterations with probability at least 1 — 3

satisfy
720LR* o *EHD 2700 Ry /In UG
. (62)

K+1 ’ K+1

deR( twg) < max
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Proof.

In particular, to guarantee Gap (T m,g) < e with probability at least 1 — [3 for some € > 0,
clipped-SEG requires

LR2 LR2 2R2 2R2
O | max In , z In g iterations/oracle calls. (63)
€ ef g2 e2p3

1. Large stepsize/large batch. First of all, we verify that the choice of v and m from
(57) satisfies conditions (17) and (19): (17) trivially holds and (19) holds since

27(K + 1)0? 10800(K + 1)720 In S
m =max\« 1, LRI G(KBJFD =max< 1, iz .

Therefore, applying Theorem C.1, we derive that with probability at least 1 — 3

4(K+1
OR? () T20LR*In *050
= 29(K +1) K+1

GapR( avg)

To guarantee Gap p( ) < e, we choose K in such a way that the right-hand side of the
above inequality is smaﬁer than ¢ that gives

w=o(Fu ()

The total number of oracle calls equals

m(K +1) 2

12 2
2max{K+1 21(K +1)°0 }

"64L2R? In S

( {LR2 O'ZRQ} (LR2>>
= O max v~ (o .
€ € el

. Small stepsize/small batch. First of all, we verify that the choice of v and m from (57)

satisfies conditions (17) and (19):

. 1 R 1
Y = min , <
160L In S50 600\/3 K + 1) In 8D 160L In S

B
227, 6(K+1)
¢ (61) 10800(K + 1)y*0*In ==;
R? ’
Therefore, applying Theorem C.1, we derive that with probability at least 1 —

m

Ga ( ) < i
Prlfave) = 5 (K 1 1)

6(K+1 6(K+1)
(o) 720LR? In SUSED 2700 Ry /In S5

= max ,
K+1 K+1

To guarantee Gap (, g) < ¢, we choose K in such a way that the right-hand side of the
above inequality is smaller than ¢ that gives

LR? LR?\ o2R? o2 R?
K—O<max{ 5 ln<gﬂ), = ln<€2ﬁ>}).

The total number of oracle calls equals 2m(K + 1) = 2(K + 1).
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C.2 Star-Negative Comonotone Case

Lemma C.2. Let Assumptions 1.2, 1.4 hold for Q = Bsg(z*) = {z € R? | ||z — 2*|| < 3R},

where R > Ry “ |20 — 2*||, and v2 + 2p < 1 < Yr). If 2% and T* lie in Bsg,(z*) for all

k=0,1,...,K for some K > 0, then the iterates produced by clipped-SEG satisfy

'71’72 Z IF H2 < ||x0 _ m*”2 _ ”xKJrl _ x*HQ
1 K
T 2 (Bl + 3y o)
k=0
2y K
2 " _
W E > (et — " = F(E"),6r) (64)
k=0

where 0y, wy, are defined in (15), (16).

Proof. Using the update rule of clipped-SEG, we obtain

e M

— ")) = 272(2" — 2%, Fe (3%)) + 13| P B7)|2
= e —2*|? = 299 (2 — ¥, F(T%)) + 292(a* — 27, 04)
R F @) = 205 (F (@), 0r) + 31017
= a* —2*|? = 293" — ", F(@")) — 2y2(a* — 3%, F(T*))
+292(2" — % — 1 F(Z"), 0k) + I F(@)|1* + 7110k
< ek = 2P+ 2920l FE)I? — 2v172(Fyr (29), FE"))
+292(z" — % — 1 F(Z"), 6k) + I F (@)1 + 75110k
= 2" = 2" + el Fer (%) = FEH)I1? = 2 FE)I? — vl Fer (29)2
+292 (2" — 2 — 12 F(T), k) + 72 (2p +72) [|1F(Z) 1> + 4310k

s) - ~
< la® = 2P+ 2yellwn] + 2792l F (@) = F@E)(1? = vive| Fer (25)1?
+272(a" — 2 — 12 F(@), 0) + 72 (20 + 72 =) [ F @I + 23110k
(Lip)

<l = 2P = mye (1= 297 L2) || Feg (M)

+272(a® — 2" = F (@), 00) + 73110k + 27172 [k,
where in the last step we additionally use =¥ — 7% =, ﬁgllc (x*) after the application of Lipschitz-
ness of F' and we use our assumption on 7y, vz, p: y2 + 2p < ~1. Since y; < 1/(2r), we have
772 (1= 297 L?) || Fgr (2¥)[|* > 0 and, using (6) with a = 1, we derive

] a2 N2
24 =2t < et =2t |P = S (1= 2977 [P

. . 3
+272 (" — 2% — 12 F(3),0k) + 310k + 2172 (2 —~ 71L2> [lw |

Rearranging the terms and using 3 — 77L* < 2,1 — 2¢fL? > 1/2, we derive

Y172 * *
1 IFEMI? < fla® = 2* ) = 2" = 2* ]2 + (331617 + 3nyzllw]?)

+272 (% — ¥ — 295 F(T%), 0)).
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Finally, we sum up the above inequality for £k = 0, 1, ..., K and divide both sides of the result by
(K+1):

K
2 2 1 k *112 k+1 * 2
< - _ _ _
D Zn DI < lg(nx 2| - 2 = ?) K+1Z\\ o
. 371y
* F ~k 0 1772 2
I e
K+1
1 K
2 2 2
s 0 3
+K+1kzzo(72\| k1 + 3y1v2llwr )
27 K
2 k * ~k
—x" —pF 01).
PR T )0
This finishes the proof. O

Theorem C.2. Let Assumptions 1.1, 1.2, 1.4 hold for Q = Bsr(x*), where R > R 4 |20 — 2%,

and

1
160L In SECEL

N L S
2071 In (K'H)’ bR 2072 In (K'H)’

216 max{vy1ve (K + 1), /v (K + 1) lnﬂ o2
{ ) Vi 3 @D

Yet+2p<m < (65)

)\l,k = /\1 (66)

R2
3240(K + 1)730? In S }

mi g = mMp 2 max {1,

= (68)

Mo | = My > Max {1,
for some K > 0 and B € (0,1] such that In G(KTH) > 1. Then, after K iterations the iterates
produced by clipped-SEG with probability at least 1 — 3 satisfy

K

1 36 R?
- FaMIP< ——— 69
K+1k220” (@)l S (K 1) (69)

Proof. As in the proof of Theorem C.1, we use the following notation: Ry, = ||z* — z*||%, k > 0.
We will derive (69) by induction. In particular, for each k¥ = 0, ..., K + 1 we define probability
event E), as follows: inequalities

R? < 4R? (70)
hold for ¢t = 0,1, ...,k simultaneously. Our goal is to prove that P{E},} > 1 — *8/(x+1) for all
k=0,1,..., K + 1. We use the induction to show this statement. For k£ = 0 the statement is trivial

since R% < 4R? by definition. Next, assume that the statement holds for k =T — 1 < K, i.e.,
we have P{Er_1} > 1 — (T-1)8/(k+1). We need to prove that P{Er} > 1 — T8/(k+1). First of
all, since R? < 4R?, we have #! € Baog(x*). Operator F is L-Lipschitz on Bsg(z*). Therefore,
probability event Fp_; implies

(70) (65),(66) )\
|[F(z')| < Lla*—a*| < 2LR < 31 (71)

and
AQ <

5) ~
2 < oFe (ZV]]? +2|F 2
lwel[? < 2| Fe, (2912 + 2] F (=) oM S 5

(72)

29



forallt=0,1,..., T — 1.

Next, we show that probability event Ez_; implies ||Z* — z*|| < 3R and derive useful inequalities
related to 6; forall ¢ = 0,1,...,7 — 1. Indeed, due to Lipschitzness of F' probability event Ep_1
implies

~ * * - ® * -
178 —a*|? = 2’ — 2" = Fe, (@] < 2" — 2¥|® + 297 Fe, («")1?

)

< 2RE+ FIIF ()P 4 497 w1

(Lip) oo

< 2(1 4 297 L*) R} + 477 |we ?

(65),(72) ) )
< TR* <9R (73)
and
_ B (65),(66) )
IF@EI < L|at - <VILR < (74)

forallt =0,1,..., 7 — 1.

That is, E7_; implies that ¢, 7' € Bsr(z*) forallt = 0,1,...,T — 1. Applying Lemma C.2, we
get that probability event Er_; implies

T—1
Y1y R*—R%Z 2 . _
122M*sz——l+ﬁZW—zwww@>

T T
1=0
Z W10 + 3372 ler]?) (75)
1=0
T— T-1
R} < R’+2v <:cl —z" — R F(@),0) + Z (V11611 + 3viv2fJwr[|?) -
1=0 1=0

To estimate the sums in the right-hand side, we introduce new vectors:

xt —x* —yF(3), if ||zt — 2* — wF (@) < V7(1 4+ %L)R,
N = : (76)
0, otherwise,
fort =0,1,...,T — 1. First of all, we point out that vectors (; and 7, are bounded with probability
1, i.e., with probability 1
mell < V7(L+ 7 L)R (77)

forallt =0,1,...,T — 1. Next, we notice that Fr_; implies

ot — 2" —wF@)| < 2t =2+l FE)
(73),(74)
< V71+%LD)R

fort = 0,1,...,T — 1, i.e., probability event Er_; implies n; = 2t — 2* — 4o F(2?) for all
t=20,1,...,T — 1. Therefore, Er_; implies

T—-1 T-1
Ry < R+2% ) (m0)+ Y (3lI6* +3vrellwl?) -
=0 =0

As in the monotone case, to continue the derivation, we introduce vectors 61, 07, wi*, w? defined as

O By |Fey ()] - Py @), 07 & F() — By [Py ()], (78)
wt & e [ngl (x )} — Fa(a), 0% F@!)-Eg [ngl (z )} , (79)
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foralll =0,...,T — 1. By definition we have §; = 0% + 6%, w; = w}* +w? foralll = 0,...,7 — 1.
Using the introduced notation, we continue our derivation as follows: Er_; implies

T-1 T-1

®)
Ry < R*+27%: ) (m6f)+2v Y (m,07)+27 Z]Egl 16711°]
=0 =0 =0

©) @ ®
s (16111% — B¢y [116712] ) + 213 Z 16712 + 677 ZEEL et 12]
=0
@) ® ®
T-1 T-1
+6m72 Y (w2 — Egy [l 17]) +6mr2 D It 2. (80)
=0 =0
@

The rest of the proof is based on deriving good enough upper bounds for @, @, ®, @, &, ®, @, ®, i.e.,
we want to prove that @ + @ + @ + @ + ® + ® + @ + ® < 8R? with high probability.

Before we move on, we need to derive some useful inequalities for operating with 6%, 6%, w¥, w?.

First of all, Lemma B.2 implies that

167 < 222, lw'l < 2M 81
foralll =0,1,...,7 — 1. Next, since {571 —1> {f , are independently sampled from D, we
have Eg: [Fgi (2')] = F(a'), Eg [Fg (7')] = F(3), and

ma (1) 2
l 2 g
Egy [IFe, (=) = F@@)I?] = QZE o [1Fge ) = FEHIP] < 7
~l 2 ] O o?
Eg, [IFe, @) - F@)I?| = QZEH[HFH ~FEIP < -
for all l=0,1,...,T — 1. Moreover, as we already derlved probability event E_; implies that
|F(zh| < /\1/2 and |F(@Y)| < M/2foralll =0,1,...,T — 1 (see (71) and (74)). Therefore, in
view of Lemma B.2, Er_; implies that
402
o < —— < —— 82
ot < 27, ot < 22 )
1802 1802
Eg [10°] < ——, Eg [lil’] < ——, (83)
“ 180 180
Eg [I61°] < ==, Eg [loil?] < (84)

foralll=0,1,...,7 — 1.

Upper bound for @.  Since E,, [6'] = 0, we have

Egt [272(m, 0;)] = 0.
Next, the summands in @ are bounded with probability 1:

(65),60)  R2 def
— =c. (85)
n 6(1(/;1)

),(

1292 (m0, 07)| < 292 Imi| - 16} H " A1+ L) RN,

Moreover, these summands have bounded conditional variances o & Eer [473 (m, 01)°]:
2 212 u)2] 2 oga2 2 p2 up2] @ a0 202 w2
o < Egy [13ml2- 16117]) C 28301 + 1o L)2REg, [J6117] S 3003R%E¢, [I6F17]. (86)
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That is, sequence {272 (m;, 0}) }i>0 is a bounded martingale difference sequence having bounded
conditional variances {07 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; = 25 (1, 6{*),
¢ defined in (85), b = R?, G = —Hr7, we get that

n T

i T—1 , R4 b2 B
P! |® > R? and S — ¢ <2 - - ‘
o= ;01 = om0 [ = eXp( 2G+20"/3) (K +1)

In other words, P{Egp} > 1 — ﬁ, where probability event Eq is defined as
T-1 R4
Ep = {either Z o? > LEEm @] < 32}. (87)
1=0 B
Moreover, we notice here that probability event Ep_; implies that
T-1 T-1
(86) (84),T<K+1 540723202([( +1) ©8) R4
2 2 2 w2 2
o < 30v;R Ega |1161]] < < .(88)
Upper bound for @. Probability event E7_; implies
T—1
D68, T<K+1 8y/Tv5(1 + o L)o?R(K + 1)
e < 2>l o TS il
=0 maA2
6(K+1
w0 LOLVTE0* (K + 1) In 205 (o R? (89)
mo - ’
Upper bound for ®. Probability event Er_; implies
T-1
wion GO TSK+L 367302 (K + 1) (©68)
®=2%Y Eg [I60¢7] < Qm—Q < R%. (90)
1=0
Upper bound for ®. We have
293Ee, [I1671° — Bey [16712]] = 0.
Next, the summands in @ are bounded with probability 1:
(81)
23 [l6712 — Bey [I6717]| < 203 (16111 + Bgy [16712])) < 16933
©6) R? g
S nemm - © e
B
Moreover, these summands have bounded conditional variances 512 def
2
B, | (16717 - B, [16717))
5 O 292 R? 4v2 R?
2 2 w2 w2 2 w2
5 < ot e || 10117 ~ B, [10F17]]] < i By (1617 (92)
B B

That is, sequence {]|6}]|* — Eg [116%]/?]}1>0 is a bounded martingale difference sequence having
bounded conditional variances {57 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; =
16212 — Egy [11671%), ¢ defined in (91), b = R2, G = —Hzrrr, we get that

n — B

) T-1 ) R4 b2 B
PJ1@ > R2and 367 < —= ¢ < 2exp (- - .
8> R an ;"l = Gin OEHD | = eXp( 2G+2cb/3) 3(K + 1)
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In other words, P{Eg} > 1 — where probability event Eg is defined as

B
3(K+1)°

T-1 Rt
o . ~92 2
E@ = {elther Z (oF] > W or |@| S R } (93)
1=0 B
Moreover, we notice here that probability event Ep_; implies that
T-1 o T-1 22 2
252 52 43R ZE 62 (84) T<K+1 7292 R202(K + 1)
L= In 6(K+1 I3 ! me In 8D
=0 2 B
(68) R4
< -
om w. (94)
Upper bound for ®. Probability event E7_; implies
2 6(K+1)
82, T<K+1 327204 (K + 1) (66) 12800y50* (K + 1) In =5 6
2 2 2
=293 Z 1671 < oy T < R2. (95)
Upper bound for ®. Probability event Ep_; implies
T—1
89, T<K+1 108y, 7202 (K + 1) «
ul|2 2
® = 67172 ;Egﬁ [lwi“(I?] < o < R (96)
Upper bound for @. We have
67172B¢; [lwr]l® - By [lwi?]] =
Next, the summands in @ are bounded with probability 1:
@81
6917 [lwf I? —Egy [lwiI2]] < 6vme (w1 + Egy [lwi2]) < 4871922
(66) R?2  v<nm R? '
< 1326(K+1) 27 1 8D < 97
m B B
Moreover, these summands have bounded conditional variances 812 def
2
301838, | (I I” ~ By [t 17])’ |
5, 0D 672R? 1272 R? u
5 < gt e || It 1” ~ Bey [l IP)|] < —aray e et I) (98)
B B

That is, sequence {||w*||* — Ee [[lwi*]I?1}i>0 is a bounded martingale difference sequence having
bounded conditional variances {57 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; =
il = Egy [llwp*[[2), ¢ defined in (97), b = B2, G =~y we get that

n =—5—

, T-1 ) R4 b2 ﬁ
=2 Mt < _ = .
P9 || > R?and ;al = 6ln SED 2exp< 2G+20”/3) (K +1)

In other words, P{Ep} > 1 — %, where probability event Eg is defined as
T—1 ) R4 )
FEg = | either Z o] > W or |®| <R . 99)
1=0 B
Moreover, we notice here that probability event Er_; implies that
T-1 T—1
Sot T A S e ) E 2T
i n 6(K+1) my In %
(67) R4
< —_—
61n LK;U (100)
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Upper bound for ®. Probability event Ep_; implies

T—1
(82), T<K+1 96717204(1( + 1)
= 67 Z meﬁ < m2)\2
1

o 384009320 (K + 1) In® SUGED D ge. (101)
- m32 R?

Final derivation. Putting all bounds together, we get that F'p_; implies

80)
RL<R+D+24+0+@+0+®+D+06,
(89) (90) 95) (96) 101)

®§R2,®<R2 @ng,@gRQ ® < R?,
T-1 T—1 T-1
(88) (94) (100) R4
2
;Ul < 61n 6(K+1)’ lzgffz = 6ln 6K+1)’ ZU = 61n6(KB+1)'
Moreover, in view of (87), (93), (99), and our induction assumptlon, we have
(T-1)p
P{Er_1}>1— —-—
{ T 1} = K+1 )
PEo} 21— L PEa 1oL PE)z1- L
- 3(K+1) - 3(K+1) - 3(K+1)

where probability events Eg, Fe, and Eg are defined as

R4
E@ = {either Z O'l T"Fl) or |®| < RQ} y

B
4
E@ = either Z Ul m or |@| S R2 ,
B
4 2
E@ = either Z Ul ITI?’U or |®| § R .

Putting all of these inequalities together, we obtain that probability event Er_1 N Egp N Ea N Eg
implies

80)
R < R+0+@+0+@+0®+©®+D+®

< 9R%
Moreover, union bound for the probability events implies

— - = = T
]P){ET} > ]P){ET,1 NEsNEgN E@} =1- P{ET,1 UFEsUFEgU E@} >1- Tfl (102)
This is exactly what we wanted to prove (see the paragraph after inequality (70)). In particular, Ex 1
implies

#KfllF(az’“)llz as 4RP—R%.) 4(D+@+0+@+B®+®+@+®)
K+1 & T o mme(K+1) 7172(K +1)
36R2
Ty (K + 1)
This finishes the proof. O

Corollary C.2. Let the assumptions of Theorem C.2 hold and
1
= S10L1n s (109
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Then, the choice of step-sizes and batch-sizes

1
160L In SEEEL

(104)

81(K + 1)o?
2o = = ( ) }

mi1 = Mo = max {1, 640L2R2 In 6(‘Kﬁ+1)
satisfies conditions (65), (67), (68). With such choice of v, m1, ma, and the choice of \1, \2 as in
(66), the iterates produced by clipped-SEG after K iterations with probability at least 1 — (3 satisfy

1 & 1843200L2 R? In® SSH

T 2 IFEHIP < T . (105)
k=0

In particular, to guarantee %H Zl[c(:O | F(2%)||> < & with probability at least 1 — 3 for some & > 0
clipped-SEG requires,

L?’R? L?’R?
O ( In? ( )) iterations, (106)
€ el
L?R? L?R?\ L%0*R? LR?
O | max In? , g In® oracle calls. (107)
€ ef g2 ep

Proof. First of all, we verify that the choice of v, 72 and m1, mo from (104) satisfies conditions
(65), (67), (68). Inequality (65) holds since

bt 1o, L L 1 (104)
prm 320 In 9D r= 32021n O 390710 OEFD m
and (67), (68) are satisfied since
T aorzRe i D
216 max{y1v2(K + 1), /772 (K + 1) In W}OQ
> max< 1, 72 7

81(K + 1)02 3240(K + 1)y320%1n w
mo = max , > max , .
640L2R? In SECE R2

Therefore, applying Theorem C.2, we derive that with probability at least 1 — S

> 2R2 |p? S
;ZHF(‘T}C)”Z _BOR? g 1843200L2R2In’ O
K+1k:o T (K +1) Kl

To guarantee ﬁ Zszo | F(z*)||? < &, we choose K in such a way that the right-hand side of the
above inequality is smaller than ¢ that gives

2 D2 2 P2
K:O(LR 1n2(LR>>.
€ ep

The total number of oracle calls equals

(104)

2m(K +1)

1K + 1)202
2max{K+1 S1K +1)°0 }

" 640L2R? In 9D

2 p2 2 p2 2_2p2 2 p2
0 max LRln2 L‘R ,LaRln?’ L‘R .
5 eB g2 eB
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C.3 Quasi-Strongly Monotone Case

Lemma C.3. LetAssumptions 1.2, 1.5 hold for Q = Bagr(z*) = {x € R? | ||ac x*|| < 3R}, where

R > Ry “ [|l2° — =y =7, 0 <y < VYar+2u). If 2* and T ok — yF(2) lie
in Bsr(z*) for all k: = 0, 1,..., K for some K > 0, then the iterates producea’ by clipped-SEG
satisfy

K
[&5H =P < (=) |2 =2t |P = 4P ) (1 — ) TR (F (), w)
k=0
K
+29 ) (1 =) @r — 2 — yF (@), 61)
k=0
+° Z =) (16k]I + A1) (108)
where 0y, wy, are defined in (15), (16).
Proof. Using the update rule of clipped-SEG, we obtain
¥+t — a2 = |la® — a¥|® = 2y(a® — a¥, Fep (F%)) + 22| Fes (BM) |12

= |lz* — 2 |]? = 2y(z® — 2, F(@")) + 29(z* — 2*,6).)
FP2FE)|P = 292 (F (@), 01) + 77| 0x]I?

= [l2* — 2" = 29(@" — 2", F(@")) — 29(a* — T*, F(T"))
+2y(a® —a* —yF(@*), 08) + | F(@*)]1° + 7210k

Since F' is u-quasi strongly monotone, we have

~ * ~ ~ * © * ~
—29(@" —2* F(@")) < —2yullF" — 2*|? < —plla® — 2| + 2yu)| 7 - 20

= —yplla® —2*|? + 29 p|| Fe, (=)
= —plla® — 2*|? + 293 pl| F(2P)|]? — 4P u(F (a*), we) + 29 pllwie®.

Moreover, —2y{z* — ¥ F(z*)) can be rewritten as

“2y(ak T F@EY)) = 297 (Fe, (@), FE))
= I, (%) = )P =221 Fe, (M) =2 1F @)1
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Putting all together, we get

2+t —2*)? < (=)t — 2|+ 293 ul F ()P = 497 F (), won) + 29 pl|w |
+7°||Fe, () = F(aM)|P = 22| Fe, (@)|° = 2| F@*))1°
+29(a® — a* —yF(E*), 0) + | F@)° + 210k

) .
< (= ap)lla® — 2P + 297 | F(2P)[]P — 492 u(F (2*), wi) + 29° il ||
+29° Jwi||? + 292 F(2¥) — F@")|1? = 22(| Fe, ()]
+2y(ab — a* — Y F ("), 00) + +2(|0k]®
(Lip)

< (L=l — | + 293 ul| F(a®)||? — 4y w(F (2*), wy)
+272(1 4 yp) Jwr|I* = ¥ (1 — 24°L?)|| Fg, (2")]?
+2y(z* — 2 — yF(@¥), 0k) + 2|0k ?

N 1
(1= aplls = a2 =7 (5 =222 = 2 ) [P

—Ay° u(F(a*), i) +7%(3 = 29" L% + 2yp) | wic||®
+2y(a? — & — yF(*), k) + 72|16k
< (- plle” -2 = 49 w(F (), w)
+2y(a® — 2t —yF(@*), ) + 7 (10k]1% + 4llwnl|?) ,
where in the last step we apply 0 < v < 1/2(z+2y). Unrolling the recurrence, we obtain (108). [
Theorem C.3. Let Assumptions 1.1, 1.2, 1.5, hold for Q = Bag(x*) = {z € R? | |z — 2*|| < 3R},
where R > Ry o |20 — 2*||, and y1 = v2 = 7,

~
INS

1
0<v < —% (109)
650L In S
exp(—yu(l +*/2))R
M= dap = = SREWUEIPIR (110)
. { 26460072 (K + 1)0? In S i
mypg ="Mz =mMr 2= Mmaxgl, )
' ’ exp(—ypk)R?

for some K > 0 and B € (0,1] such that In w > 1. Then, after K iterations the iterates
produced by clipped-SEG with probability at least 1 — 3 satisfy

25 — 2% < 2exp(—ypu(K + 1))R%. (112)
Proof. As in the proof of Theorem C.1, we use the following notation: Ry, = ||z* — z*||%, k > 0.

We will derive (112) by induction. In particular, for each k¥ = 0, ..., K + 1 we define probability
event F; as follows: inequalities

R} < 2exp(—vyut)R? (113)
hold for ¢t = 0,1,..., k simultaneously. Our goal is to prove that P{E;} > 1 — k8/(x+1) for all
k=0,1,..., K + 1. We use the induction to show this statement. For k£ = 0 the statement is trivial

since R% < 2R? by definition. Next, assume that the statement holds for k =T — 1 < K, i.e.,
we have P{Er_1} > 1 — (T-1)8/(x+1). We need to prove that P{Er} > 1 — T8/(k+1). First of
all, since R? < 2exp(—yut)R? < 9R?, we have z' € Bzg(z*). Operator F is L-Lipschitz on
Bsr(x*). Therefore, probability event Ep_; implies

(109),(110) ),
< —.

(113)
| < Lla'—a"| < V2Lexp(=wi/2)R .

17 (")

(114)

and
®) ~ A4 5 (110 exp(—~yut)R?
lorl £ 2B, (@) + 2F@Eh)? S 2oz L R

< oM< g (115)
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forallt=0,1,..., T — 1.

Next, we show that probability event Ez_; implies ||Z* — z*|| < 3R and derive useful inequalities
related to 6; forall ¢ = 0,1,...,7 — 1. Indeed, due to Lipschitzness of F' probability event Ep_1
implies

F-aflP = = ot =, @I L 2t 2020, (o)
(5)
< 2R} +4P2(F ()P + 497 ee?
(Lip)
< 201+ 292L2)RY + 49|
(109),(115) ) )
< Texp(—yut)R* < 9R (116)

and
(109),(110) ),
S -

5 (117)

IF@)) < L|#* - "] < VTLexp(—mt/2)R

forallt=0,1,...,7 — 1.

That is, E7_1 implies that zt, 2% € Bsr(x*) forallt =0,1,...,T — 1. Applying Lemma C.3 and
(1 —yp)T < exp(—yuT), we get that probability event E7_; implies

T—1
R < exp(—yuT)R? —4y°u Y (1 — )" HF(a!), w)
=0
T-—1
429 ) (1 =)t — 2t =y F(E), 61)
=0
T—1
) (=) 10 + Al ?) -
=0

To estimate the sums in the right-hand side, we introduce new vectors:

F(at), if[|[F(z?)|| < V2L exp(—mt/2)R,
G = : (118)
0, otherwise,
ot —a* —yF(T), if||2t — 2" —yF ()| < V7(1 4+ yL) exp(—4t/2) R,
m = . (119)
0, otherwise,
fort =0,1,...,T — 1. First of all, we point out that vectors (; and 7, are bounded with probability
1, i.e., with probability 1
6]l < V2Lexp(=mt/2) R, [|ne]| < VT(1+ L) exp(—mt/2)R (120)

forallt = 0,1,...,T — 1. Next, we notice that Ez_; implies || F(z)|| < v/2L exp(—7#t/2) R (due
to (114)) and

! —a* —yF (") < [z* — *[| + || F (@)
(116),(117)
< VT(1+7L)exp(—t/2)R

fort =0,1,...,T — 1, i.e., probability event Er_ implies ¢, = F(z') and n; = ' —2* — yF(2?)
forallt =0,1,...,T — 1. Therefore, E7_; implies

T—1
Ry < exp(—ypuT)R? —4y°u Y (1 — )" G, wi)
=0
T-1 T—1
429> (=) o 0) 92 Y @ =)0 + Allwn])?) -
=0 =0
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As in the monotone case, to continue the derivation, we introduce vectors 01, 07, w®, w} defined as

oy LB [Fg( )} ~ P (@), 0¥ F@E) - Ee [Fg( )}, (121)
wpf ¥ g [Fgl( - )] ~Fu(a'), ¥ P@E)-Eu [Fsll ( )}, (122)

foralll =0,...,T — 1. By definition we have 6, = 0% + 6%, w; = w}* +w? forall [ = 0,...,7 — 1.
Using the introduced notation, we continue our derivation as follows: Ep_1 implies

T—1 1
) , f
Ry < exp(—yuT)R? =47y (1= )" 7HG wi) =47 Y (1 =)™ HG, W)
1=0 =
@ @
T-1 T—1

+29 Y (=) o 6 + 29 > (=) e, 67)
=0 =0

® @

T—1
+292 ) (1 =) (Egg [16512] + 4E¢. [Ilwfllz])
=0

®

+2722 =)™ (1011 + 4l 1P ~ By [1671°) — 4E¢q [l 1))

®

4—272253 — ) TIL(168)12 + 4flwf]1?) - (123)

@

The rest of the proof is based on deriving good enough upper bounds for ©,®,®,®,®,®, @, i.e.,
we want to prove that ® + @ + @ + @ + ® + ® + @ < exp(—vyuT)R? with high probability.
Before we move on, we need to derive some useful inequalities for operating with 6}, 67, w¥, w?.

First of all, Lemma B.2 implies that
1671 < 2M0, il < 2\ (124)

foralll =0,1,...,T — 1. Next, since {&"'}7,, {§ Y™ are independently sampled from D, we
have Esl [Fsl (ml)] = F(.Tl), Esl [Fsl (fl)] = F( ) and
1 1 2 2

1 & W g2
&M%wwnmﬂ=ﬂzgﬂmww—<ukgg
i=1
Bet [P (@) = FE)] = & S B [1Fs @ Qe
gmguw<m@ﬁ@ggwgmw-<ﬁ_ﬁ
for all l=0,1,...,T — 1. Moreover, as we already derlved probability event Ep_q implies that
| F(zh)] < >\1/2 and |F (@] < M/2foralll=0,1,...,T — 1 (see (114) and (117)). Therefore, in
view of Lemma B.2, Ep_; implies that
40
ol < — b 125
ot < 27 et < 27 129
1802 2 1802
E [02}<7,E { ]<7, 126
e |110d17] < o e |lwi]”] < mz (126)
wy2] _ 1807 wi2] _ 1802
Ee [1011°] < S0 By [lt] < = (127)

foralll=0,1,...,7 — 1.
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Upper bound for @.  Since E,: [wj'] = 0, we have

Eer [—47°u(1 = yp)" ' 7HG,wi)] = 0.
Next, the summands in @ are bounded with probability 1:

| — 43 (1 — )T NG, W | < Ppexp(—yu(T —1=0)G - [lwi]

8V2y* pLexp(—ypu(T — 1 = 1/2)) R\,

(120),(124)
<

(1092110) exp(—yuT)R? gt
S weEm -

Moreover, these summands have bounded conditional variances 012

B [167002(1 — yu)?T—272H(¢, wi)?]:

of < Eg [167°p% exp(—yp(2T — 2 = 20))[|GII - [|wf'[|]

(120)
< 369 UL exp(—yp(2T — 2 — 1)) R*Eg; [|lwf]’]

(19 dy? exp(—yu(2T — 1)) R? w12
= 6(K+1) LA E

(129)

That is, sequence {—473 (1 — )T =174, wi*) }i>0 is a bounded martingale difference sequence
having bounded conditional variances {07 };>0. Applying Bernstein’s inequality (Lemma B.1) with

ex 4
Xi = =431 — yp) TG, wi), ¢ defined in (128), b = L exp(—yuT)R?, G = %

we get that

B

1 exp(—2yuT)R* b?
Pe|® > = T)R? and P T T L <2 - =
{ > 7 exp(—yuT) R* an Z = 904ln 6(K+1) = 2O TG 2/

In other words, P{Ep} > 1 — where probability event Fqg is defined as

3(K+1)’
T-1

. exp(—2yuT)R* 1 2
Eg = < either of > — "' or |® < =exp(—yuT)R?}.
{ ; "7 20410 8EFD 0] < 7 expl )

Moreover, we notice here that probability event E7_; implies that

Tz:_lalz (1%9) 4~? exp(—g'y/ﬂ’)R2 Tz_:l Ee [lleog|I1?]
2809 In SEED = exp(—yul)
<127>,T<§K+1 7272 exp(—2yuT) R%o? - 1
- 28091In SEED =y exp(—yul)
) exp(2pT)R!
294 In S

Upper bound for @. Probability event E7_, implies
T-1
® < 4%y exp(=y(T = 1= D)|Gll - [lw? |
1=0

T-1
0.2

xp(—71t/2)
T-1 ;2] (Kﬁ+1)

1920v2 exp(—yu(T — 2))y*uL Z my exp(—yul)

(120),(125)
< 16v2 exp(—yu(T = 1)y*uLR Y e
=0

(110)

(109),d11), T<K+1 1 2
< - exp(—yuT)R>.
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3(K+1)

(130)

(131)

(132)



Upper bound for ®.  Since E,, [0;'] = 0, we have

Eer [2v(1 =)™ " m, 61)] = 0
Next, the summands in @ are bounded with probability 1:

29(1 = )" o0 < 2yexp(—yu(T — 1= 1)|m| - |6}

(120),(124)
< Ty + L) exp(—yu(T — 1= 1/2))RA;
109),(110)  exp(—ypuT)R? ger

= 7 In 80D (133)
B
Moreover, these summands have bounded conditional variances 512 def
Egy [492(1 = ypu)* 272, 01)?]:
o < Eg [4?exp(—yu(2T — 2 = 20))[|lm|* - 116}'(|]
(120)
< 499%(1+yL)? exp(—yu(2T — 2 — 1)) R*Eg, [[167']%]
(1) 2 2 w2
< 509 exp(—yp(2T — 1)) R*Egy [||67]%] - (134)

That is, sequence {2v(1 — yu)T=171(n;,0%) };>0 is a bounded martingale difference sequence

having bounded conditional variances {57 };>0. Applying Bernstein’s inequality (Lemma B.1) with
Xy =29(1 — )T ", 61), ¢ defined in (133), b = L exp(—yuT)R?, G = (2R e

2941n SEED
get that
1 ~ exp(—2yuT)R* b? B
PJ®] > - T)R? and kLl i S ) - = .
{ | > —exp(—yn * an Z = oottn 6(K+1) = 2P\ Tog ey 3(K 1+ 1)
In other words, P{Eg} > 1 — m, where probability event Eg is defined as
T-1 4
) ~y _ exp(=2yuT)R 5
Es = {elther Z oj > EINEEDN or [® << exp( yuT)R* 5 . (135)
1=0 B
Moreover, we notice here that probability event Er_1 implies that
T—1 T-1 2
(134) Eq |6
S Y srencomme Y el
1=0 = exp(—ypul)

K
(127),T<K+1 1
< 900~ exp(—2yuT)R?*c> _
; my exp(—vyul)

(111) —9vuT)R4
S el (136)
294 In D
Upper bound for @. Probability event Ep_1 implies
[l - 1621
@ < 2
- vexp(= ZeXlo (=yul)
T—1
(120),(125) o2
< 8V 7v(1 L — T—-1)R
< V7y(1 + L) exp(—yu(T — 1)) Zml/\lexp(_wl/z)
T-1 ;2 6(K+1)
(110) In
< 960V/7*(1+ vL) exp(—ypu(T = 2)) Y | —————
—o exp( Wil)
WD, T<K+1 1]
< = exp(—yuT) 2. (137)
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Upper bound for ®. Probability event Ep_; implies

=B [167117] + 4B ([l 1]
® = 2y exp(—yu(T — 1 3 &
(=l ) ; exp(—al)

T—

—

(127 )
< 1807 exp(—

lzo my exp( wl)
(1), T<K+1 1

< = exp(—yuT) 2. (138)

Upper bound for ®. First of all, we have
292(1 = 9) " By g (16717 + Al — Egy [16711%] — 4Egq [llwi]?]] =
Next, the summands in ® are bounded with probability 1:
(120 807* exp(—yuT) A}
- exp(—yu(l+1))

(119 exp(—yuT)R?
T Tm KR

292(1 = )™ 6512 + e ® — By [16712) — 4By [leI]|

e (139)

.. . ~ def
Moreover, these summands have bounded conditional variances 012 =

2
Eei e, [474(1 — )220 04| + Allwp |2 — By [11654]]%] — 4B [H%“HQ]‘ }:
812 (129) 272 exp(—2yuT) R2
T Texp(—yp(1 +1)) In SEFD
4~ exp(—zfy,uT)RQ .
Texp(—yu(1 +1))In w £1.64

That is, sequence {292(1—32)7 =1 (11671 + 4l |2 - By [1671%] - 4¢; [IrlI%]) },
is a bounded martingale difference sequence having bounded conditional variances
{6%}1>0- Applying Bernstein’s inequality (Lemma B.l1) with X; = 27%(1 —
) (||9?|\2+4||wz*||2—Eg; [163117] — 4B [sz‘lﬂ), ¢ defined in (139), b =

—2yuT)R*
1 exp(—yuT)R?, G = %, we get that

Eeyy |[I1071° + 4l | — By [1071%] — 4Bgy [llct'?]|]

(16017 + 4flwi*]1?] - (140)

1 5 _ exp(=2yuT)R* b P
{ |> 7 exp(—yuT)R an Z = 041 0D [ 5 P\ T2G 125 ) T B(K+ 1)

In other words, P{Eg} > 1 — where probablhty event Eg is defined as

3(K+1)’
T-1
—2yuT)R*
Ee = { either Za?>% or @<~ exp( —AuT)R? . (141)
1=0 294IHT

Moreover, we notice here that probability event Ep_; implies that

Tilaz 140 4?2 exp(—ypu(2T — 1)) R? Tz:’l Eet 1 [[16711% + 4llwi (%]
l

- 7ln S5 prd exp(—ypul)
(ADTSKHL 36042 exp(—yp(2T — 1)) R0 EK:
- 7ln S50 “— my exp( wl)
(111) —9~uT 4
> eeEhR (142)

294 In D
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Upper bound for @. Probability event Ep_; implies
T—1
@ = 29* > exp(—yuT — 1= 1)) (JI6711% + 4]« |I)
1=0
T-1 4

g
16072 exp(—yu(T — 1 -

T-1  ;41p2 6(KB+1)

(110) 4
= 2304000~" exp(—yu(T — 3
( ) ; m?R? exp(—2ypul)

(125)
<

AI,T<K+1 1 )
- exp(—yuT)R". (143)

Final derivation. Putting all bounds together, we get that E'p_; implies

(123)
RE < exp(-yuTRP+D+@+@+@+6+® + @,
(132 1 2 137 1 2
@ < cop(-wD)R, @ < Sexp(—ypl) R,

(138) 1 (143) 1
® < sexp(— DR, @ < ;eXp(—wT)RQ,

szl 9 (1‘1) exp(—2yuT)R* Tz_:l 9 (136) exp(—2yuT)R Z 9 (142) exp(—2yuT)R*
T 2041 SEED T 2041 SR 294 In S
Moreover, in view of (130), (135), (141), and our 1nduct10n assumption, we have
(T-1)p
>1 =
P{Er_1}>1 K1
L N 121 = EC Ay - e P e 1
- 3(K+1) - 3(K+1) - 3(K+1)
where probability events Eg, Eg), and Fg are defined as
T—1
. exp(—2yuT)R* 1 5
Ep = [ either of > —— "2 or |® < = exp(—yuT)R?
{ g P 20410 OEHD =7
= exp(—2yuT)R* 1
_ : ~2 - 9
E@ = either Z o] > W or |®| < ?exp(—’yuT)R s
=0 29 n=—5—
= exp (—2yuT)R* 1
Ee¢ = ith —_— — ® < = —yuT)R? 3 .
© {el er Zo 294 In 6(Kﬂ+1) or [®] < - exp(—yuT) }

Putting all of these inequalities together, we obtain that probability event Ep_; N Egp N Eg N Eg
implies
, (23 )
Ry < exp(—ypT)RF+0+@+@+@+60+6®+@
< 2exp(—yuT)R’.
Moreover, union bound for the probability events implies

— — T
P{E;} >P{Er_1NExNEsNEe} =1-P{Er_1UEy UEg UEg} >1— Ti (144)

This is exactly what we wanted to prove (see the paragraph after inequality (113)). In particular, with
probability at least 1 — 3 satisfy we have

25+ — 2*||? < 2exp(—yu(K +1))R?,

which finishes the proof.
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Corollary C.3. Let the assumptions of Theorem C.3 hold. Then, the following statements hold.

Proof.

1. Large stepsize/large batch. The choice of stepsize and batchsize

1 2646007%(K + 1)o? In S5 145,
V= s Mk = max{ 1,
650L In SUEEL exp(—ypk) R?

satisfies conditions (109) and (111). With such choice of vy, my, and the choice of M\, as in
(110), the iterates produced by clipped-SEG after K iterations with probability at least
1 — B satisfy

K+1
|25 FE — 2|2 < 2exp _H(—‘é') R?. (146)
650L In S

In particular; to guarantee ||xX+1 — x*||?> < ¢ with probability at least 1 — j3 for some
g > 0 clipped-SEG requires

2 2
O (L In <R> In (L In (R)>> iterations, (147)
% e w3 £
2 2 2
O [ max £, . In R— In £ In R— oracle calls. (148)
ppPe € uB €

Small stepsize/small batch. The choice of stepsize and batchsize

. 1 ln (BK)
v = min - , , mp=1 (149)
{650L In SECED " (K +1)
2 p2
satisfies conditions (109) and (111), where By = max {2, 26460002(115651(%}1}?) 25 } =
O | max< 2, (K+1)u”R® — . With such choice
26460002 In( SUGEL ) 12 (max{27—26460(0i;:/(@) })

of v, my, and the choice of A, as in (110), the iterates produced by clipped-SEG after K
iterations with probability at least 1 — 3 satisfy

650 In S5+ p?(K +1)

6(K+1)) 1.2
WK +1) ) , 52020002 In (U5 ) 2 (Bye)
B

|25+ —2*||? < max { 2exp (—

(150)
In particular; to guarantee || x5+ — x*||?> < e with probability at least 1 — (3 for some
g > 0 clipped-SEG requires

L R2 L R2 2 2
@ (max {H In <E> In (Nﬁ In (E>) , % In (uiﬁ) In? (BE)}> (151)

iterations/oracle calls, where

R2

o2 2 R2
eln (uzeﬁ) In (max{2, 76111(”;?[%) })

1. Large stepsize/large batch. First of all, it is easy to see that the choice of v and
my, from (145) satisfies conditions (109) and (111). Therefore, applying Theorem C.3, we
derive that with probability at least 1 — 3

B. = max < 2,

K+1_ w2 _ 2 (145) MK+ 2
| |° < 2exp(—yu(K +1))R* = 2exp< 0L G(KBH) R*.
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To guarantee ||z%+1 — 2*||2 < ¢, we choose K in such a way that the right-hand side of

the above inequality is smaller than € that gives

c-o(bu(2)n (50 (£)

The total number of oracle calls equals

o (145) S 2646007*(K + 1)o? In w
Z 2m, =" 2 Z max ¢ 1, §
F=0 k=0 exp(—yuk)R
V(K +1) exp(yu(K +1))o? In SEHD
= O | max< K,
pR?

2 2 2
(’)(max{L g }IH(R>IH(LIH<R )))

pope € uB
2. Small stepsize/small batch. First of all, we verify that the choice of v and my, from (149)

satisfies conditions (109) and (111): (109) trivially holds and (111) holds since for all
k=0,....K

26460072(K + 1)o? In SU5H) 26460072 (K + 1)0? In SUSH)
exp(—yuk)R? - exp(—u(K + 1)) R?
(149) 264600 In” (Bx) exp(yu(K + 1))o? In SEED
<
B 12(K + 1)R2
(149)
< L

Therefore, applying Theorem C.3, we derive that with probability at least 1 — 8
|a® — 22 < 2exp(—yu(K +1))R?

K+1 2R?
@ ax 2exp 7_#( : ) RQ,i
650L In SEEL By

6(K+1) 7.2
WK +1) ) , 5202000% n (U5 ) w2 (Bie)

= max\{ 2exp | —
p( 650L In S5 p2(K+1)

To guarantee ||z%+! — 2*||2 < ¢, we choose K in such a way that the right-hand side of

the above inequality is smaller than ¢ that gives K of the order

L R? L R? o? o? 9
(@] (max{uln< s )1 <Mﬁln< >) ’/ﬂeln<u256>ln (Bs)}>,

where

R2

eln (M Eﬁ)ln <max{2, 76111(%) })

The total number of oracle calls equals Zszo 2my = 2(K 4+ 1).

B, = max < 2,
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D Clipped Stochastic Gradient Descent-Ascent: Missing Proofs and Details

D.1 Monotone Star-Cocoercive Case

Lemma D.1. Let Assumption 1.3 hold for QQ = Bagr(z*), where R > Ry =4 |29 — z*|| and

0 < v < 2/e. If 2* lies in Bop(x*) for all k = 0,1,...,K for some K > 0, then for all
u € Bsg(x*) the iterates produced by clipped-SGDA satisfy

0 2 K+1 2
K 27 — ul[® — [l —
29(F (u), Tgyg —u) < e
2y K
+— z* —u— yF ("), w
K+1k:0< VE(2"), wi)
P
+ F@®)|? + |lwsl?) , 152
K+1k:O(H (@)1 + llwrll®) (152)
def 1 K
K 4 k
Tong = Ki—l—lg z", (153)
k=0
wp 2 F(ak) - For(ab). (154)

Proof. Using the update rule of clipped-SGDA, we obtain

”$k+1

—uf? ¥ — ull? = 27(a* =, Fex (@) + 2 Fe (a¥)
¥ — ul]? = 2y(a* — u, F(a*)) + 29(* — u,w)

2| F ()P = 29 (F (%), i) + 72w |1®

(Mon)
< 2 =l = 29" —u, F(w)) + 292" —u —yF(2"),w)

+92 (IF @I + llwrll?) -
Rearranging the terms, we derive
29(F(u), 2" —u) < 2" —ull® = 2" =l + 29(2* —u— F ("), wp)
92 (IF @) 12 + llwnl?) -

Finally, we sum up the above inequality for £ = 0,1, ..., K and divide both sides of the result by
(K +1):

K
1
27<F(u)a$§g —u) < K+1 Z (ka —u? — [l — UHQ)
k=0

K
2y k k
+7K+ 1 kZ()(x —u—yF(z"),w)

=

2
Y ky |2 2
TRt 2 (PO leal?)

|20 — uf]? — |2+ —

K+1

This finishes the proof. O



We also derive the following lemma, which we use in the analysis of the star-cocoercive case as well

Lemma D.2. Let Assumption 1.6 hold for Q = Bagr(z*), where R > Ry =4 [|z°

— z*|| and
0 < v < 2 If ¥ lies in Bog(z*) forall k = 0,1,..., K for some K > 0, then the iterates
produced by clipped-SGDA satisfy
0 _ .*x||2 _ K+1 _ *HQ
rabp < I maP = le o
i (F) e < R
K
T (ot o )
K+1¢4 ’
2 155
T Zl\wkl\ (155)

where wy, is defined in (154).

Proof. Using the update rule of clipped-SGDA, we obtain

25— 2| = |2k = 2P - 2yt - 2, Fer () 47| Fge ()2

= ||zF — 2*)]? — 29(z® — 2, F(aF)) + 2v(z® — 2%, )
P2 E(2®)]? = 29*(F (%), wi) + 77 ol
(1)

< 2t =P+ 290t - ot wk) — 29H(F(F), wi)

#1 (1= ) IFEOIP + 2

Since 0 < v < 2/, we have 7 (2/¢ — ) || F'(z*)||?> > 0 and, rearranging the terms, we derive

2 X * *
1 (3 )IFGIP < et =l = b =P 4 (o -t )

~27*(F(2*), wi) + 7 l|lwn]]?.
Finally, we sum up the above inequality for £ = 0,1, ..., K and divide both sides of the result by
(K +1):

g 2_ 2
= (3 V)ZF )

IN

1 K 2 K
—12 (I =P = ' =21+ gy 3 el

K 272 K
kZm — ", wg) K+1kz

0

2% = a*||? — 2"+ a2

K
k=0

K

2
K+1Z — o wk) K+1Z

This finishes the proof. O
Theorem D.1. Let Assumptions 1.1, 1.3, 1.6, hold for Q = Bar(z*), where R > Ro ¥ ||x —z*,
and
< v 156
170010 SEED (150
R
= (157)
6(K+1)’
97200(K + 1)y20? In S
m > max< 1, iz , (158)
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for some K > 0and B € (0, 1] such that In 6(Kﬂ+1) > 1. Then, after K iterations the iterates
produced by clipped-SGDA with probability at least 1 — (3 satisfy

9R?
GapR(l‘ﬁJg) <

< m (159)

Proof. We introduce new notation: Ry, = ||z* — z*|| for all & > 0. The proof is based on the
induction. In particular, for each k = 0, ..., K + 1 we define the probability event E, as follows:
inequalities

t—1

D

=0

|zt —2*||* <2R? and ~ <R (160)

hold fort = 0,1,..., k simultaneously. Our goal is to prove that P{E)} > 1 — *8/(k+1) for all k =
0,1,..., K 4 1. We use the induction to show this statement. For £ = 0 the statement is trivial since
R% < 2R? by definition and Zz;lo w; = 0. Next, assume that the statement holds for k =T < K,
i.e., we have P{Er} > 1 — T8/(k+1). We need to prove that P{Er1} > 1 — (T+1)8/(kx+1). Let us
notice that probability event Fr implies x! € Bog(z*) forallt = 0,1, ..., T. This means that the
assumptions of Lemma D.2 hold and we have that probability event E7 implies (7 < 1/¢)

|2 — 2|2 — [|l2T* — 2|2

2
THZHF » < Th1
9 T
+T7:1 (z' — 2 — yF(z"), w;)
t=0
7 =
2
+m Z e (161)
t=0
and
(SC) (156)(157) A
|F@h)]| < £zt -z < ' V3R 3 (162)

forallt =0,1,...,7T. From (161) we have

RT+1<R0+2VZ$ — 2" —yF(z"),w) + ZHW [
t=0

Next, we notice that

t * t t * t (80),(160) t *
2" 2" =y F@)] < [la" =2 +A|F@)] < 2R4+ALa" -2
(160) (156)
< 2R+2Rvy¢ < 3R, (163)
forallt =0,1,...,T. Consider random vectors

_fat —a* —yF(at), if|z’ —a* —yF(2")| < 3R,
Mt = 0, otherwise,

forallt =0,1,...,T. We notice that 7, is bounded with probability 1:
Il < 3R (164)

forallt = 0,1,...,T. Moreover, in view of (163), probability event Er implies n; = 2* — 2* —
vF(xt) forallt = 0,1,...,T. Therefore, Er implies

T T

R7, <R +2y Z<’r}tawt> +7° Z Jloe 1.
t=0 t=0
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To continue our derivation we introduce new notation:
u def = b def =
Wit [Fgf( )] — Fe(at), ot Pt - Ee [th(mt)} (165)

By definition we have w; = wi +w? forall t = 0, ..., 7. Using the introduced notation, we continue
our derivation as follows: Er implies

T T T
Ry < RP429) (mwi)+27> (mnw)) +29* > (Eer [lwill?])

t=0 t=0 t=0

@ @ ®

T
+29° 37 (ot ll? - Egr [lwlI?) +2722 et 12 (166)
t=0

® ®
We emphasize that the above inequality does not rely on monotonicity of F'.

As we notice above, Er implies ' € Bog(z*) for all ¢ = 0,1,...,7. This means that the
assumptions of Lemma D.1 hold and we have that probability event F7 implies

T
2v(T + 1)Gapp(Tay,) < max ¥ —ul® +2 ' —u—yF(z"),w
YT+ 1)Gapp(aT,) UEBR(I*){| I+ 33 V() )

+722 IE @) + llwe?)

T
0 2 *
= max o —ul|+2 T —u,w
i e )
T

+2v Z(mt —z* — yF(z"),w)

t=0
+W2Z (IF @)1 + llwel*) -

We notice that Er implies n; = x' — 2* — yF(x!) forall t = 0,1,...,T as well as (161) and
~ < 1/e. Therefore, probability event Er implies

T
29(T 4 1)Gapg(x avg) < max {||1: —ul*} +2y max ){Z<x*_u,wt>}

u€EBR u€BR(z* 0
- T T
20 () + IS IRPEIP +2 3 el
t=0 t=0 t=0
T
< 4R?+2v max ¥ —u, w
T T
+R? 4y Y (g wi) + 297 e
t=0 t=0
T
< BSR4 29R|D w42 (D+@+®+@+®), (167
t=0

where @, @, ®, ®, ® are defined in (166).

The rest of the proof is based on deriving good enough upper bounds for ©, @, ®, ®, ®, i.e., we want
to prove that @ + @ + @ + @ + ® < R? and 2yR H ZtT:o wy|| < 2R? with high probability.
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Before we move on, we need to derive some useful inequalities for operating with w}, w?. First of all,
Lemma B.2 implies that

lwif[l < 2A (168)
for all t = 0,1,...,7. Next, since {¢“'}", are independently sampled from D, we have
Bt [Fee (") t]: ( %), and

1 «— ) g2

Egt [||Fer(2') — F(z)|?] = 72 cit [|Fere (a?) — F(ah)]?] < —,

foralll =0,1,...,T. Therefore, in view of Lemma B.2, Ep implies that

402

bl < — 169
et ]| < — (169)

1 2
Eq: [||wt||2} < 18 (170)

m

1802

Eg: [H ?IIZ} < (171)

foralll =0,1,...,T.

Upper bound for @. Since E¢:[w}'] = 0, we have
Ege [29(m, wi)] = 0.
Next, the summands in @ are bounded with probability 1:

2ty < 29l - ot S 129mn D (172)
’Y ntth - ry 77t wt —= ’y = 51n G(K-‘rl) = C.

. . def
Moreover, these summands have bounded conditional variances o7 = Ege [4720775, w%‘)Q] :

64)
02 < Eee [12Imil2 - [ 7] 'S 36v2R2Ege [Juf]?] (173)

That is, sequence {27(77t, wi') hi>0 is a bounded martingale difference sequence having bounded
conditional variances {o? }t>0 Applying Bernstein’s inequality (Lemma B.1) with X; = 2v(n;, w}*),

c defined in (172), b = R— ,G = 15015%’ we get that
B

d R b2 B
~ N . - .
|®‘ > and Z - 150 In G(Kﬁ'H) = £oxp ( 2G + 2Cb/3> 3(K+1)

=0

In other words, P{Egp} > 1 — ﬁ, where probability event Eqy is defined as

T R R2
Eq = | either o; > —————— or |®<— (174)
; 7 1501 CUED [
Moreover, we notice here that probability event E implies that
(171)T<K+1 64872 R20%(K + 1) (158) R4
2 p2
Zat 2 3672R ZEG [lw| < —~ < 150 T (175)

Upper bound for @. Probability event Er implies

(164,169, T<K+1 24yg2 R(K + 1)
® < 272””1” oy < B e—

asn 14407202 (K + 1)111% (128) R2

- 5 (176)
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Upper bound for ®. Probability event Ep implies

T
" (17),T<K+1 36 K +1) as8) R2
® =2y EBe [|wp?] < %) < = (177)
t=0
Upper bound for ®. We have
27°Egr [[lwi']* — Egr [llwi'?]] =
Next, the summands in @ are bounded with probability 1:
(168)
29° [lwiI” = Ege [lwfIIP]] < 29 (IloplI® + Ege [lwf]?]) < 169722
(157) R2 R2 def
= 5m S =5 LGS “ (178
2 def

Moreover, these summands have bounded conditional variances o; =
2
1 Ege | (kI - B [l 2])?]:

., (178) 272 R? N 442 R?
5 < WEQ [l I* = Egr [llwi'1?]]] < W e [lwr Pl (179

That is, sequence {||w;’||> — Egt[[|w;*[|*]}i>0 is a bounded martingale difference sequence having
bounded conditional variances {77 }+>0. Applylng Bernstein’ s inequality (Lemma B.1) with X; =

i || — Ege [||wi]|?], ¢ defined in (178), b = R ,G = W,We get that

150

|@\>—andz:~2 R74 <2exp | — s = b
150 In SEE [ P\T2Gv23) T 3(K 1 1)

t=0

In other words, P{Egp} > 1 — where probability event Eg is defined as

3(K+1)’
T
R* R?
Eg = { either 6f > ———~ or |®<— (180)
{ 2.7 oo o 1® '

Moreover, we notice here that probability event E7 implies that

Zat

(179) (I7I)T<K+1 872R2 2(K—|— 1)

22510 6<K+1) ZE&' ltll) < 25m In S

(158) R4
< _
150 In S

(181)

Upper bound for ®&. Probability event Ep implies

® — o T big (169 T<<K+1 329204 (K + 1) (157 1152007*0*(K + 1) In? w
= 2 Z [Jeor | m2Z\2 m2R2
(158) 2
< %. (182)

Upper bound for ~ HZtT:O Wy H To handle this term, we introduce new notation:

-1 -1
33w, if"war <R,

Cl = r=0 r=0

0, otherwise
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forl =1,2,...,T — 1. By definition, we have
Gl < R (183)

Therefore, in view of (160), probability event E implies

Il
=2
%)

T T -1
_ 722||wz|2+272<72wmwz>
=0 =0 =0

T T
= 2D w42 (G, w)
=0 =0

T T
(166)
< O+@+®+2y> (G w)+27 ) (). (184)
=0 =0
® )

Following similar steps as before, we bound ® and @.

Upper bound for ®. Since E;: [wf'] = 0, we have

Next, the summands in ® are bounded with probability 1:
(183),(168) (157) R? def
129G wi)| < 29IGell - lwil < 4yRA < 1y SETD) =c. (185)
B

. . o def ,
Moreover, these summands have bounded conditional variances 7 = Ege [472<Q, w#)Q]:

R . (164)
57 <Ege (121G 1w41P] < 47°R%Eer [[lwt]?] (186)

That is, sequence {2v(¢;,w;') }+>0 is a bounded martingale difference sequence having bounded
conditional variances {57 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; = 2v((;, wi),
4

c defined in (172), b = %2, G = we get that

R
150 In SUEED >

R a R b 3
PS|® >—and ¥ 67 <— o p <2 - = :
{' |> - an Z"t—150m6<1<ﬁ+1>}— eXp( 2G+2cb/3) 3(K+1)

t=0

In other words, P{Eg¢} > 1 — ﬁ where probability event Fg is defined as
T
R* R?
Y Y ~ <
Ee {elther ;,0 o; > ol G(KBH) or |® < 7 } (187)
Moreover, we notice here that probability event E implies that
T T
.o (180) (A7), T<K+1 7292 R20%(K + 1) (158) R*
2 2 p2 w2
;_O 57 < 49°R ;_O Ee [lwpl?] < —~ < o Gesry (188)

Upper bound for @. Probability event Er implies

(183),(169), T<K+1 8y0?R(K +1)
- mA

T
@ < 2y Gl el
t=0

(157) 480720'2(K + 1) ln% (123) R2

- s = (189)
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Final derivation. Putting all bounds together, we get that E'r implies

(166)
R, < RP+0+@+0@+®+06,
T

>

t=0

o e
29(T + 1)Gapp(2,,,) < 5R*+29R

avg

12 (D4 @+ 0 +@+6),

T

S

1=0
(176) R2 77 R2 (182) R2 (189) R?
@ < ® < ® < @ <

(184)
< VI+®+B®+©+®,

v

B0 O o<
T T T
(175) R4 (181) (188) R4
2
ZUtS 6(K+1) ZU— 6K1’Z = 6(K+1) "
— 1501n SEED T 150In SEEL T o 150 In S5
Moreover, in view of (174), (180), (189), and our induction assumption, we have
s
Pl 2 1= g
P{E®}>17L P{E@}>17L P{E@}>17L
- 3(K+1)’ - 3(K+1)’ - 3(K+1)
where probability events Eg, Ee, and Eg are defined as
T
R* R?
_ : 2 i
Ey = {elther Zot > ol 6(Kﬁ+1) or |@ < 5 },
T
R* R?
_ : ~2 i
Eey = {elther Zat > ol 6(Kﬂ+1) or |®@ < }
T
R? R?
_ . ~2
E@ = {elther ZO’t > m or |©| < }

Putting all of these inequalities together, we obtain that probability event £ N Eg N Fe N Ee implies
R:, < RP4+04+@+0+®+6 <2R?

T
v Zwl
1=0

< VOa+@+0®+®+@<R

T

>

t=0

2 (T + 1)Ga'pR( avg) 5R2 + 2,7R

IN

2. (D+@+0@+®+6)

< 9R?.
Moreover, union bound for the probability events implies

— — — — T
P{ET+1}ZP{ETQE(DﬂE@mE@}:1_P{ETUE®UE@UE©}Zl_r_fl-

T'his is exactly what we wanted to prove (see the paragraph after inequality (160)). In particular, Fx
implies
R( ) < 79FT :
Ga
p avg/ = 9 ( )

which finishes the proof. O

Corollary D.1. Let the assumptions of Theorem D.1 hold. Then, the following statements hold.
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1. Large stepsize/large batch. The choice of stepsize and batchsize

Proof.

1 972(K + 1)0”
Y= ———"—, m=max< 1, (190)
170¢In S5 { 28902R? In S }

satisfies conditions (156) and (158). With such choice of v, m, and the choice of A as in
(157), the iterates produced by clipped-SGDA after K iterations with probability at least

1 — (B satisfy

765¢(R? In YD
K
Gap(Tgy,) < il (191)
In particular, to guarantee Gap(xﬁg) < e with probability at least 1 — 3 for some € > 0
clipped-SGDA requires,
2 !/ 2
o <€R In <R)> iterations, (192)
€ ep
2 _2p2 /R?
O | max éi, o R In i oracle calls. (193)
€ g2 eB

Small stepsize/small batch. The choice of stepsize and batchsize

1
v = min R , m=1 (194)

1700 In SUCED 1800 /3(K + 1) In 2

satisfies conditions (156) and (158). With such choice of v, m, and the choice of )\ as in
(157), the iterates produced by clipped-SGDA after K iterations with probability at least

1 — (B satisfy
765¢R2 In 8E+D 8100 R, /3 1n SEFD
P Fy (195)
K+1 ’ K+1

Gap(zX

zwg) < max

In particular, to guarantee Gap(mﬁg) < e with probability at least 1 — (3 for some € > 0,
clipped-SGDA requires

2 2 2 p2 2 p2
O | max Eiln éi ,J r In o R iterations/oracle calls. (196)
€ eB g2 e2f3

1. Large stepsize/large batch. First of all, we verify that the choice of v and m from
(190) satisfies conditions (156) and (158): (156) trivially holds and (158) holds since

972(K + 1)0? 97200(K + 1)7%02 In S
m = max ¢ 1 =max< 1, .

' 2892R? In SEHD R?

Therefore, applying Theorem D.1, we derive that with probability at least 1 — 3
X OR2  (190) 765¢/R?In w
< <
avg) < 2y(K+1) — K+1
K

To guarantee Gap(7,,,) < €, we choose K in such a way that the right-hand side of the
above inequality is smaller than ¢ that gives

K:(’)(Wln(w)).
€ ep

The total number of oracle calls equals

Gap(z

m(K+1) 2

72(K + 1)%02
max{K—i—l 97 +)U }

128902 R2 In EHD
2 2 p2 2

= 0 (max L TR (Y
5 g2 B
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2. Small stepsize/small batch. First of all, we verify that the choice of v and m from (194)
satisfies conditions (156) and (158):

1 R 1

v = min EEE < K+1)?
170¢1n 1 1800\/3(K+1)1nw 170¢In S5

(194) 97200(K + 1)y20? In )
1 > N .

m =

Therefore, applying Theorem D.1, we derive that with probability at least 1 — 3

9R?
G K < T
ap(xavg) = 2’)/(K + 1)

6(K+1 6(K+1)
(194) 765¢R? In XD 8100 Ry /31n 255
= max

K+1 ’ K1

To guarantee Gap(ng,g) < ¢, we choose K in such a way that the right-hand side of the
above inequality is smaller than ¢ that gives

(R? (R*\ o?R? o?R?
=0 (me T (55 ) Zon (7))

The total number of oracle calls equals K + 1.

D.2 Star-Cocoercive Case

Theorem D.2. Let Assumptions 1.1, 1.6, hold for Q = Bag(x*), where R > Ry 4 |2° — 2*|, and

1
= Torm Lot oD
R
= (198)
607 In 2D
97200(K + 1)7202 In 2D
m > max < 1, 72 , (199)

for some K > 0 and B € (0,1] such that In % > 1. Then, after K iterations the iterates
produced by clipped-SGDA with probability at least 1 — (3 satisfy

K

1 20R?
—-— FM)|? < ———. 200
K+1kZ:0H @I = T (200)
Proof. We introduce new notation: Ry, = ||z¥ — z*|| for all k& > 0. The proof is based on

deriving via induction that Ri < CRZ? for some numerical constant C' > 0. In particular, for
each k£ =0,..., K + 1 we define probability event Ej, as follows: inequalities

|zt — z*||* < 2R?, (201)
hold for ¢ = 0,1, ..., k simultaneously. Our goal is to prove that P{Ey} > 1 — k8/(x+1) for all

k=0,1,..., K + 1. We notice that inequalities (161) and (166) are derived without assuming
monotonicity of F'. Therefore, following exactly the same step as in the proof of Theorem D.1 (up to
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6(K+1) by In 4( K+1

the replacement of In 7

)Wegetthat

(16
R, g R2+®+®+®+@+®,
176) R? a7y R2 (182) R2
< — @< — 6 < —
— 57 —_ 57 —_ 5’

(175) R4 5 (131) R4
Zat = 150l 4K+1 Z . 150111%'

Moreover, in view of (174), (180), and our 1nduct10n assumptlon, we have

T3
P{Er}>1— ——
{Brk=1-777
IP’{E®}>17L IP’{E@}>1—L
- 2(K +1)’ - 2(K +1)’
where probability events Eg, and Fg are defined as
R* R?
E@ = {elther Zot W or |®| S 5}7
R* R?
E@ = {elther ZO’t W or I@l S 5} .

Putting all of these inequalities together, we obtain that probabllity event K11 N Eg N Eg implies
R, <R+ D+@+0®+@+6 < 2R
Moreover, union bound for the probability events implies

- = = T
P{ET—H} > P{ET NEsN E@} =1- P{ET UFEepU E@} >1-— Ki—fl (202)
This is exactly what we wanted to prove (see the paragraph after inequality (201)). In particular, E'x

implies

i " asp U(R*—R%.)) ((D+@+0+@+06)
1=~ Y(K +1) Y(K +1)
2
< 2R .
v(K +1)
This finishes the proof.
O
Corollary D.2. Let the assumptions of Theorem D.2 hold. Then, the following statements hold.
1. Large stepsize/large batch. The choice of stepsize and batchsize
1 972(K + 1)0>
170010 2EHD e {1’ 289/2 2 In 2UCHD } 209

satisfies conditions (197) and (199). With such choice of v, m, and the choice of A as in
(198), the iterates produced by clipped-SGDA after K iterations with probability at least
1 — B satisfy

1 & i 34072 R2 In 2EEY

e DI LGl 1 : (204)
k=0

In particular, to guarantee ﬁ ZkK:o |F(2*)||? < e with probability at least 1 — [3 for
some € > 0 clipped-SGDA requires,

2 P2 2 p2
o0 (E R In <£€1;L )) iterations, (205)

€
2p2 p2 _2p2 2 P2
@) (max{g R ’g 02R }ln (€ i )) oracle calls. (206)
€ € el
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2. Small stepsize/small batch. The choice of stepsize and batchsize

1 R
v = min , m=1 (207)

4(K+1)°
170010 =552 1800 3(K + 1) In U5

satisfies conditions (197) and (199). With such choice of v, m, and the choice of X as in
(198), the iterates produced by clipped-SGDA after K iterations with probability at least

1 — B satisfy
, 34002R?In U5 36000 Ry /31n 2
< . (208
K+1Z” I < max K+1 ’ K+1 (208)

In particular, to guarantee ﬁ Ei{:o |F(z*)||? < e with probability at least 1 — 3 for
some € > 0, clipped-SGDA requires

2 p2 2 p2 2 22 2 22
O | max i In CRr 7£ o R In Co'R iterations/oracle calls. (209)
€ ef g2 e2p

Proof. 1. Large stepsize/large batch. First of all, we verify that the choice of v and m from
(203) satisfies conditions (197) and (199): (197) trivially holds and (199) holds since

972(K + 1) 97200(K + 1)y%02 In 2D
m = max < 1, 9892 R2 In 4(Kﬁ+1) =max< 1, 2 .

Therefore, applying Theorem D.2, we derive that with probability at least 1 — 3
Z [t < 207 0 B0CR I
K +1

VK +1) ~ K+1
To guarantee K7+1 K vo [|F(z%)]|? < e, we choose K in such a way that the right-hand
side of the above inequality is smaller than ¢ that gives

2 p2 2 2
K—O(gR 111<£R ))
€ ep
The total number of oracle calls equals

2(K +1)2%0?
m(K +1) @ nax K +1, 972K +1)°0
2892 R2 In 2UCH

?R? (?0%R? ?R?
= O max , In .
€ g2 eB
2. Small stepsize/small batch. First of all, we verify that the choice of v and m from (207)
satisfies conditions (197) and (199):

. 1 R )
Y = min |
170¢1n = Kﬁ+ )’ 1800\/3(K +1)In % 17051 4(K+1)
207 97200(K + 1)v%0% In %
m = 1 > .
> =
Therefore, applying Theorem D.2, we derive that with probability at least 1 — 3

K
1 20R?
- F kN2 < ey
e IR s 2

k=0
@o7) 34002R? In U5 3600 Ry /31n 2
= max

K+1 ’ K+1
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To guarantee 1 S o IIF(@%)||? < &, we choose K in such a way that the right-hand
side of the above inequality is smaller than ¢ that gives

PR? CPR?\ (?02R? 252 R?
K:O(max{ . hl(sﬁ)’ = ln( 25 )})

The total number of oracle calls equals K + 1.

D.3 Quasi-Strongly Monotone Star-Cocoercive Case

Lemma D.3. Let Assumptions 1.5, 1.6 hold for Q = Bag(x*), where R > Ry =4 |2° — z*||, and
0 < v < Ye If 2F lies in Bog(z*) forall k = 0,1,..., K for some K > 0, then the iterates
produced by clipped-SGDA satisfy

K
a5 —2* > < (L= yp) |z — 2*|* + 2y Z(l — ) KR (@R — 2 — yF(2F), wy)
k=0
K
77> (@ = ) K F w1, (210)
k=0

where wy, is defined in (154).

Proof. Using the update rule of clipped-SGDA, we obtain
= l2* — 2*|[* = 2y(a® — 2%, Fee () + 7° || Fer (%)
= la* —&*[|* = 2v(a" — 2%, F(2*)) + 2v(2® — ¥, wy)
2 F ()7 = 292 (F (2*), i) + 7 [lwr |
= ¥ — &*[* + 29(2" — 2% — yF(a*), wy)
—2y(a" —a*, F(z®)) + 7| F(@®)[” + +*||wx

2+t — o

(SO)
< ¥ = 2*||? + 2y(a" — 2 — F(2"), )
—2y(a" — 2%, F(a")) + 722" — 2%, F(a®)) + 72w
= 2% = 2*||? + 2y(a" — 2" — yF(2"), wp)
8l "
oy (1 - 2) (* — 2%, F(2)) + o
@QSM),< 3
< 2% = 2*||? + 2y(a* — 2" — F(2"), wp)
8l R
o (1= ) e = P+
’YS% k * (12 k * k 2 2
< (L=l = 2*||" + 2v(z" — 2" — yF(z"), wg) + 7" [Jwr |-
Unrolling the recurrence, we obtain (210). O]

Theorem D.3. Let Assumptions 1.1, 1.5, 1.6 hold for Q = Bagr(x*) = {x € R? | ||z — 2*|| < 2R},
where R > Ry % |2° — 2*||, and

1
400¢In 2L
exp(—ypu(l +5/2))R

e = , (212)
120y In 250

2700072 (K + 1)o? In 2D
max < 1, )

0<~ @211)

E
v

exp(—yuk)R? ¢
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for some K > 0and B € (0, 1] such that In 4(Kﬂ+1) > 1. Then, after K iterations the iterates
produced by clipped-SGDA with probability at least 1 — (3 satisfy

25 — 2% < 2exp(—ypu(K + 1))R%. (214)

Proof. As in the proof of Theorem D.1, we use the following notation: Ry, = ||z* — z*||%, k > 0.
We will derive (214) by induction. In particular, for each k¥ = 0, ..., K + 1 we define probability
event F;, as follows: inequalities

R} < 2exp(—vyut)R? (215)

hold for t = 0,1,. ..,k simultaneously. Our goal is to prove that P{Ej} > 1 — k8/(x+1) for all
k=0,1,..., K + 1. We use the induction to show this statement. For k£ = 0 the statement is trivial
since Rg < 2R? by definition. Next, assume that the statement holds for k = T < K, i.e., we have
P{Er} > 1 — T8/(k+1). We need to prove that P{Er 1} > 1 — (T+1)8/(k+1). First of all, since
R? < 2exp(—yut)R? < 2R?, we have 2! € Bag(x*). Operator F is {-star-cocoercive on Bag(z*).
Therefore, probability event Er implies

(SO) @215) QI,212) )\
T < ' —x < exp(—mrt/2 < —.
F(zt ||zt — V20 R ; (216)
and
) - 216) 5, 212) exp(—yut)R?
fl? 2 2Bl +2lFEo S S S SR @)

forallt=0,1,...,T.
Applying Lemma D.3 and (1 — yu)T < exp(—yuT'), we get that probability event E7 implies

T
Ry < exp(—T)R +27) (1—yp)" o' — 2" —yF(2"),w)
t=0
T
72D (1= )" e
t=0

To estimate the sums in the right-hand side, we introduce new vectors:

ot —a* —AF ('), if ot —a* —yF(2")]| < V2(1+ L) exp(—74t/2) R,
=90 . (218)
, otherwise,
fort =0,1,...,T. First of all, we point out that vector 7; is bounded with probability 1, i.e., with
probability 1
Inel < V2(L+ ) exp(—ut/2) R (219)

for all t = 0,1,...,T. Next, we notice that Er implies ||F(z)| < v2lexp(—7#t/2)R (due
to (216)) fort = 0,1,...,T, i.e., probability event Er implies 1; = a! — 2* — vF(z!) for all
t=0,1,...,T. Therefore, E'r implies

T
Ry < exp(—yuD)R +27) (1 =) i, wi)
t=0
T

R A7) K PP
t=0

As in the monotone case, to continue the derivation, we introduce vectors wy', wf defined as
Wi R [ﬁgt (xt)] — Fe(ah), o F') - Ee [ﬁgt (xt)] , (220)
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forallt =0,...,7. By definition we have w; = w;* + wf forallt = 0,...,T. Using the introduced
notation, we continue our derivation as follows: Er implies

T T
)
Ry < exp(—yuT)R? + 2y Y (1 =)™ (e, wf) +2v > (1= yu)" " (e, wf)
t=0 t=0
@ @
T T
+29° > (1 =) e [JwplP] +29° > (1 =) ([w® — Eee [Jlwill?])
t=0 t=0
® @
+2’yzz " (llwt ) - 221)

®
The rest of the proof is based on deriving good enough upper bounds for ©, @, ®, ®, ®, i.e., we want
to prove that ® + @ + ® + @ + ® < exp(—yuT') R? with high probability.

Before we move on, we need to derive some useful inequalities for operating with w}’, w?. First of all,
Lemma B.2 implies that

[Jw']l < 2 (222)
for all t = 0,1,...,7. Next, since {“'}"* are independently sampled from D, we have
Egt[Fee (2%)] = ( t) and

. me ) m 02
Ber [IlFer (=) — FOI) = 221&,:” [P (a') = F@)?] < 2,

foralll = 0,1,...,T. Moreover, as we already derived, probability event E1 implies that || F(z?)|| <
Aef2forallt =0,1,...,T (see (216)). Therefore, in view of Lemma B.2, E1 implies that

|t < — )\t (223)
18
Eg: [Hwt”ﬂ < mi : (224)
1802
Eer [lf”] < =7 @25)

foralll=0,1,...,T.

Upper bound for @. Since Eg:[w}'] = 0, we have

Eg: [29(1 — )" (e, wit)] = 0.
Next, the summands in @ are bounded with probability 1:
291 =) wp)l < 2yexp(—yu(T = ) el - flwi|

(219),(222)
< 4V29(1 ) exp(—y(T — t/2)) RAs

I exp(—T) R

= 51n A 220
B
Moreover,  these summands have bounded conditional variances o7 &f
Eer [49°(1 — yp)* =2 (e, wi)*]:
of < Eg [49exp(—yu(2T —2t))[ne])* - wi']|?]

219)

< 89 (1+ 902 exp(—yu(2T — 1)) R’Egr [|lwi']1?]

@ 2 2 w2

< 10y%exp(—yp(2T — ) R*Ege [|lwy'|?] - (227)
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That is, sequence {2v(1 — yu)T =% (n;, w?) }+>0 is a bounded martingale difference sequence having
bounded conditional variances {07 };>0. Applying Bernstein’s inequality (Lemma B.1) with X; =

2v(1 — yp) T~ (ns, w}'), ¢ defined in (226), b = & exp(—yuT)R?, G = %, we get that
n T

1 exp(—2yuT)R* b2 8
P@| > = T)R* and 2o T <2 - = .
{ | > zexp(—yn * an Z ~ s0m AED [ P\ Tag 2 ) T 2K+ 1)

In other words, P{Ep} > 1 — m, where probablhty event Eg is defined as

T

| exp(=2T) R 1 :

Eo = either S o2 > SPTEMIIE o0 6 < Coxp(cqun)R2 Y. (228)
{ 707 150 HEAD o< 3

Moreover, we notice here that probability event E implies that

Z of (2%7) 10~2 exp(—2yuT) R2 Z w

exp(—yput)
K

(225), T<K+1 1
< 18072 exp(—2yuT)R*0> T Sm—
) ; my exp(—yut)

(213) _ 4
5 exp(=2yuT)R* (229)
150 In SEHD

Upper bound for @. Probability event Ep implies

7]l - [lwp
@ < 2y exp(—yuT’)
(= Zexp( —ypt)
T
(219),(223) o
< 8v2vy(1 4+ 4 —yuT)R
< \f’)’( + ) exp(—yuT') ;mt)\texp(fwt/ﬂ
T A(K+1)
(212) o?ln 2212
< 960v/27*(1 + v£) exp(—yu(T — 1) Z :

“— my exp(—yut)
Q) T<K+1 |

< £ exp(—yuT)R%. (230)
Upper bound for ®. Probability event Er implies
T

Egr [llwf]?]

® = 2v% exp(—yuT & e
( ) ; exp(—yut)
T
(225) 2
< 367 exp(—yuT) Z —

Q13),T<K+1 1 )
< geXp(—wT)R . (231)

Upper bound for @. First of all, we have

292(1 — )" ' Egr [|lwi'l* — Eg [lwi'lP]] =
Next, the summands in @ are bounded with probability 1:

_ 222) 1672 exp(—ypuT) N2
P21 = ) [ |2 = Bee [Jot ]| 2 S

- exp(—yput)
1) exp(—ypT)R?
T smAEHED
S (232)
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2 =

Moreover,  these summands have bounded conditional variances o;
Ege [474(1 = v)?T=% || |2 — Ege [t 1] ]
. @2 292 exp(—2yuT)R?
2 2 w2
57 < Eeo [[lwf'l> - Egr [l
t 5exp(—yut) In 4(K+1 3 H t 13 [ t ]H
4* exp(*2wT)R
< oy Bee [llwr'l7] - (233)
Sexp(—yput) In ===
That is, sequence {2v*(1 —yu)"~" (wi‘]|* — Egr [|lwilI*]) },, is @ bounded martingale differ-
ence sequence having bounded conditional variances {57 };>0. Applying Bernstein’s inequal-
ity (Lemma B.1) with X; = 27%(1 — yu)T = (J|lwf||? — Egr [[wf]|?]). ¢ defined in (232), b =
exp(—yuT)R?, G = P2WTIRY o oot that
5 EXP(—7H U= oo 4(K+1) ) g
1 exp (—2yuT)R* b2 Jé;
= — < - = .
{@| > — exp(—yuT)R? and Z S ool 4(Kﬁ+1) 2 exp 3G 125 K1)
In other words, P{Eg} > 1 — m, where probability event Eg is defined as
T 4
o _ exp(—2yuT)R 1 9
< Z —
o; > 50l 4(1(;1) @] < E exp(—yuT)R (234)

t

FEg = {elther
t=0
Moreover, we notice here that probability event Ep implies that
T u
472 exp(—2yuT) R? Z Eer [||lwi]?]
exp(—yput)

o <
t 51 4(K6+1) —
(225), <S +1 7292 exp(—2yuT)R?0? i 1
< 51ln w “— my exp(—yut)
@13) exp(—2yuT)R*
< T (235)
Upper bound for ®&. Probability event Ep implies
T
® = 292 " exp(—yuT — 1)) (| 1?)
t=0
T
(223) ol
< 327% exp(—yuT)
; mZA? exp(—yut)
212) = I G
= 4608007* exp(—yu(T — 2 s
(o =2) ; i R? exp(—2yput)
QI3)T<K+1 1 )
= exp(—yul)R".

<
- 5
Putting all bounds together, we get that Ep implies
Ri < exp(-yDRP+0+@+@+@+®

Final derivation.
230) 1 )
< pexp(—wl)R,

236) 1
® < gexp(—'y,uT)R

<235) exp(—2yuT)R*

@31 1
< pexp(—yl)R,
4(K+1)
150 In 25

® <

T

S 2 I
1501n 4(K+1

t=0

=0
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Moreover, in view of (228), (234), and our induction assumption, we have

s
P{Er}>1— ——
By 21-g
]P’{E@}>1—L ]P’{E@}>17L
- 2(K +1)’ - 2(K +1)’
where probability events Eg, and Fg are defined as
d exp(—2yuT)R* 1
Ly = either o2 > — "/ or |@ < <exp(—yuT)R?
{ ; ©T 150 UEED 0] < 5 expl )
T
~ —2yuT)R* 1
E¢ = [ ecither Zaf > % or |® < - exp(—yuT)R? ;.
t=0 150 In T 2

Putting all of these inequalities together, we obtain that probability event Er N Eg N Eg implies

@21
R: < exp(-yDR*+0+@+@®+@+ 6

< 2exp(—yuT)R>.
Moreover, union bound for the probability events implies

(T+1)pB

P{E]url} ZP{ETQE(DQE@} Zl—P{ETUE@UE@} >1- K1l

(237)

This is exactly what we wanted to prove (see the paragraph after inequality (215)). In particular, with
probability at least 1 — 3 we have

25— 2*)? < 2exp(—yu(K +1))R?,
which finishes the proof. O
Corollary D.3. Let the assumptions of Theorem D.3 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

1 ' 2700092 (K + 1)o? In 2D -
B 400/ In 2EED k= AR exp(—yuk)R? (238)

v

satisfies conditions (211) and (213). With such choice of vy, my, and the choice of M\, as in
(212), the iterates produced by clipped-SGDA after K iterations with probability at least

1 — B satisfy
K+1
25F — 2%)|? < 2exp —'u(ij) R?. (239)
400¢In 2D

In particular; to guarantee ||xX+1 — 2*||?> < e with probability at least 1 — (3 for some
e > 0 clipped-SGDA requires

2 2
@ <€ In <R> In (6 In <R>)> iterations, (240)
1% € whB €
2 2 2
O | max £7 7 In R— In i In R— oracle calls. (241)
p e £ uB €
2. Small stepsize/small batch. The choice of stepsize and batchsize

= =1 242
v mm{400£1n4”(/;1)’u(K+1)}’ my (242)
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Proof.

; i _ (K+1)p’R? _
satisfies conditions (211) and (213), where Bg = max {2, 3700007 1n(4<K[j1) Yo (Br0) } =
(K+1)pu?R?

2 4(K+1) 2 (K+1)u? R?
2700002 In( 555 ) In <max{2,W

~,mg, and the choice of \i, as in (212), the iterates produced by clipped-SGDA after K
iterations with probability at least 1 — 3 satisfy

4(K+1) 7.2
P+ 540000 In (4U5)) w2 (B
400¢In 2USEY ’ p2(K +1)

O | max { 2, }) . With such choice of

5 —2*||? < max { 2exp <—

(243)

K+l _ 2*||2 < e with probability at least 1 — 3 for some

In particular, to guarantee ||x

e > 0 clipped-SGDA requires

Z }%2 2 }%2 2 2
o (max {u In (6) In (ﬂﬂ In <5>> % In (u(;eB) In> (BE)}) (244)

iterations/oracle calls, where

}{2

eln (Mg:ﬂ) In? <max {2, Elnf;})

n2ep

B, = max < 2,

1. Large stepsize/large batch. First of all, it is easy to see that the choice of v and
my, from (238) satisfies conditions (211) and (213). Therefore, applying Theorem D.3, we
derive that with probability at least 1 — 3

K+1 2 B 2 (238) u(E+1D) 2
|| || < 2exp(—yu(K +1))R* =" 2exp ( 2007 I AET 4(K5+1) R=.
K+1

To guarantee ||z — 2*||? < ¢, we choose K in such a way that the right-hand side of
the above inequality is smaller than ¢ that gives

2 2
K=0 <£ln <R> In <£1n (R>>> .
j € w3 €
The total number of oracle calls equals

- @39 - 27000~%(K + 1)o?In %
Z mg = Z max < 1, S
k=0 k=0 exp(—ypk)R

V(K + 1) exp(yu(K +1))o? In %
= O | max< K,
PR

- ofm ()i (£))

2. Small stepsize/small batch. First of all, we verify that the choice of v and my, from (242)

satisfies conditions (211) and (213): (211) trivially holds and (213) holds since for all
k=0,....K

270009%(K + 1)o? In 21 2700072(K + 1)0? In AUCH)
exp(—yuk)R? - exp(—yu(K + 1)) R?
) 270001n” (By) exp(yu(K +1))o? In 252D
<
- 12(K +1)R?
(242)
< L

64



Therefore, applying Theorem D.3, we derive that with probability at least 1 — 3
2" —a*|? < 2exp(—yu(K +1))R?

2
@ max 2exp —*’L&(K i— D R?, 2
400¢ In 2D Bk

WK +1) , 540000% In (25 ) 1n? ()
400%111% ’ (K +1)

= max{ 2exp <—

To guarantee ||z5+1 — 2*||2 < ¢, we choose K in such a way that the right-hand side of

the above inequality is smaller than ¢ that gives K of the order

(i ()0 (2)- 0 5 ).
ofon]

where

R2

o2 2 R2
eln (uzsﬁ) In <max {2, 76111(“%;3) })

The total number of oracle calls equals 31 my = (K + 1).

B. = max { 2,
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E Extra Experiments

In this section, we provide more details for the experiments done in § 4, as well as additional tables,
figures, and image samples from some of our trained models.

E.1 WGAN-GP

In all cases, everything in the experimental setup other than learning rates and clip values remained
constant. We use the same ResNet architectures and training parameters specified in Gulrajani
et al. [2017]: the gradient penalty coefficient A\qp = 10, ng4;s = 5 where ngy;s is the number of
discriminator steps for every generator step, and a learning rate decayed linearly to 0 over 100k steps.
The only exception is we double the feature map of the generator from 128 to 256 dimensions. For all
stochastic extragradient (SEG) methods, we use the ExtraSGD implementation provided by Gidel
et al. [2019a]. We alternate between exploration and update steps and do not treat the exploration
steps as “free” — this means we only have 50k parameter updates as opposed to 100k for all SGDA
methods (we decay the learning rate twice as fast such that it still reaches 0 after 50k parameter
updates).

All of the hyperparameter sweeps performed for SGDA, clipped-SGDA, clipped-SEG, clipped-
SGDA (coordinate), and clipped-SEG (coordinate), as well as the associated best FID score obtained
within the first 35k training steps, can be found in Tables 2, 6, 5, 6, and 7 respectively. Bold rows
denote the hyperparameters that were trained for the full 100k steps and are henceforth referred to as
the “best models”. For each of the methods tested, additional samples for the best models trained can
be found in Figures 7, 8, 9, 10, & 11. We also plot the evolution of the gradient noise histograms in
Figures 12, 13, 14, 15, & 16. We emphasize that our goal is not to get the best possible FID score
(e.g. are often able to obtain marginally better FIDs by training for longer), but rather to compare the
systematic differences in performance between the various unclipped and clipped methods. Therefore,
log-space hyperparameter sweeps are appropriate for our experiments and we do not tune further.

E2 StyleGAN2

We train on FFHQ downsampled to 128 x 128 pixels, and use the recommended StyleGAN2
hyperparameter configuration for this resolution: batch size = 32, v = 0.1024, map depth = 2,
and channel multiplier = 16384. For both SGDA and clipped-SGDA, we sweep over a (roughly)
log-scale of learning rates and clipping values; a summary of the hyperparmaters and best FID scores
obtained Table 8 and Table 9 respectively.

Based on the results in Table 9, the best hyperparameters are 1r=0.35 and clip=0.0025 which we then
used to train our “best model”. We trained for longer, and decayed the learning rate twice (by a factor
of x10) when the FID plateaued or worsened. The best schedule we found was to scale the learning
rate by x0.1 after 6000 kimgs (thousands of real images shown to the discriminator), by another
% 0.1 after 3600 kimgs, and then train until the FID begins increasing (for another 8000 kimgs) — for
a total of 17600 kimgs. We did not explore different scale factors or other schedules (such as cosine
annealing). Additional samples for this model can be found in Figure 18(a).

In general, we observe that every SGDA-trained model for the wide range of learning rates we
tested failed to improve the FID, while models trained with clipped-SGDA (with appropriately set
hyperparameters) are generally able to learn some meaningful features and improve the FID. We show
this behaviour in Figure 17 — the FID scores for SGDA-trained models fluctuate around 320 and only
generate noise such as the samples shown in Figure 18(b), which is in contrast to models trained with
clipped-SGDA. Note that the range of the hyperparameter sweep is fairly narrow and favourable for
clipped-SGDA, while being quite wide for SGDA. The purpose for these parameter ranges is not to
directly compare the parameter sweeps (which would unfairly favour clipped-SGDA), but to show
that in general SGDA fails, while clipped-SGDA is capable of learning.
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Table 2: SGDA hyperparameter sweep, and
the best FID score obtained in 35k training

steps.

Table 4: clipped-SGDA (norm) hyperparame-

G-LR D-LR FID
6e-06  6e-06 233.3
2e-05 2e-05 1772
2e-05  4e-05 1834
2e-05  8e-05 187.3
0.0002 0.0002 85.6
0.0002 0.0004 82.8
0.0002 0.0008  NaN
0.002  0.002  NaN
0.02 0.02 NaN
0.2 0.2 NaN

ter sweep, and the best FID score obtained in
35k training steps.

G-LR D-LR G-clip D-clip FID
0.002  0.002 0.1 0.1 257.6
0.002  0.002 1 1 121.6
0.002  0.002 10 10 145.4
0.02  0.02 0.1 0.1 115.4
0.02  0.02 1 1 141.8
0.02  0.02 10 10 27.4
0.2 0.2 0.1 0.1 133.0
0.2 0.2 1 1 26.3
2 2 0.1 0.1 26.1

Table 6: clipped-SGDA (coordinate) hyperpa-
rameter sweep, and the best FID score obtained

in 35k training steps.

G-LR D-LR G-clip D-clip FID
0.0002 0.0002 0.001 0.001 2922
0.0002 0.0002  0.01 0.01 108.6
0.0002  0.0002 0.1 0.1 91.5
0.002  0.002 0.001 0.001 76.5
0.002  0.002 0.01 0.01 43.5
0.002  0.002 0.1 0.1 45.1
0.02 0.02 0.001  0.001 373
0.02 0.02 0.01 0.01 26.7
0.02 0.02 0.1 0.1 34.7
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Table 3: SEG hyperparameter sweep, and the
best FID score obtained in 35k training steps.

G-LR D-LR FID
6e-06  6e-06 236.1
2e-05 2e-05 208.6
2e-05 4e-05 2137
4e-05 4e-05 176.5
4e-05 0.0001 NaN
0.0002 0.0002 NaN
0.0002 0.0004 NaN
0.0002 0.0008 NaN
0.002 0.002 NaN
0.02 0.02 NaN
0.2 0.2 NaN
2 2 NaN

Table 5: clipped-SEG (norm) hyperparameter
sweep, and the best FID score obtained in 35k
training steps (17.5k parameter updates).

G-LR D-LR G-clip D-clip FID
0.002  0.002 0.1 0.1 232.5
0.002  0.002 1 1 150.5
0.002  0.002 10 10 192.7
0.02  0.02 0.1 0.1 161.0
0.02  0.02 1 1 160.3
0.02  0.02 10 10 39.3
0.2 0.2 0.1 0.1 160.0
0.2 0.2 1 1 36.3
2 2 0.1 0.1 37.7

Table 7: clipped-SEG (coordinate) hyperpa-
rameter sweep, and the best FID score ob-
tained in 35k training steps (17.5k parameter

updates).

G-LR D-LR G-clip D-clip FID
0.0002 0.0002 0.001 0.001 298.7
0.0002 0.0002  0.01 0.01 146.5
0.0002  0.0002 0.1 0.1 158.4

0.002  0.002 0.001 0.001 112.8

0.002  0.002 0.01 0.01 52.7

0.002  0.002 0.1 0.1 66.5

0.02 0.02 0.001  0.001 435
0.02 0.02 0.01 0.01 36.2
0.02 0.02 0.1 0.1 75.3




FID

FID

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

0

0

400
mode mode
—— SGDA —— SGDA
—— Clip-SGDA 350 —— Clip-SGDA
Clip-SGDA Clip-SGDA
(coord) 300 (coord)
250
[a)
= 200
150
100
50
0
5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000
step step

Figure 5: FID curves when training WGAN-GP for 35k steps with SGDA, clipped-SGDA (norm),
and clipped-SGDA (coordinate), corresponding to the hyperparameters in Tables 2, 4 & 6 respectively.
The left figure is the individual runs for each choice of hyperparameters, and the right is the mean and
95% confidence interval of these runs. Note that 4 of 10 runs diverged (NaN loss) for SGDA, which
is not reflected in the mean FID for the right figure beyond the first step.
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Figure 6: FID curves when training WGAN-GP for 35k steps with SEG, clipped-SEG (norm), and
clipped-SEG (coordinate), corresponding to the hyperparameters in Tables 3, 5 & 7 respectively.
The left figure is the individual runs for each choice of hyperparameters, and the right is the mean and
95% confidence interval of these runs. Note that 8 of 12 runs diverged (NaN loss) for SEG, which is
not reflected in the mean FID for the right figure beyond the first step.
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Figure 9: Samples generated from the best WGAN-GP model trained with clipped-SEG.
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Figure 11: Samples generated from the best WGAN-GP model trained with clipped-SEG (coordinate
clipping).
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Figure 12: Evolution of gradient noise histograms for the best WGAN-GP model trained with SGDA.
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Figure 13: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SGDA.

o 5

=
5 30 1:5.96
= 0:0.16
pm Ha7 4 162 25 6.016
e 23 Per: 6863 = ’7““ 222 2 3 >20 33;‘ 980.4
Q 2 23 T G
2
s 3, 8 g2 515
(5] 2 e
U N 1.0
/] ||. : )
- 0 L o - 0.0
300 325 350 375 4.00 325 350 375 4.00 4.25 46 48 50 52 54 550 575 6.00 625 650 675
— 1lg(x) = Vfs(x)|l2 1lg(x) = Vi(x)]l2 llg(x) = Vg (x)|l2 llg(x) = Vis(x)]|2
g
= i 4.35 Lo 14:5.78 11: 8.85 1:12.48
= 08 0:0.56 06 0:0.84 0:1.77
o p,,.;; 7 735 08 Progi 10.2 P 9.568 0.3 Pt 13.01
E 506 Per: 2745 N Per: 13404 5 pert 100404 Per: 1.6e+04
Bl zoe 204 2oz
a go4 804 8 a
(2] 02 .
) N || - | ) |
(= || /N oo oo
8 5. 7.5 100 125 15.0 5 10 15 20 25 30 20 40
Hg(x) Vio(x)|l2 llg(x) = Vp(x)||2 llg(x) = Vio(x)[|2 llgx) = Vo (x)|l2

20000 steps 40000 steps 80000 steps 100000 steps
Figure 14: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SEG.
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Figure 15: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SGDA
(cordinate clipping).
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Figure 16: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SEG

(cordinate clipping).

Table 8: StyleGAN2 SGDA hyperparameter
sweep, and the best FID

score obtained in

2600 kimgs.

G-LR D-LR FID
0.003 0.003  319.7
0.0075 0.0075 318.5
0.01 0.01 317.7
0.035 0.035 301.9
0.05 0.05 300.3
0.075 0.075 299.6
0.1 0.1 308.5
0.35 0.35 342.6
0.5 0.5 346.6
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Table 9: StyleGAN?2 clipped-SGDA (coordinate)
hyperparameter sweep, and the best FID score ob-
tained in 2600 kimgs. Bold row denotes the best
run which was trained to convergence.

G-LR D-LR G-clip D-clip FID
0.2 0.2 0.001  0.001 243.5
0.3 0.3 0.001  0.001 169.5

0.35 035 0.0005 0.0005 192.9
035 035 0.001 0.001 148.6
035 035 0.0025 0.0025 104.9
035 035 0.005 0.005 149.1
0.35 0.5 0.01 0.01 170.6
0.4 0.4 0.001  0.001 155.8
0.5 0.5 0.0001 0.0001 289.8
0.5 0.5 0.001  0.001 136.1
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Figure 17: FID curves when training StyleGAN2 for 2600 kimgs (thousands of images seen by the
discriminator) with SGDA and clipped-SGDA (coordinate), corresponding to the hyperparameters
in Tables 8 & 9 respectively. The left figure is the individual runs for each choice of hyperparameters,
and the right is the mean and 95% confidence interval of these runs. Every SGDA-trained model
for the wide range of learning rates we tried failed to improve the FID, while models trained with
clipped-SGDA (with appropriately set hyperparameters) are generally able to learn some meaningful
features and improve the FID.
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(a) Additional samples generated from our best model trained with clipped-SGDA (Ir=0.35, clip=0.0025).

(b) Additional samples generated from several different SGDA trained models, all of which failed to generate
meaningful features. Each row corresponds to a model trained with different learning rates.

Figure 18: More StyleGAN2 samples.
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