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Abstract
Deep Neural Networks (DNNs) are vulnerable
to Adversarial Examples (AEs), hindering their
use in safety-critical systems. In this paper, we
present BEYOND, an innovative AE detection
framework designed for reliable predictions. BE-
YOND identifies AEs by distinguishing the AE’s
abnormal relation with its augmented versions,
i.e. neighbors, from two prospects: representation
similarity and label consistency. An off-the-shelf
Self-Supervised Learning (SSL) model is used to
extract the representation and predict the label
for its highly informative representation capacity
compared to supervised learning models. We
found clean samples maintain a high degree of
representation similarity and label consistency
relative to their neighbors, in contrast to AEs
which exhibit significant discrepancies. We
explain this observation and show that leveraging
this discrepancy BEYOND can accurately detect
AEs. Additionally, we develop a rigorous
justification for the effectiveness of BEYOND.
Furthermore, as a plug-and-play model, BEYOND
can easily cooperate with the Adversarial Trained
Classifier (ATC), achieving state-of-the-art
(SOTA) robustness accuracy. Experimental
results show that BEYOND outperforms baselines
by a large margin, especially under adaptive
attacks. Empowered by the robust relationship
built on SSL, we found that BEYOND out-
performs baselines in terms of both detection
ability and speed. Project page: https://
huggingface.co/spaces/allenhzy/
Be-Your-Own-Neighborhood.
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1. Introduction
Deep Neural Networks (DNNs) have been widely adopted
in many fields due to their superior performance. How-
ever, their susceptibility to Adversarial Examples (AEs),
which can easily fool DNNs by adding some impercep-
tible adversarial perturbations, limits their deployment in
safety-critical scenarios such as autonomous driving (Co-
coccioni et al., 2020) and disease diagnosis (Kaissis et al.,
2020), where incorrect predictions can lead to catastrophic
economic and even loss of life.

Existing defensive strategies can be roughly categorized as
adversarial training, input purification (Mao et al., 2021),
and AE detection (Xu et al., 2017). Adversarial training
is known as the most effective defense technique (Croce
& Hein, 2020), but it brings degradation of accuracy and
additional training costs, which are unacceptable in some ap-
plication scenarios. In contrast, input purification techniques
avoid these costs, but their defensive ability is limited, i.e.
easily defeated by adaptive attacks (Croce & Hein, 2020).

Recently, a large number of AE detection methods have
been proposed (Zuo & Zeng, 2021). Some methods detect
AE by interrogating the abnormal relationship between AE
and other samples. For example, Deep k-Nearest Neigh-
bors (DkNN) (Papernot & McDaniel, 2018) compares the
DNN-extracted features of the input image with those of
its k nearest neighbors layer by layer to identify AEs, lead-
ing to a high inference time. Latent Neighborhood Graph
(LNG) (Abusnaina et al., 2021) represents the relationship
between the input sample and the reference sample as a
graph, whose nodes are embeddings extracted by DNN and
edges are built according to distances between the input
node and reference nodes, and train a graph neural network
to detect AEs.

Though more efficient than DkNN, LNG suffers from some
weaknesses: some AEs are required to build the graph, so
its detection performance relies on the reference AEs and
cannot effectively generalize to unseen attacks. More impor-
tantly, both DkNN and LNG can be bypassed by adaptive
attacks, in which the adversary has full knowledge of the
detection strategy.

We observe that one cause for adversarial vulnerability is the
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Figure 1. Pipeline of the proposed BEYOND framework. First, we augment the input image to obtain a bunch of its neighbors. Then, we
perform the label consistency detection mechanism on the classifier’s prediction of the input image and that of neighbors predicted by
SSL’s classification head. Meanwhile, the representation similarity mechanism employs cosine similarity to measure the similarity among
the input image and its neighbors (left). The input image with poor label consistency or representation similarity is flagged as AE (right).

lack of feature invariance (Jiang et al., 2020), i.e., small per-
turbations may lead to undesired large changes in features
or even predicted labels. On the other hand, Self-Supervised
Learning (SSL) (Chen & He, 2021) models learn data rep-
resentation consistency under different data augmentations,
which intuitively can mitigate the issue of lacking feature
invariance and thus improve adversarial robustness.

To clarify our findings, we visualize the SSL-extracted rep-
resentation of the clean sample, AE, and that of their cor-
responding augmentations in Fig. 1 (right). It is evident
that clean samples exhibit a stronger correlation with their
neighbors in terms of label consistency and representation
similarity. In contrast, AEs are distinctly separated from
their neighbors.

Inspired by the above observations, we propose a
novel AE detection framework, named BE Your Own
NeighborhooD (BEYOND). The contributions of this work
are summarized as follows:

• We propose BEYOND, a novel AE detection framework,
which utilizes the robust representation capacity of SSL
model to identify AE by examining their proximity to
neighbor samples generated by augmentations. To our
best knowledge, BEYOND is the first work that leverages
an SSL model for AE detection without prior knowledge
of adversarial attacks or AEs.

• We develop a rigorous justification for the effectiveness
of BEYOND against adversarial and adaptive attacks.

• BEYOND can defend effectively against adaptive attacks.
To defeat the two detection mechanisms: label consis-
tency and representation similarity simultaneously, attack-
ers have to optimize two objectives with contradictory
directions, resulting in gradients canceling each other out.

• As a plug-and-play method, BEYOND can be applied di-

rectly to any image classifier without compromising accu-
racy or additional retraining costs.

Experimental results show that BEYOND outperforms base-
lines by a large margin, especially under adaptive attacks.
Empowered by the robust relation net built on SSL, we
found BEYOND outperforms baselines in terms of both de-
tection ability and implementation costs.

2. Related Works
The authors in (Szegedy et al., 2013) first discovered that
an adversary could maximize the prediction error of the net-
work by adding some imperceptible perturbation, δ, which
is typically bounded by a perturbation budget, ϵ, under an
Lp-norm, e.g., L∞ and L2. Project Gradient Descent (PGD)
proposed by (Madry et al., 2017) is one of the most pow-
erful iterative attacks. PGD motivates various gradient-
based attacks such as AutoAttack (Croce & Hein, 2020) and
Orthogonal-PGD (Bryniarski et al., 2021), which can break
many SOTA AE defenses (Croce et al., 2022). Another
widely adopted adversarial attack is C&W (Carlini & Wag-
ner, 2017). Compared to the norm-bounded PGD attack,
C&W conducts AEs with a high attack success rate by for-
mulating the adversarial attack problem as an optimization
problem.

Existing defense techniques focus either on robust predic-
tion or detection. The most effective way to achieve ro-
bust prediction is adversarial training (Elfwing et al., 2018;
Zhang et al., 2019), and the use of nearest neighbors is a
common approach to detecting AEs. kNN (Dubey et al.,
2019) and DkNN (Papernot & McDaniel, 2018) discrimi-
nate AEs by checking the label consistency of each layer’s
neighborhoods. (Ma et al., 2018) define Local Intrinsic Di-
mensionality (LID) to characterize the properties of AEs and
use a simple k-NN classifier to detect AEs. LNG (Abusnaina
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et al., 2021) searches for the nearest samples in the reference
data and constructs a graph, further training a specialized
GNN to detect AEs. Although these nearest-neighbor-based
methods achieve competitive detection performance, all rely
on external AEs for training detectors or searching thresh-
olds, resulting in defeat against unseen attacks.

Recent studies have shown that SSL can improve adver-
sarial robustness as SSL models are label-independent and
insensitive to transformations (Hendrycks et al., 2019). An
intuitive idea is to combine adversarial training and SSL
(Ho & Nvasconcelos, 2020; Kim et al., 2020), which re-
main computationally expensive and not robust to adaptive
attacks. (Shi et al., 2021) and (Mao et al., 2021) find that
the auxiliary SSL task can be used to purify AEs, which are
shown to be robust to adaptive attacks. However, (Croce
et al., 2022) shows these adaptive test-time defenses can be
broken by stronger adaptive attacks.

3. BEYOND: Proposed Method
This section provides a detailed explanation of the proposed
BEYOND. We begin by outlining the core components of the
BEYOND design and elaborating on the detection algorithm.
Following this, we present a theoretical justification for
BEYOND’s effectiveness against both grey-box and adaptive
attacks.

3.1. Method Overview

Components. BEYOND consists of three components: a
SSL feature extractor f(·), a classification head g(·), and a
representation head h(·), as shown in Fig. 1 (left). Specifi-
cally, the SSL feature extractor is a Convolutional Neural
Network (CNN), pre-trained by specially designed loss, e.g.
contrastive loss, without supervision1. A Fully-Connected
layer (FC) acts as the classification head g(·), trained by
freezing the f(·). The g(·) performs on the input image’s
neighbors for label consistency detection. The representa-
tion head h(·) consisting of three FCs, encodes the output
of f(·) to an embedding, i.e. representation. We operate the
representation similarity detection between the input image
and its neighbors.

Core idea. Our approach relies on robust relationships be-
tween the input and its neighbors for the detection of AE.
The key idea is that adversaries may easily attack one sam-
ple’s representation to another submanifold, but it is difficult
to totally shift that of all its neighbors. We employ the SSL
model to capture such relationships since it is trained to
project input and its augmentations (neighbors) to the same
submanifold (Chen & He, 2021).

1Here, we employ the SimSiam (Chen & He, 2021) as the SSL
feature-extractor for its decent performance.

Algorithm 1 BEYOND detection algorithm
Input: Input image x, target classifier c(·), SSL feature extractor
f(x), classification head g(x), projector head h(x), label con-
sistency threshold Tlabel, cosine similarity threshold Tcos, repre-
sentation similarity threshold Trep, Augmentation Aug, neighbor
indicator i, total neighbor k
Output: reject / accept

1: Stage1: Collect labels and representations.
2: ℓcls(x) = c(x)
3: for i in k do
4: x̂i = Aug(x)
5: ℓssl(x̂i) = f(g(x̂i));r(x) = f(h(x)); r(x̂i) = f(h(x̂i))
6: Stage2: Label consistency detection mechanism.
7: for i in k do
8: if ℓ(x̂i) == ℓ(x) then Indlabel+ = 1
9: Stage3: Representation similarity detection mechanism.

10: for i in k do
11: if cos(r(x), r(x̂i)) < Tcos then Indrep+ = 1
12: Stage4: AE detection.
13: if Indlabel < Tlabel or Indrep < Trep then reject
14: else accept

Selection of neighbor number. Obviously, the larger the
number of neighbors, the more stable the relationship be-
tween them, but this may increase the overhead. We choose
50 neighbors for BEYOND, since larger neighbors no longer
significantly enhance performance, as shown in Fig. 3.

Workflow. Fig. 1 shows the workflow of the proposed BE-
YOND. When input comes, we first transform it into 50
augmentations, i.e. 50 neighbors. Note that BEYOND is not
based on random data augmentation. Next, the input along
with its 50 neighbors are fed to SSL feature extractor f(·)
and then the classification head g(·) and the representation
head h(·), respectively. For the classification branch, g(·)
outputs the predicted label for 50 neighbors. Later, the label
consistency detection algorithm calculates the consistency
level between the input label (predicted by the classifier)
and 50 neighbor labels. When it comes to the representation
branch, the 51 generated representations are sent to the rep-
resentation similarity detection algorithm for AE detection.
If the consistency of the label of a sample or its representa-
tion similarity is lower than a threshold, BEYOND shall flag
it AE.

3.2. Detection Algorithms

For enhanced AE detection capability, BEYOND adopted
two detection mechanisms: Label Consistency, and Rep-
resentation Similarity. The detection performance of the
two combined can exceed any of the individuals. More im-
portantly, their contradictory optimization directions hinder
adaptive attacks to bypass both of them simultaneously.

Label Consistency. We compare the classifier prediction,
ℓcls(x), on the input image, x, with the predictions of the
SSL classification head, ℓssl(x̂i), i = 1 . . . k, where x̂i de-
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notes the ith neighbor, k is the total number of neighbors.
If ℓcls(x) equals ℓssli(x̂i), the label consistency increases
by one, IndLabel+ = 1. Once the final label consistency is
less than the threshold, IndLabel < Tlabel, the Label Con-
sistency flags it as AE. We summarize the label consistency
detection mechanism in Algorithm. 1.

Representation Similarity. We employ the cosine distance
as a metric to calculate the similarity between the repre-
sentation of input sample r(x) and that of its neighbors,
r(x̂i), i = 1, ..., k. Once the similarity, cos(r(x), r(x̂i)),
is smaller than a certain value, representation similarity
increases by 1, IndRep+ = 1. If the final representation
similarity is less than a threshold, IndReP < Trep, the repre-
sentation similarity flag the sample as an AE. Algorithm. 1
concludes the representation similarity detection mecha-
nism.

Note that, we select the thresholds, i.e. Tlabel, Trep, by
fixing the False Positive Rate (FPR)@5%, which can be
determined only by clean samples, and the implementation
of our method needs no prior knowledge about AE.

4. Theoretical Justification
4.1. Theoretical Analysis

Given a clean sample x, we receive its feature f(x) lying in
the feature space spanned by the SSL model. We assume
that benign perturbation, i.e. random noise, δ̂, with bounded
budgets causes minor variation, ε̂, on the feature space, as
described in Eq. 1:

f(x+ δ̂) = f(x) +∇f(x)δ̂ = f(x) + ε̂, (1)

where ∥ε̂∥2 is constrained to be within a radius r. In contrast,
when it comes to AE, xadv, the adversarial perturbation, δ,
can cause considerable change, due to its maliciousness, that
is, it causes misclassification and transferability (Demontis
et al., 2019; Liu et al., 2021; Papernot et al., 2016), as
formulated in Eq. 2.

f(xadv) = f(x+ δ) = f(x) +∇f(x)δ = f(x) + ε, (2)

where ∥ε∥2 is significantly larger than ∥ε̂∥2 formally,
limε̂→0

ε
ε̂ = ∞. SSL model is trained to generate close

representations between an input x and its augmentation
xaug = Wx (Hendrycks et al., 2019; Jaiswal et al., 2020),
where W ∈ Rw×h, w, h denote the width and height of
x, respectively. Based on this natural property of SSL
(f(Wx) ≈ f(x)), we have:

f(Wx) = f(x) + o(ε̂),∇f(Wx) = ∇f(x) + o(ε̂), (3)

where o(ε̂) is a high-order infinitesimal item of ε̂. Moreover,
according to Eq. 1 and Eq. 3, we can derive that:

f(W (x+ δ̂)) = f(Wx) +∇f(Wx)Wδ̂

= f(x) +∇f(x)Wδ̂ + o(ε̂).
(4)

We let ε̂aug = ∇f(x)Wδ̂ and assume ε̂aug and ε̂ are in-
finitesimal isotropic, i.e. limε̂→0

ε̂aug

ε̂ = c, where c is a
constant. Therefore, we can rewrite Eq. 4 as follows:

f(W (x+ δ̂)) = f(x) + c · ε̂+ o(ε̂). (5)

Our goal is to prove that distance (similarity) between AE
and its neighbors can be significantly larger (smaller) than
that of the clean sample in the space spanned by a SSL
model, which is equivalent to justify Eq. 6:

∥f(xadv)− f(W (xadv))∥22 ≥ ∥ f(x)− f(Wx)︸ ︷︷ ︸
ε̂aug=c·ε̂

∥22. (6)

Expending the left-hand item in Eq. 6, and defining m =
∇f(x)Wδ, we can obtain the following.

∥f(xadv)− f(Wxadv)∥22 = ∥f(x+ δ)− f(W (x+ δ))∥22
= ∥f(x) +∇f(x)δ − f(Wx)−∇f(Wx)Wδ∥22
= ∥ε−∇f(x)Wδ − o(ε)∥22
= ∥ε∥22 + ∥m∥22 − 2|⟨ε,m⟩|+ o(ε)

(7)

As mentioned in the prior literature (Mikołajczyk & Gro-
chowski, 2018; Raff et al., 2019; Zeng et al., 2020), aug-
mentations can effectively weaken adversarial perturbation
δ. Therefore, we assume that the influence caused by Wδ is
weaker than δ but stronger than the benign perturbation, δ̂.
Formally, we have:

∥∇f(x)δ︸ ︷︷ ︸
ε

∥2 > ∥∇f(x)Wδ︸ ︷︷ ︸
m

∥2 > ∥∇f(x)Wδ̂︸ ︷︷ ︸
ε̂aug=c·ε̂

∥2. (8)

According to Cauchy–Schwarz inequality (Bhatia & Davis,
1995), we have the following chain of inequalities obtained
by taking Eq. 8 into Eq. 7:

∥ε∥22 + ∥m∥22 − 2|⟨ε,m⟩|+ o(ε) >

∥ε∥22 + ∥m∥22 − 2∥ε∥ · ∥m∥ = (∥ε∥2 − ∥m∥2)2,
(9)

where ∥m∥ ∈ (∥ε̂aug∥, ∥ε∥) according to Eq. 8.

Finally, from Eq. 9 we observe that by applying proper
data augmentation, the distance between AE and its neigh-
bors in SSL’s feature space ∥f(xadv) − f(Wxadv)∥2 =
∥∥ε∥2 − ∥m∥2∥2 can be significantly larger than that of
clean samples ∥f(x) − f(Wx)∥2 = o(ε̂). The enlarged
distance is upper bounded by ∥ε∥2/∥ε̂aug∥2 times that of
the clean sample, which implies that the imperceptible per-
turbation δ in the image space can be significantly enlarged
in SSL’s feature space by referring to its neighbors. This
exactly supports the design of BEYOND as described in
Sec 3.1. In practice, we adopt various augmentations in-
stead of a single type to generate multiple neighbors for AE
detection, which reduces the randomness, resulting in more
robust estimations.
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Table 1. The AUC of Different Adversarial Detection Approaches on CIFAR-10. The results are the mean and standard deviation of 5
runs. LNG is not open-sourced and the data comes from its report. To align with baselines, classifier: ResNet110, FGSM: ϵ = 0.05, PGD:
ϵ = 0.02. Note that BEYOND needs no AE for training, leading to the same value on both seen and unseen settings. The bolded values
are the best performance, and the underlined italicized values are the second-best performance, the same below.

AUC (%) Unseen: Attacks used in training are preclude from tests. Seen: Attacks used in training are included in tests.
FGSM PGD AutoAttack Square FGSM PGD CW AutoAttack Square

DkNN 61.55±0.023 51.22±0.026 52.12±0.023 59.46±0.022 61.55±0.023 51.22±0.026 61.52±0.028 52.12±0.023 59.46±0.022

kNN 61.83±0.018 54.52±0.022 52.67±0.022 73.39±0.02 61.83±0.018 54.52±0.022 62.23±0.019 52.67±0.022 73.39±0.02

LID 71.08±0.024 61.33±0.025 55.56±0.021 66.18±0.025 73.61±0.02 67.98±0.02 55.68±0.021 56.33±0.024 85.94±0.018

Hu 84.51±0.025 58.59±0.028 53.55±0.029 95.82±0.02 84.51±0.025 58.59±0.028 91.02±0.022 53.55±0.029 95.82±0.02

Mao 95.33±0.012 82.61±0.016 81.95±0.02 85.76±0.019 95.33±0.012 82.61±0.016 83.10±0.018 81.95±0.02 85.76±0.019

LNG 98.51 63.14 58.47 94.71 99.88 91.39 89.74 84.03 98.82
BEYOND 98.89±0.013 99.28±0.02 99.16±0.021 99.27±0.016 98.89±0.013 99.28±0.02 99.20±0.008 99.16±0.021 99.27±0.016

4.2. Robustness to Adaptive Attacks

Adaptive Objective Loss Function. Attackers can design
adaptive attacks to try to bypass BEYOND when the attacker
knows all the parameters of the model and the detection
strategy. For an SSL model with a feature extractor f , a
projector h, and a classification head g, the classification
branch can be formulated as C = f ◦g and the representation
branch as R = f ◦ h. To attack effectively, the adversary
must deceive the target model while guaranteeing the label
consistency and representation similarity of the SSL model.
Since BEYOND uses multiple augmentations, we estimate
their impact on label consistency and representation simi-
larity during the adaptive attack following Expectation over
Transformation (EoT) (Athalye et al., 2018b) as:

Siml =
1

k

k∑
i=1

L
(
C
(
W i(x+ δ)

)
, yt

)
Simr =

1

k

k∑
i=1

S(R(W i(x+ δ)),R(x+ δ))

(10)

where S represents cosine similarity, k represents the num-
ber of generated neighbors, and the linear augmentation
function W (x) = W (x, p); p ∼ P randomly samples
p from the parameter distribution P to generate different
neighbors. Note that we guarantee the generated neighbors
are fixed each time by fixing the random seed. The adap-
tive adversaries perform attacks on the following objective
function:

min
δ

LC(x+ δ, yt) + Siml − α · Simr, (11)

where LC indicates classifier’s loss function, yt is the tar-
geted class, and α refers to a hyperparameter2, which is a
trade-off parameter between label consistency and represen-
tation similarity. Experiments in the Appendix show that
the adaptive attack is most effective when α = 1.

Conflicting Optimization Goals. For an AE xadv = x+ δ
and yadv = C(xadv), the classification and representation
outputs of its augmentation can be studied through their

2Note that we employ cosine metric that is negatively correlated
with the similarity, so that the Simr item is preceded by a minus
sign.

first-order Taylor expansion at x:

yaug = C(Wxadv) = C(Wx) +∇C(Wx)Wδ

raug = R(Wxadv) = R(Wx) +∇R(Wx)Wδ
(12)

Since the SSL model is trained to generate close represen-
tations between a sample and its augmentation (C(Wx) ≈
C(x),R(Wx) ≈ R(x)), the differences of label and repre-
sentation between the original sample and its augmentation
are denoted as:

yaug − y ≈ ∇C(x)Wδ

raug − r ≈ ∇R(x)Wδ
(13)

Therefore, to ensure the label consistency of AE, i.e.,
yaug = yt ̸= y, the optimization goal of the adaptive attack
is making δ larger within the perturbation budget:

δ = argmax
∥δ∥≤ϵ

(∇C(x)Wδ) (14)

Conversely, the optimization goal of representation similar-
ity (raug = r) is making δ smaller:

δ = argmin
∥δ∥≤ϵ

(∇R(x)Wδ) (15)

Since the classification C and representation head R share
the same backbone f , optimizing for these conflicting goals
can lead to gradient cancellation, which underpins the ro-
bustness of BEYOND against adaptive attacks. Fig. 10 vi-
sualizes the gradient sign associated with these objectives,
showing the phenomenon of gradient cancellation due to
conflicting goals.

Moreover, the above analysis demonstrates that small per-
turbations do not guarantee label consistency for AEs, while
large perturbations impair representation similarity, which
is consistent with the empirical results in Sec 5.4.

5. Evaluation
This section details the experimental setting used to evaluate
the performance of BEYOND. We outline the datasets, target
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models, attack methods, evaluation metrics, and baseline
methods employed in our experiments. Furthermore, we
present the results of BEYOND’s performance against both
limited knowledge and perfect knowledge attacks.

5.1. Experimental Setting

Limited knowledge attack & Perfect knowledge attack.
Following (Apruzzese et al., 2023), in the limited knowledge
attack setting, the adversary has complete knowledge of
the classifier, while the detection strategy is confidential.
Whereas in an adaptive attack (perfect knowledge) setting,
the adversary is aware of the detection strategy.

Datasets & Target models. We conduct experiments
on three commonly adopted datasets including CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100, and IMA-
GENET (Krizhevsky et al., 2012) The details of the target
models (classifiers), and the employed SSL models together
with their original classification accuracy on clean samples
are summarized in Table 8 3.

Augmentations. The types of augmentation used by BE-
YOND to generate neighbors are consistent with Sim-Siam,
including horizontal flipping, cropping, color jitter, and
greyscale. However, BEYOND fixes the random seed to
prevent benefiting from randomization. We generate 50
neighbors for each sample, and the ablation study on the
number of neighbors is further discussed in Sec. 5.4.

Attacks. Evaluations of limited knowledge attacks are con-
ducted on FGSM, PGD, C&W, and AutoAttack. AutoAt-
tack includes APGD, APGD-T, FAB-T, and Square (An-
driushchenko et al., 2020), where APGD-T and FAB-T are
targeted attacks and Square is a black-box attack. As for
adaptive attacks, we employed the most adopted EoT and
Orthogonal-PGD, which is a recent adaptive attack designed
for AE detectors.

Metrics. Following previous work (Abusnaina et al., 2021),
we employ ROC curve & AUC and Robust Accuracy (RA)
as evaluation metrics.

• ROC curve & AUC: Receiver Operating Characteristic
(ROC) curves describe the impact of various thresholds
on detection performance, and the Area Under the Curve
(AUC) is an overall indicator of the ROC curve.

• Robust Accuracy (RA): We employ RA as an evaluation
metric, which can reflect the overall system performance
against adaptive attacks by considering both the classifier
and the detector.

Baselines. We choose five detection-based defense methods
3The pre-trained SSL models for CIFAR-10 and CIFAR-100

are from Solo-learn (da Costa et al., 2022), and for IMAGENET are
from SimSiam (Chen & He, 2021).

Table 2. The AUC of Different Adversarial Detection Approaches
on IMAGENET. To align with baselines, classifier: DenseNet121,
FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Due to memory and resource
constraints, baseline methods are not evaluated against AutoAttack
on IMAGENET.

AUC (%) Unseen Seen
FGSM PGD FGSM PGD CW

DkNN 89.16±0.038 78.00±0.041 89.16±0.038 78.00±0.041 68.91±0.044

kNN 51.63±0.04 51.14±0.039 51.63±0.04 51.14±0.039 50.73±0.04

LID 90.32±0.046 52.56±0.038 99.24±0.043 98.09±0.042 58.83±0.041

Hu 72.56±0.037 86.00±0.042 72.56±0.037 86.00±0.042 80.79±0.044

LNG 96.85 89.61 99.53 98.42 86.05
BEYOND 97.59±0.04 96.26±0.045 97.59±0.04 96.26±0.045 95.46±0.047

as baselines: kNN (Dubey et al., 2019), DkNN (Papernot &
McDaniel, 2018), LID (Ma et al., 2018), (Hu et al., 2019)
and LNG, which also consider the relationship between the
input and its neighbors to some extent. (Mao et al., 2021)
trains self-supervised branches to purify the adversarial ex-
amples, which is one of the best adaptive robust methods
available.

5.2. Defending Limited Knowledge Attacks

We compare the AUC of BEYOND with DkNN, kNN, LID,
Hu, Mao, and LNG on CIFAR-10 and IMAGENET. Since
LID and LNG rely on reference AEs, we report detection
performance on both seen and unseen attacks. In the seen
attack setting, LID and LNG are trained with all types of at-
tacks, while using only the C&W attack in the unseen attack
setting. Note that the detection performance for seen and
unseen attacks is consistent for detection methods without
AEs training.

Table 1 shows that BEYOND consistently surpasses SOTA
AE detectors on CIFAR-10, with a pronounced edge in
detecting unseen attacks. This superior performance is at-
tributed to BEYOND’s innovative use of data augmentations
as neighbor samples, which is independent of prior adversar-
ial knowledge. Our analysis in Sec 4 confirms that adversar-
ial perturbations disrupt label consistency and representation
similarity, which enables BEYOND to distinguish AEs from
benign ones with high accuracy.

Table 2 compares the AUC scores of BEYOND with SOTA
AE detectors on IMAGENET. Experimental results show that
BEYOND outperforms the SOTA AE detectors in detecting
unseen attacks. For seen attacks, the detection performance
of BEYOND against FGSM and PGD is marginally lower
than that of LNG, which may arise from the fact that prior
AEs provide more accurate information on complex datasets.
While for stronger attacks, i.e, C&W, BEYOND outperforms
baselines by a significant margin. For more information
about BEYOND’s detection performance (TPR@FPR) on
CIFAR-10, CIFAR-100 and IMAGENET, please refer to the
Appendix.
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Table 3. ATC+BEYOND against AutoAttack on CIFAR-10.

Model RA Acc. on clean samples
ATC ATC+BEYOND ATC ATC+BEYOND

R2021Fixing70 (Rebuffi et al., 2021) 66.20% 84.40% 92.23% 92.83%
G2021Improving70 (Gowal et al., 2021) 64.10% 81.50% 88.74% 90.81%
G2020Uncovering70 (Gowal et al., 2020) 64.70% 83.80% 91.10% 91.79%

R2021Fixing106 (Rebuffi et al., 2021) 62.20% 81.30% 88.50% 90.51%

(a) CIFAR-10 (b) IMAGENET

Figure 2. ROC Curve of BEYOND against adaptive attacks with
different perturbation budgets.

Improved Robustness with ATC. As a plug-and-play ap-
proach, BEYOND integrates well with existing Adversarial
Trained Classifier (ATC)4. Table 3 shows the accuracy on
clean samples and RA against AutoAttack of ATC combined
with BEYOND on CIFAR-10. As can be seen the addition of
BEYOND increases the robustness of ATC by a significant
margin on both clean samples and AEs. Note that the Acc
in Table 3 is defined in the Appendix.

5.3. Defending Adaptive Attacks

ROC Curve across Perturbation Budgets. Fig. 2 sum-
marizes the ROC curve varying with different perturbation
budgets on CIFAR-10 and IMAGENET. Our analysis re-
garding Fig. 2 is as follows: 1) BEYOND can be bypassed
when perturbations are large enough, due to large perturba-
tions circumventing the transformation. This proves that
BEYOND is not gradient masking (Athalye et al., 2018a)
and our adaptive attack design is effective. However, large
perturbations are easier to perceive. 2) When the pertur-
bation is small, the detection performance of BEYOND for
adaptive attacks still maintains a high level, because small
perturbations cannot guarantee both label consistency and
representation similarity (as shown in Fig. 5 (a)). The above
empirical conclusions are consistent with the analysis in
Sec 4.2.

Performance against Orthogonal-PGD Adaptive At-
tacks. Orthogonal-Projected Gradient Descent (Orthogonal-
PGD) (Bryniarski et al., 2021) is a cutting-edge benchmark
for evaluating the resilience of AE detection methods against
adaptive attacks. Orthogonal-PGD has two attack strategies:
orthogonal and selection. Table 4 shows BEYOND outper-
forms the four baselines by a considerable margin in orthog-

4All ATCs are sourced from RobustBench (Croce et al., 2020).

Table 4. Robust Accuracy under Orthogonal-PGD Attack.

Defense L∞=0.01 L∞=8/255
RA@FPR5% RA@FPR50% RA@FPR5% RA@FPR50%

BEYOND 88.38% 98.81% 13.80% 48.20%
BEYOND +ATC 96.30% 99.30% 94.50% 97.80%

Trapdoor (Shan et al., 2020) 0.00% 7.00% 0.00% 8.00%
DLA (Sperl et al., 2020) 62.60% 83.70% 0.00% 28.20%
SID (Tian et al., 2021) 6.90% 23.40% 0.00% 1.60%

SPAM (Liu et al., 2019) 1.20% 46.00% 0.00% 38.00%

Table 5. Comparison of robust accuracy against adaptive attacks
on CIFAR-10.

Classifier Method RA

Standard Mao 18.97%
BEYOND 19.45%

ATC Mao 75.09%
BEYOND 93.20%

onal strategy, especially under small perturbations. For the
worst case, BEYOND can still keep 13.8% (L∞ = 8/255).
Furthermore, incorporating ATC can significantly improve
the detection performance of BEYOND against large per-
turbation to 94.5%. See the Appendix for more selection
strategy results. In addition, the coupling of the classifier
and defense model in Mao’s method is not consistent with
the Orthogonal-PGD setting. We compare the robust accu-
racy of BEYOND and Mao for general adaptive attacks in
Table 5, which shows that BEYOND outperforms Mao et al.
against adaptive attacks with both standard classifier and
ATC.

5.4. Ablation Study

The Number of Neighbors K. We examined the impact
of varying the number of neighbors (K) on the detection
capabilities of BEYOND against both standard and adaptive
attacks, testing K values of 5, 10, 25, 50, and 80. Fig. 3 (a)
illustrates how neighbor count affects performance in de-
tecting PGD attacks across a range of perturbation budgets.
We observed that detection performance generally improves
with a larger neighbor set; however, gains plateau beyond K
= 50. In the context of adaptive attacks, Fig. 3 (b) evaluates
performance for various K values with a fixed perturba-
tion (ϵ = 8/255). Contrary to intuition, adaptive attacks
are less effective with a smaller K. This is because only
four linear transformations (horizontal flip, crop, color jitter,
and grayscale) are deployed in BEYOND, where varying
neighbors simply involve different transformation param-
eters. With a smaller K, the diversity among neighbors
is pronounced, complicating the optimization process for
adaptive attacks (multi-task learning increases model robust-
ness (Mao et al., 2020)). Conversely, a larger K potentially
results in similar neighbors that provide a wealth of informa-
tion for adaptive attacks to exploit for each transformation,
as detailed in the Appendix.
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(a) Standard AEs (b) Adaptive AEs

Figure 3. Ablation Study of the Number of Neighbors.

(a) CIFAR-10 (b) IMAGENET

Figure 4. Ablation studies of representation similarity & label con-
sistency against adaptive attacks.

Contribution of Representation Similarity & Label Con-
sistency against Adaptive Attacks. The analysis in Sec. 4.2
shows label consistency is more beneficial for detecting
small perturbations, while representational similarity is fa-
vorable for large perturbations, which is consistent with
results in Fig. 4. When the perturbation is small, the detec-
tion performance based on label consistency (blue line) is
better than representation similarity (green line). As per-
turbation increases, representation similarity is difficult to
maintain, leading to higher performance of representation
similarity-based detectors. In summary, label consistency
and representation similarity have different sensitivities to
perturbation. Consequently, a combined approach leverages
the strengths of both, culminating in superior performance
(red line).

Trade-Off Between Representation Similarity and Label
Consistency. The previous analysis and empirical results
have proved that there is a trade-off between label consis-
tency and representation similarity. Fig. 5 (a) shows the
variation of label consistency and representation similar-
ity with perturbation budget on CIFAR-100. It can be ob-
served that label consistency and representation similarity
respond differently to the perturbation budget, small per-
turbations are beneficial for representation similarity, and
large perturbations favor label consistency, which matches
the conclusion in Sec. 4.2. Furthermore, both objectives
can be optimized simultaneously when the perturbation is
large enough, which is why the adaptive attack in Fig. 2 can
completely break BEYOND when the perturbation budget is

(a) Representation Similarity
& Label Consistency

(b) Single-objective Adaptive
Attacks (ϵ = 16/255)

Figure 5. Trade-off between Label Consistency and Representation
Similarity.

larger than 16/255. Fig. 5 (b) shows that when there is only
one detection strategy, either label consistency or represen-
tation similarity, the adaptive attack can break through the
defense. However, when attacking both strategies, the attack
performance decreases. Hence, the robustness of BEYOND
to adaptive attacks comes from the conflicts arising from
optimizing these two strategies. See the Appendix for more
visualization results of optimization conflicts.

Detection Performance of BEYOND Using Different SSL
Models. BEYOND can flexibly cooperate with various SSL
models without compromising AE detection performance,
as long as the SSL model is trained to generate similar repre-
sentations for the input and its augmentations. To illustrate
this flexibility, we integrate BEYOND with five different SSL
models: SimSiam (Chen & He, 2021) (employed in the main
experiment), MoCo v3 (Chen et al., 2021), SwAV (Caron
et al., 2020b), and DeepCluster v2 (Caron et al., 2020a).
Table 6 presents the AE detection performance of BEYOND
with these SSL models. Note that all pretrained SSL models
are sourced from Solo-learn (da Costa et al., 2022). It can be
seen that BEYOND demonstrates strong robustness against
most adversarial attacks, consistently achieving high AUC
scores (generally above 90%) across different datasets and
SSL backbones. On CIFAR-10 and CIFAR-100, MoCo v3
generally yields the best results, followed closely by Sim-
Siam and BYOL. However, since SimSiam’s pretrained
weights are more accessible than MoCo v3, we choose Sim-
Siam as the backbone in this paper. In addition, MoCo v3 is
a contrastive learning model that uses ViT as the backbone,
while other SSL models use CNN as the backbone. the
good performance of BEYOND combined with MoCo v3
shows that the performance of BEYOND does not receive
the influence of the model architecture. Moreover, SwAV
and DeepCluster v2 perform slightly lower than the other
SSL models on CIFAR-10 and CIFAR-100. This is due to
the fact that SwAv and DeepCluster v2 are clustering-based
contrastive learning methods, which do not directly learn the
representation similarity between input samples and their
augmentations as other SSL models do, but instead learn
the similarity to the clustering center, which is different
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Table 6. AUC scores for BEYOND with various SSL models against adversarial attacks. SSL models trained on CIFAR-10 and CIFAR-100
are implemented with ResNet18, trained on IMAGENET are implemented with ResNet50.

Dataset Model FGSM PGD C&W APGD-CE APGD-T FAB-T Square

CIFAR-10

SimSiam 97.17% 96.48% 98.22% 96.60% 99.45% 99.14% 98.60%
BYOL 97.22% 94.60% 98.38% 94.97% 99.54% 99.61% 99.02%

MoCo v3 98.54% 98.26% 99.25% 98.38% 99.82% 99.69% 99.31%
SwAV 96.29% 94.81% 97.62% 95.40% 99.14% 98.73% 98.16%

DeepCluster v2 92.68% 89.28% 95.32% 90.72% 98.04% 97.56% 96.55%

CIFAR-100

SimSiam 97.82% 97.29% 97.93% 97.40% 98.33% 97.99% 97.80%
BYOL 98.04% 97.00% 98.01% 96.75% 98.45% 98.33% 98.13%

MoCo v3 98.34% 98.10% 98.50% 98.14% 98.81% 98.58% 98.44%
SwAV 97.58% 96.91% 97.85% 97.01% 98.44% 97.94% 97.70%

IMAGENET
SimSiam 92.01% 96.88% 94.56% 97.15% 97.45% 95.47% 94.58%
BYOL 92.01% 96.57% 94.58% 96.67% 97.00% 95.65% 94.25%

from the workflow of BEYOND. In summary, as a plug-and-
play method, BEYOND can be seamlessly integrating with
various SSL models.

5.5. Implementation Costs

BEYOND incorporates a supplementary SSL model for AE
detection, which naturally incurs additional computational,
storage and time overheads. Table 7 presents the compari-
son for SOTA adversarial training defense and AE detection
method, i.e. LNG. The detection models have a leaner
model compacity compared to ATCs, which can be reflected
by the Params and FLOPs (Xie et al., 2020) being much
lower than those of ATC. For BEYOND, the projection head
is a three-layer FC, leading to higher parameters and FLOPs
than LNG. However, BEYOND only compares the relation-
ship between neighbors without calculating the distance
with the reference set, resulting in a faster inference speed
than that of LNG. The method of Mao et al. requires itera-
tion, making its inference time unaffordable (Croce et al.,
2022). We show the FLOPs × Params × Time as the Over-
all metric in Table 7’s last column for overall comparison.
If cost is a real concern in some scenarios, we can further re-
duce the cost with some strategy, e.g., reducing the neighbor
number, without compromising performance significantly,
as shown in Fig. 3 (a).

6. Conclusion
In this paper, we take the first step to detect AEs by identi-
fying abnormal relations between AEs and their neighbors
without prior knowledge of AEs. Samples that have low
label consistency and representation similarity with their
neighbors are detected as AE. Experiments with limited and
perfect knowledge attacks show that BEYOND outperforms

Table 7. Comparison of Implementation Costs.

Model FLOPs(G) Params(M) Time(s) Overall
AT

C

(Rebuffi et al., 2021) 38.8 254.44 1.21 11945

(Gowal et al., 2021) 38.8 254.44 1.21 11945

(Gowal et al., 2020) 38.8 254.44 1.21 11945

(Rebuffi et al., 2021) 60.57 396.23 1.24 29760

D
et

. Mao 5.25 38.12 38.46 7697

LNG 0.286 8.33 9.22 20.521

BEYOND 0.715 20.62 1.12 16.512

the SOTA AE detectors in both detection ability and effi-
ciency. Moreover, as a plug-and-play model, BEYOND can
be well integrated with ATC to further improve robustness.
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A. Datasets & Models
We conduct experiments on three commonly adopted datasets including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100,
and a more IMAGENET (Krizhevsky et al., 2012). The details of the target models (classifiers), and the employed SSL
models together with their original classification accuracy on clean samples are summarized in Table 8 5.

Table 8. Information of datasets and models.

Dataset Classifier
SSL

Acc. on clean samples↑
Classifier SSL

CIFAR-10 ResNet18 91.53% 90.74%
CIFAR-100 ResNet18 75.34% 66.04%
IMAGENET ResNet50 80.86% 68.30%

B. Detection Performance
B.1. TPR@FPR against Limited Knowledge Attacks.

Table 9 reports TPR@FPR5% to show the AE detection performance of BEYOND. It can be observed that BEYOND
maintains a high detection performance on various attacks and datasets, which is attributed to our detection mechanism.
Combining label consistency and representation similarity, BEYOND identifies AEs without reference AE set.

Table 9. TPR@FPR 5% of BEYOND against Limited Knowledge Attacks. All attacks are performed under L∞ = 8/255.

Dataset CIFAR-10 CIFAR-100 IMAGENET
Attack TPR@FPR5% ↑
FGSM 86.16% 89.80% 61.05%
PGD 82.80% 85.90% 89.80%
C&W 91.48% 91.96% 76.69%

AutoAttack 93.42% 90.90% 84.25%

Table 10 reports TPR@FPR 3% to further demonstrate the AE detection capability of BEYOND. Because the detection
mechanism does not rely on additional prior knowledge of AE or model retraining, it has been confirmed that BEYOND can
generalize well to defend various attacks. Furthermore, on the complex dataset, i.e., IMAGENET, BEYOND still maintains a
high detection performance.

Table 10. TPR@FPR 3% of BEYOND against Limited Knowledge Attacks. All attacks are performed under L∞ = 8/255.

Dataset CIFAR-10 CIFAR-100 IMAGENET

Attack TPR@FPR3% ↑
FGSM 76.37% 81.93% 51.74%
PGD 69.50% 76.00% 82.20%
C&W 85.29% 84.32% 68.50%

AutoAttack 88.33% 83.91% 72.06%

B.2. Accuracy with ATC

Following (Yang et al., 2022), Accuracy in Table 3 indicates the detector’s accuracy on clean samples by combining the
detector with the classifier, and calculated as follows:

5The pre-trained SSL models for CIFAR-10 and CIFAR-100 are from Solo-learn (da Costa et al., 2022), and for IMAGENET are from
SimSiam (Chen & He, 2021).
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Acc =
#Classifier correct&Detector pass

#All clean samples
+

#Classifier wrong&Detector reject
#All clean samples

B.3. Performance against Orthogonal-PGD Selection Strategy Adaptive Attacks

Orthogonal-Projected Gradient Descent (Orthogonal-PGD) is a recently proposed AE detection benchmark. In the selection
strategy, Orthogonal-PGD updates the input by selectively exploiting perturbations produced by either the classifier or the
detector to avoid perturbation waste. Table 11 shows BEYOND outperforms the four baselines by a considerable margin in
selection strategy, especially under small perturbations.

For the worst case, BEYOND can still maintain 8.04% (L∞ = 8/255), while the baselines are only 0.4%. Furthermore,
incorporating ATC can significantly improve the detection performance of BEYOND against large perturbation to 91.5%.

Table 11. Robust Accuracy under Orthogonal-PGD selection strategy on CIFAR-10. The bolded values are the best performance and the
underlined italicized values are the second-best performance.

Defense L∞=0.01 L∞=8/255
RA

@FPR5%
RA

@FPR50%
RA

@FPR5%
RA

@FPR50%
BEYOND 79.63% 97.47% 8.04% 40.42%

BEYOND +ATC 95.80% 99.40% 91.50% 95.90%
Trapdoor 0.20% 49.50% 0.40% 37.20%
DLA’20 17.00% 55.90% 0.00% 13.50%
SID’21 8.90% 50.90% 0.00% 11.40%

B.4. Detection Performance on CIFAR-100

Fig. 6 shows the detection performance of BEYOND against adaptive attacks on CIFAR-100 and the contribution of label
consistency and representation similarity. It can be seen BEYOND is effective for detecting adaptive attacks on CIFAR-10.
Meanwhile, label consistency is more suitable for detecting small perturbations, while representation similarity is favourable
for large perturbations, which is consistent with the conclusion on CIFAR-10 and IMAGENET.

(a) (b)

Figure 6. (a) Detection performance against adaptive attacks on CIFAR-100. (b) Contribution of label consistency and representation
similarity on CIFAR-100

B.5. Detection Performance for Various Types of Attacks

To evaluate the detection performance of BEYOND for different types of attacks, we test the most representative method that
supports multiple norm attacks, AutoAttack. AutoAttack supports L∞, L2 and L1 norm attacks. In the main paper, we only

14



BEYOND: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning

Table 12. AUC for Adaptive Attack under different α.

α 0 1 10 20 50 100
CIFAR-10 82.03% 63.91% 64.57% 76.15% 88.56% 92.53%

CIFAR-100 90.58% 88.49% 91.61% 93.10% 94.05% 94.37%

Table 13. Detection performance of BEYOND against AutoAttack with different norms.

AUC(%) L∞ L2 L1

CIFAR-10 99.18 99.13 99.07
IMAGENET 97.14 97.26 97.18

report the detection performance of BEYOND against AutoAttack L∞. Table 13 shows the performance of BEYOND against
AutoAttack with different norms. Where the perturbation budgets (ϵ) on CIFAR-10 are 8/255 (L∞), 0.5 (L2), and 8 (L1);
and on IMAGENET are 8/255 (L∞), 3 (L2), and 64 (L1). The results show BEYOND is still effective against attacks based
on different norms.

B.6. Hyperparameter Alpha in Adaptive Attacks

The design of the adaptive attack in Eq. 11 includes a hyperparameter α, which is a trade-off parameter between label
consistency and representation similarity. Table 12 shows the AUC of BEYOND under different α. As shown, when α = 0,
i.e. the attacker only attacks the label consistency detection mechanism, the AUC score is still high, which proves that our
approach is not based on the weak transferability of AEs. Moreover, adaptive attacks are strongest when α = 1, which is
used for all tests.

Table 14. Performance Comparison Using Cutmix and Mixup.

AUC (%) α FGSM PGD CW AutoAttack Avg

Cutmix
1.0 93.69 94.96 96.10 94.69 94.86
0.7 93.87 95.28 96.33 94.70 95.05
0.5 94.15 94.69 96.75 95.33 95.23

Mixup
1.0 89.03 89.07 89.32 89.20 89.16
0.7 89.43 89.36 89.87 89.60 89.57
0.5 90.15 89.35 90.01 90.03 89.89

BEYOND - 98.89 99.28 99.20 99.16 99.13

B.7. Detection Performance Using Cutmix & Mixup

BEYOND employs a set of augmentations—horizontal flipping, cropping, color jitter, and grayscale—to generate neighbors.
These augmentations are aligned with those used for training the SSL model. Thanks to the feature invariance of SSL
models to input transformations, BEYOND can efficiently detect adversarial samples without compromising the accuracy of
benign samples. Therefore, we think that augmentation methods with minimal effect on image representation are more
advantageous for detection, as aggressive augmentations could significantly alter the features of benign samples.

We tested the detection performance for BEYOND using Cutmix (Yun et al., 2019) and Mixup (Zhang et al., 2017) as
augmentation methods on CIFAR-10 in Table 14. It should be noted that we employ Cutmix and Mixup from the torchvision
library, which includes an α hyperparameter to control the mix ratio. Observations are as follows: a) Cutmix and Mixup
are not as effective as BEYOND because they merge two images, which has a more substantial impact on the feature
representation compared to standard data augmentation methods. b) Cutmix has an edge over Mixup since Cutmix only
integrates a portion of one image into another, whereas Mixup combines the entirety of both images. Hence, Cutmix has a
less pronounced effect on the image features, leading to its superior performance. c) A reduction in the α value diminishes
the mixing’s influence on the image features, which in turn enhances the performance of both Cutmix and Mixup. This
improvement aligns with our expectations.
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Figure 7. Display of generated neighbors. The original image is on the left and the generated 50 neighbors are on the right.

C. Display of Generated Neighbors
Fig. 7 shows the 50 neighbors augmented by the original image. Augmentations are made up of four linear variations
including color jitter, crop, horizontal flip and greyscale. Neighbors are generated by random combinations of transformation
parameters, whose consistency is ensured by fixing random seeds. It can be noticed that when the number of generated
neighbors is small, there is a large difference between neighbors, while when the number of generated neighbors is large,
there are similar neighbors. This may be the reason why the adaptive attack is a little more difficult to break BEYOND when
k is small in Fig. 3.

Figure 8. Conflicting rate for optimizing label consistency and
representation similarity with different attack step sizes.

Table 15. The ratio of different data augmentations meeting the
threshold. Compose is a combination of augmentations used to
train SSL models, including crop, resize, horizontal flip, and color
jitter.

Aug Ratio Aug Ratio
Rotation 99.9% Vertical 25.9%

Crop 40.7% Color Jitter 99.0%
Resize 74.0% Gray 40.6%

Horizontal 25.9% Compose 99.7%

D. Select Effective Augmentations
To better improve the effectiveness of BEYOND, we analyze the conditions under which the augmentation can effectively
weaken adversarial perturbation. Effective data augmentation makes the augmented label yaug tend to the ground-truth label
ytrue and away from the adversarial label yadv:

||yaug − ytrue||2 ≤ ||yaug − yadv||2 ≤ ||yadv − ytrue||2. (16)

Since ytrue is the one-hot encoding, the range of ||yadv − ytrue||2 is (
√
2/2,

√
2). The distance is

√
2 when the item

corresponding to yadv is 1 in the logits of yadv , and
√
2/2 when the item corresponding to yadv and ytrue both occupy 1/2.

Given a SSL-based classifier, C, we have:

C(W (x+ δ)) = C(Wx) +∇C(Wx)Wδ

= ytrue +∇C(Wx)Wδ = yaug.
(17)
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(a) Crop (b) Horizontal (c) Vertical (d) Gray

(e) Resize (f) Rotation (g) Color Jitter (h) Compose

Figure 9. Visualization of clean sample and AE with different augmented neighborhoods.

Therefore, the distance between yaug and ytrue is:

||yaug − ytrue||2 = ||∇C(Wx)Wδ||2
≤ ||∇C(Wx)W ||2||δ||2 ≤ ||∇C(Wx)W ||2ϵ

(18)

where ||δ||2 is bounded by ϵ. Eq. 16 always holds, then:

||∇C(Wx)W ||2ϵ ≤
√
2

2
⇒ ||∇C(Wx)W ||2 ≤

√
2

2ϵ
. (19)

In summary, augmentation can mitigate adversarial perturbation when it satisfies Eq. 19.

To further validate our analysis, we generate 1000 adversarial examples by PGD with ϵ = 8/255 on CIFAR-10. Table 15
shows the ratios for different data augmentations meeting the threshold

√
2

2ϵ . A higher ratio means the augmentation is more
effective. It can be observed that Rotation, Color Jitter and Compose are the three most effective augmentations according
to our analysis. To further validate our analysis, we perform t-sne (Van der Maaten & Hinton, 2008) visualizations of the
SSL representations of clean and AEs processed by different augmentation methods. We utilize a self-supervised feature
extractor and projection head to obtain SSL representations and use augmentation methods to generate 20 neighbors for both
clean samples and AEs. As seen in Fig. 9, the effective augmentation methods with the high ratio in Table 15 can effectively
increase the distance between AEs and their neighbors. For example, Rotation has the highest ratio in Table 15, and the
distance between AE and its neighbors in Fig. 9 is larger than that of clean samples. While Horizontal and Vertical have the
lowest ratio, and the distance between AE and its neighbors is still close in Fig. 9

Table 16. Detection performance comparison of augmentations.

Augmentation FGSM PGD CW AutoAttack Average
ColorJitter&Resize&Rotation 97.11% 96.55% 98.15% 96.56% 97.09%

Gray&Horizaotal&Crop&Vertical 92.44% 91.36% 94.70% 91.87% 92.59%

Moreover, we test the detection performance of high-ratio augmentations and low-ratio augmentations in Table 16. It can be
seen that the average detection performance of the effective augmentations obtained by our analysis is 5% higher than that
of the other augmentations.
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E. Conflict Rate of Label Consistency and Representation Similarity
The conflict between label consistency and representation similarity stems from their different optimization goal. Fig. 8
shows the gradient conflict rate for adaptive attacks with different step sizes on different perturbation budgets. We can find
that the gradient conflict rate decreases for large perturbations and converges as the perturbation further increases, with the
convergence point being consistent with the turning point in Fig. 5 of the main paper.

Label Gradient Representation Gradient

+ =

Figure 10. Gradient conflict between label consistency and representation similarity. The colored pixels represent the gradient direction,
while the blank means gradient conflict.

Sec. 4.2 demonstrates the conflict between label consistency and representation similarity stems from their different
optimization goals. Fig. 10 visualizes the gradients produced by optimizing label consistency and representation similarity
on the input. It’s shown that attacks on label consistency or representation similarity produce gradients that modify the input
in a certain direction, but optimizing for both leads to conflicting gradients. The experiments in Fig. 8 show that the gradient
conflict rate decreases when the perturbation becomes larger, which is consistent with the results in Fig. 5 (a).
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