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SVAD: From Single Image to 3D Avatar via Synthetic Data Generation with
Video Diffusion and Data Augmentation

Supplementary Material

Supplementary Material001

This supplementary material provides additional details to002
complement the main paper. In Sec. 1, we elaborate on the003
implementation details of our pipeline, covering the pre-004
defined pose sequences utilized in our pipeline, the image005
restoration module for enhancing facial fidelity and overall006
texture quality, and the fitting and training methodology for007
the Gaussian avatar module. Sec. 2 presents results on the008
data augmentation methods, highlighting their impact on009
improving the quality of training data for the 3DGS-based010
avatar model, with a focus on identity preservation and im-011
age restoration. In Sec. 3, we demonstrate the robustness012
of our method in handling challenging poses, including ex-013
treme body movements, occlusions, and non-frontal facial014
orientations. Sec. 4 discusses failure cases, identifying key015
limitations, while Sec. 5 outlines potential directions for fu-016
ture work aimed at addressing these challenges and further017
enhancing the robustness and realism of our approach.018

1. Implementation Details019

1.1. Predefined Pose Sequences020

To initialize frame generation for our pipeline, we rely on a021
predefined set of poses extracted from the People Snapshot022
dataset. Specifically, we utilize the male-4-casual sequence,023
which depicts a subject performing a full-body rotation with024
arms extended horizontally. Using DWPose [15], we extract025
2D keypoints K ∈ RJ×2, where J = 17 is the number of026
keypoints, from this sequence to create a standardized pose027
template. This sequence serves as the conditioning input028
for all video diffusion model generations, resulting in 187029
frames per sequence, each with a resolution of 1024×1024030
pixels.031

Following the initial frame generation by the video dif-032
fusion model, we refine the facial regions to enhance iden-033
tity consistency and detail preservation. To achieve this,034
we leverage GAGAvatar [3] to generate a 3D head avatar035
from the single input image. The generated 3D head, repre-036
sented as a set of 3D Gaussians with parameters G = {V ∈037
RN×3, C ∈ RN×3, S ∈ RN}, where N is the number of038
Gaussians, is fused into the raw video diffusion output to039
replace the initial low-fidelity facial regions.040

To ensure accurate alignment between the generated041
3D head and the original diffusion output, we extract042
FLAME [8] parameters θ ∈ R|θ|, which encode expres-043
sion and pose, and apply them to guide the rendering of044
the 3D head. The FLAME parameters include facial shape045

β ∈ R10, pose ψ ∈ R6, and expression ϕ ∈ R10. 046
For all experiments, the body pose sequence and 047

FLAME parameters obtained above remain fixed, provid- 048
ing a consistent reference for pose-guided video generation 049
and refinement. 050

1.2. Image Restoration Submodule 051

To provide more details on the image restoration submod- 052
ule, we leverage the work by Chen et al. [2] and apply 053
super-resolution to enhance the quality of our training data. 054
Specifically, we use a hybrid restoration pipeline that in- 055
tegrates Real-ESRGAN [13] as the background upsampler 056
and a diffusion-based face restoration method to ensure both 057
global fidelity and local detail preservation. 058

The restoration process begins with face detection and 059
alignment using RetinaFace [4]. The detected facial regions 060
are then passed through a diffusion model, guided by con- 061
ditional embeddings generated from the low-resolution in- 062
put. The model iteratively refines the high-resolution details 063
while maintaining consistency with the original identity. 064

For background regions, Real-ESRGAN [13] is applied 065
to upscale non-facial areas without introducing artifacts. 066
The restored facial regions are seamlessly integrated into 067
the upscaled background using a face restoration helper 068
module [2]. This ensures that the enhanced facial details 069
blend naturally with the surrounding context. 070

1.3. Gaussian Avatar Submodule 071

To transform our synthetic data into a high-quality, animat- 072
able 3D avatar, we employ a two-stage process: first, we fit 073
an SMPL-X model to our synthetic data sequences, then we 074
train a 3D Gaussian Splatting representation using the fitted 075
parameters as guidance. 076

1.3.1 SMPL-X Fitting Process 077

Prior to training the Gaussian avatar, we employ a compre- 078
hensive fitting process to obtain accurate SMPL-X param- 079
eters from our synthetic data. This multi-stage process en- 080
sures that the avatar’s geometry accurately reflects the sub- 081
ject’s physical characteristics and articulation. 082
Keypoint Extraction. The fitting pipeline begins with pose 083
and shape estimation. We utilize DWPose [15] to extract 2D 084
whole-body keypoints from each frame of our synthetic se- 085
quence. These keypoints provide critical information about 086
body articulation across the sequence. The keypoints are 087
represented as K ∈ RJ×3, where J = 133 includes 17 088
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body, 68 face, and 42 hand keypoints, with each keypoint089
having (x, y, confidence) values. We then employ MM-090
POSE [12] with the RTMPose-L model for refinement, us-091
ing a confidence threshold of 0.5 to filter reliable detections.092
Initial Parameter Estimation. For facial geometry, we093
leverage DECA [5] to estimate initial FLAME parame-094
ters. The optimization uses perspective projection with fo-095
cal length of 5000 pixels and 1024×1024 resolution tex-096
tures. The FLAME parameters include shape coefficients097
β ∈ R10, expression parameters ϕ ∈ R10, and pose param-098
eters for jaw and eyes.099

For body pose and shape, we incorporate100
Hand4Whole [9] with the configuration: focal length101
of 2000, principal point at image center, and input shape102
of 256×256. This process yields initial estimates for103
SMPL-X parameters: global orientation θroot ∈ R3, body104
pose θbody ∈ R21×3, jaw pose θjaw ∈ R3, hand poses105
θhands ∈ R30×3, and shape parameters βshape ∈ R10.106
Parameter Optimization. These initial parameters are re-107
fined through an optimization process with multiple objec-108
tives. The primary loss function combines reprojection er-109
ror, parameter regularization, and temporal smoothness:110

Lfit = λkptLkpt + λregLreg + λtempLtemp (1)111

The keypoint reprojection loss Lkpt measures the dis-112
tance between projected model joints and detected 2D key-113
points, weighted by detection confidence:114

Lkpt =

J∑
i=1

ci∥Π(Ji(θ, β))−Ki∥22 (2)115

where Π is the perspective projection function, Ji(θ, β) is116
the 3D position of joint i, Ki is the corresponding 2D key-117
point, and ci is its confidence score.118

The regularization term Lreg penalizes deviation from119
prior pose and shape distributions:120

Lreg = ∥β∥22 +
∑
j

∥θj − θmean∥22 (3)121

The temporal consistency term Ltemp enforces smooth122
transitions between frames:123

Ltemp =

T−1∑
t=1

∥θt − θt+1∥22 + ∥βt − βt+1∥22 (4)124

The optimization uses the Adam optimizer with learning125
rate 1 × 10−3 and loss weights λkpt = 1.0, λreg = 0.001,126
and λtemp = 0.1. The optimization proceeds in two stages:127
first optimizing global position and orientation with 100 it-128
erations, then refining all parameters with 200 iterations.129
Parameter Smoothing. To ensure temporal consistency130
and reduce jitter, we apply Savitzky-Golay [6] filtering with131

a window length of 9 frames and polynomial order of 2. For 132
rotation parameters, we employ a quaternion-based smooth- 133
ing procedure. The quaternion smoothing incorporates a 134
continuity enforcement algorithm to handle sign flips: 135

q′t+1 =

{
−qt+1, if qt · qt+1 < 0

qt+1, otherwise
(5) 136

Segmentation and Depth Estimation. We generate fore- 137
ground masks using the Segment Anything Model [7] with 138
the ViT-H backbone. The model uses keypoint-based 139
prompting with valid keypoints as point coordinates, and 140
a bounding box computed from these keypoints with an ex- 141
tension ratio of 1.2. 142

We also extract depth information using Depth Anything 143
V2 [14] with the ViT-L backbone. The depth maps are nor- 144
malized and aligned with the SMPL-X mesh using the fol- 145
lowing procedure: 146

scale =
σ(depthpred,fg)

σ(depthsmplx,fg)

depth′
pred =

depthpred

scale
depth′

pred = depth′pred − µ(depth′
pred,fg) + µ(depthsmplx,fg)

(6) 147
where σ and µ represent standard deviation and mean of 148
depth values, and the superscript fg indicates foreground re- 149
gions. 150

These processes provide a comprehensive set of param- 151
eters and auxiliary data that serve as the foundation for the 152
subsequent Gaussian avatar training. 153

1.3.2 3DGS Avatar Training Process 154

With the fitted SMPL-X parameters and processed synthetic 155
data, we proceed to train the 3DGS-based avatar [10]. The 156
training begins by initializing the triplane representation 157
T ∈ R32×128×128, encoding 3D features for both body 158
and facial regions. Gaussian parameters, including posi- 159
tions V ∈ RN×3, colors C ∈ RN×3, and opacity O ∈ RN , 160
are optimized through backpropagation with the following 161
multi-objective loss function: 162

L = λRGBLRGB + λSSIMLSSIM + λLPIPSLLPIPS, (7) 163

where λRGB = 0.8, λSSIM = 0.2, and λLPIPS = 0.2 are the 164
weights for the RGB reconstruction, structural similarity, 165
and perceptual loss, respectively. The model is trained for 166
5 epochs with a batch size of 1, as required by the Gaussian 167
splatting renderer. 168

The optimization process proceeds in two stages. During 169
the warmup stage, Gaussian positions V are updated using 170
an adaptive learning rate: 171

αposition(t) = αinit ×
(
1− t

Tmax

)
+ αfinal ×

t

Tmax
, (8) 172
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Input Image Video Diffusion Output Augmented Data Augmented Face

Figure 1. Data Augmentation Results. This figure highlights
the effectiveness of our data augmentation pipeline, showcasing
enhanced facial regions and overall image quality improvements
achieved through the identity preservation and image restoration
sub-modules

where αinit = 1.6 × 10−4, αfinal = 1.6 × 10−6, and173
Tmax = 30, 000 iterations. Additional parameters, includ-174
ing opacity O, scale S, and feature parameters, are opti-175
mized with learning rates αopacity = 0.05, αscale = 0.005,176
and αfeature = 0.0025, respectively.177

Densification of the Gaussian distribution occurs be-178
tween iteration 500 and 15,000, at intervals of 100 iter-179
ations. Gaussians with opacity values below a threshold180
(O < 0.005) are pruned, and dense regions are refined us-181
ing gradient-based adjustments. The pruning mechanism182
ensures efficient representation while preserving fidelity:183

Vnew = Vold − η
∂L

∂V
, (9)184

where η is the learning rate and ∂L
∂V represents the gradient185

of the loss with respect to Gaussian positions.186

A hierarchical learning approach progressively increases187
the spherical harmonic degree dsh from 0 to 3 over the188
course of training. The training loop dynamically adjusts189
Gaussian parameters, leveraging an Adam optimizer with190
a learning rate of 1 × 10−3 for the overall framework and191
parameter-specific rates for finer control. For our exper-192
iments, we employ the male SMPL-X [11] model due to193
its superior performance in complex sequences. The entire194
pipeline runs on a single GPU, ensuring scalability and ef-195
ficiency.196

2. Details on Generated Synthetic Data197

We show our augmented data from the sequences of the198
People Snapshot [1] dataset. As shown in Fig. 1, apply-199
ing our data augmentation module consisted of the identity200
preservation and the image restoration sub-module enhance201
the overall quality of the data, especially the facial regions.202

Figure 2. Challenging Poses. The figure illustrates the robustness
of our method in handling extreme poses, including non-frontal
views and dynamic motion scenarios, while maintaining high fi-
delity and consistency in the generated avatars.

Input Image Input Image Input Image 

Figure 3. Failure cases of SVAD. Examples include noisy back
and side views, inconsistent clothing textures, and artifacts in non-
frontal regions.

3. Challenging Poses 203

As shown in Fig. 2, our method demonstrates exceptional 204
robustness to challenging poses, including extreme body 205
movements, occlusions, and non-frontal facial orientations. 206
This robustness is achieved through the integration of pose- 207
guided video diffusion models and the 3D Gaussian splat- 208
ting framework, which together enable high-fidelity avatar 209
generation that remains consistent across a wide range of 210
poses and motions. The ability to handle such diverse and 211
dynamic poses is critical for applications requiring realis- 212
tic and adaptable avatar rendering. The capability to handle 213
such challenging poses and motion scenarios establishes the 214
robustness and versatility of our method, making it well- 215
suited for applications in gaming, virtual reality, and an- 216
imation. Future enhancements, such as incorporating ad- 217
ditional motion datasets and refining pose-guidance mech- 218
anisms, could further extend this capability to even more 219
complex and dynamic scenarios. 220

4. Failure Cases 221

In this section, we analyze several failure cases observed in 222
SVAD, revealing limitations in specific scenarios that high- 223
light areas for potential improvement. As in Fig. 3 one 224
of the primary challenges lies in the generation of back 225
and side views. Despite using a pretrained video diffusion 226
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model trained on 3D scan data, the inherent bias towards227
frontal views within diffusion models often results in noisy228
or inaccurate reconstructions of non-frontal regions. These229
inconsistencies are particularly evident in textured areas,230
such as clothing and hair, where fine details are difficult to231
maintain without multi-view constraints.232

Another issue arises in maintaining consistent textures233
and lighting across different viewpoints. Artifacts such as234
abrupt transitions in lighting or shading irregularities ap-235
pear, particularly in side or back views. These imperfec-236
tions likely stem from limitations in the data augmentation237
process, as synthesized views may not fully capture the di-238
versity of real-world lighting conditions and texture varia-239
tions. These inconsistencies affect the overall visual fidelity240
and reduce the photorealism of the rendered avatars.241

Additionally, while the 3D Gaussian splatting represen-242
tation is effective for free-viewpoint rendering, its reliance243
on isotropic Gaussians can lead to oversmoothing in high-244
frequency regions such as hands and facial features. This245
limitation occasionally causes a loss of sharpness and detail246
in regions where fine textures are crucial for realism. gauss247

5. Future Work248

Addressing these limitations in Sec. 4 requires several249
enhancements. Improvements to the data augmentation250
pipeline, such as introducing more realistic texture and251
lighting variations, could help mitigate shading and tex-252
ture artifacts. Regularization techniques could enforce more253
consistent geometry and appearance across views, while254
hybrid volumetric representations or pose-dependent defor-255
mation fields could improve accuracy in challenging poses.256
These advancements would help SVAD achieve greater ro-257
bustness and fidelity across diverse scenarios.258
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