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This supplementary material provides additional details to
complement the main paper. In Section 1, we elaborate on
the implementation details of our pipeline, covering the pre-
defined pose sequences utilized in our approach, the video
diffusion module, the identity preservation module and im-
age restoration module for enhancing facial fidelity and
overall texture quality, and the fitting and training method-
ology for the 3DGS avatar module. Section 2 presents re-
sults on the data augmentation methods, highlighting their
impact on improving the quality of the synthetic training
data for the avatar model, with a focus on identity preser-
vation and image restoration. In Section 3, we demonstrate
the robustness of our method in handling challenging poses,
including extreme body movements, occlusions, and non-
frontal facial orientations. Section 4 discusses failure cases,
identifying key limitations, while Section 5 outlines poten-
tial directions for future work aimed at addressing these
challenges and further enhancing the robustness and real-
ism of our approach.

1. Implementation Details

In this section, we provide comprehensive technical details
of SVAD. We first describe the predefined pose sequences
that serve as conditioning inputs for our video diffusion
model. Next, we elaborate on the video diffusion mod-
ule, the identity preservation module and image restora-
tion module for enhancing facial fidelity and overall texture
quality. Finally, we elaborate on the training process for our
3DGS avatar, including the SMPL-X [21] parameter fitting
procedure and the optimization strategy for the 3D Gaussian
representation.

1.1. Predefined Pose Sequences
To initialize frame generation for our pipeline, we rely
on a predefined set of poses extracted from the People
Snapshot [1] dataset. Specifically, we utilize the male-4-
casual sequence, which depicts a subject performing a full-
body rotation with arms extended horizontally. Using DW-
Pose [32], we extract 2D keypoints K ∈ RJ×2, where
J = 17 is the number of keypoints, from this sequence to
create a standardized pose template. This sequence serves
as the conditioning input for the video diffusion model,
resulting in 189 frames of pose-guided human animation,
with a resolution of 1024× 1024.

Our experiments revealed that inference with lower reso-

lutions such as 512×512 produced animations with signifi-
cantly degraded facial details, which adversely affected sub-
sequent processing steps. Particularly, the landmark-based
face fusion technique requires accurate facial landmark de-
tection, which proved unreliable on low-resolution outputs.
The absence of distinct facial features in 512 × 512 out-
puts led to inconsistent landmark detection, compromising
the accuracy of 3D head rendering and warping operations.
The higher 1024 × 1024 resolution preserves critical facial
details, enabling robust landmark detection and consistent
face fusion results across the generated sequence.

1.2. Video Diffusion Module
For our video diffusion module, we leverage Muse-
Pose [27], a modified variant of Animate Anyone [12],
specifically designed for pose-guided video generation from
a single image. The architecture follows a UNet-based [24]
denoising diffusion model with temporal modeling capabil-
ities, enabling coherent video generation while maintaining
consistency with the reference image.

During inference, the video diffusion pipeline performs
iterative denoising of random noise guided by the reference
image and pose sequence. We configure the DDIM sam-
pler [26] with 20 sampling steps and a classifier-free guid-
ance [10] scale of 3.5 which keeps balance between gen-
eration quality and inference speed. The network architec-
ture employs a 3D variant of the standard UNet architecture,
where temporal layers enable information exchange across
video frames. The reference image features are extracted
using a CLIP vision encoder [23] and processed through a
reference UNet. These features are transferred to the de-
noising UNet via a custom attention mechanism:

Attn(Q,K, V ) = softmax
(
QKT

√
d

)
V (1)

where Q represents queries from the denoising UNet fea-
tures, while K and V are derived from the reference im-
age features. This mechanism ensures that generated frames
maintain the appearance details of the reference image.

The pose conditioning is handled by the PoseGuider
module, which processes pose skeleton images through a
series of convolutional layers to create pose feature embed-
dings. These embeddings are added to the latent noise to
spatially align the generation with target poses:

zt = zt + P (pt) (2)

where zt is the noise latent at timestep t, pt ∈ RJ×2 is
the pose feature at time t, and P (·) represents the pose



guider. The PoseGuider has an input convolutional layer,
followed by blocks with increasing channel dimensions
(16, 32, 64, 128), and a zero-initialized output projection to
the conditioning embedding channels.

For handling longer video sequences beyond the model’s
context window, we employ a sliding window [11] ap-
proach. The model processes frames in overlapping chunks
of length S = 48 with an overlap of O = 4 frames. This
enables the generation of arbitrarily long sequences while
maintaining temporal consistency. The generative process
for each video segment can be expressed as:

Vi:i+S = G(Iref, Pi:i+S , z) (3)

where Vi:i+S represents the generated video segment from
frame i to i + S, G is our diffusion model, Iref is the ref-
erence image, Pi:i+S are the corresponding pose skeletons,
and z is the random noise. By processing these overlapping
segments and blending them at the boundaries, the final full-
length human-animated video has smooth transitions.

1.3. Identity Preservation Module
Following the initial frame generation by the video dif-
fusion model, we refine the facial regions to enhance
identity consistency and detail preservation. Our identity
preservation pipeline consists of three main components:
FLAME [18] parameter tracking 1.3.1, 3D head render-
ing 1.3.2, and face fusion 1.3.3. Each component plays a
crucial role in generating high-quality, identity-consistent
facial regions in our data augmentation pipeline.

1.3.1. FLAME Parameter Tracking
We begin by tracking FLAME parameters from our prede-
fined pose sequence video to guide the animation of our 3D
head avatar. Using a tracking engine with focal length set
to 12.0, we extract parameters Θ = {β, ψ, θ, ϕ}, where
β ∈ R300 represents shape parameters, ψ ∈ R100 ex-
pression parameters, θ ∈ R6 global pose parameters, and
ϕ ∈ R6 eye pose parameters.

To ensure smooth parameter transitions across frames,
we apply Savitzky-Golay [14] filtering with a window
length of 9 frames and polynomial order of 2. For ro-
tation parameters, we employ quaternion-based smooth-
ing [33] with a continuity enforcement algorithm to handle
sign flips:

q′t+1 =

{
−qt+1, if qt · qt+1 < 0

qt+1, otherwise
(4)

Different parameter types are smoothed with specific mo-
mentum coefficients: rotation matrices α = 0.6, translation
vectors α = 0.6, and eye pose parameters α = 0.7. This
comprehensive smoothing strategy eliminates jitter and en-
sures temporal consistency in the final animation sequence.

1.3.2. 3D Head Rendering
Using GAGAvatar [5] as our 3D head modeling framework,
we utilize the tracked FLAME parameters to render high-
quality facial images that match our predefined pose se-
quence. We leverage this model to render the 3D head with
precise control over pose and expression. The rendering
process begins with the FLAME model, which generates
3D vertices based on the tracked shape, expression, pose,
and eye parameters. We then employ a mesh renderer with
a resolution of 512 × 512 pixels, using the FLAME topol-
ogy for face modeling where focal length is set to 12.0. This
approach enables us to generate precisely controlled facial
renderings that maintain the identity of the source image
while adopting the pose and expression parameters from the
target sequence.

1.3.3. Face Fusion Process
We selectively apply face fusion only to frames when the
head rendering is front-facing. We determine this by ana-
lyzing eye landmark detection - specifically, when at least
one eye is clearly visible and properly detected in the facial
landmark set. This approach ensures face fusion is only ap-
plied to frames with reliable facial orientation, as the quality
of renderings deteriorates for back-of-head views where no
eyes are visible. After filtering, we perform structural sim-
ilarity assessment [29] and landmark-based warping [30]
with careful parameter tuning to ensure seamless integra-
tion.

First, we detect 68 facial landmarks using dlib [15] on
both the diffusion-generated frame Iorig and the rendered
head image Ihead from GAGAvatar. Before applying the
transformation, we validate the structural compatibility by
computing a Procrustes disparity measure [9] between the
landmark sets:

d(Lorig, Lhead) =

√√√√ 1

n

n∑
i=1

∥Lorig,i − Lhead,i∥2 (5)

where Lorig and Lhead are the normalized landmark sets.
We skip fusion when the disparity exceeds a threshold
of 0.01, preserving the original frame in cases where the
structural alignment would produce unnatural results. For
valid frames, we compute an affine transformation matrix
through corresponding landmarks using:

M = argmin
M

68∑
i=1

∥M · Lhead,i − Lorig,i∥2 (6)

where M is a 2 × 3 affine transformation matrix. This ma-
trix is estimated using a partial affine model that preserves
scale while allowing for rotation and translation, maintain-
ing proportional facial features during transformation. The



warped image is then computed by applying the transfor-
mation:

Iwarp = T (Ihead,M, (w, h)) (7)

where T represents the affine warping function that maps
pixels from the source to destination image according to
transformation M .

We then create a facial mask Ω by computing the convex
hull [2] of the landmarks to define the facial region:

Ω = convexHull(Lorig) (8)

Finally, we apply seamless cloning, a gradient-domain
blending implementation of Poisson image editing [22],
centered at the face centroid (cx, cy) with a blending fac-
tor α = 1.0:

Ifused = PoissonBlend(Iwarp, Iorig,Ω, (cx, cy)) (9)

This procedure solves the Poisson equation:

min
I

∫
Ω

∥∇I −∇Iwarp∥2 dx dy, subject to I|∂Ω = Iorig|∂Ω
(10)

The gradient-domain blending preserves boundary condi-
tions from the original image while replacing interior gra-
dients with those from the warped image. This approach
maintains lighting conditions and color consistency across
the boundary by solving for pixel values that create a
smooth transition while matching gradient fields. The com-
plete face fusion pipeline significantly reduces visible ar-
tifacts at the transition between the rendered face and the
original image, allowing consistent identity preservation
even under challenging viewpoints.

1.4. Image Restoration Submodule
To enhance the quality of video diffusion outputs, partic-
ularly in facial regions, we integrate a hybrid restoration
pipeline based on BFRffusion [4]. Our approach combines
diffusion-based facial enhancement with background up-
sampling to improve overall visual fidelity while preserving
identity-specific details.

The restoration workflow begins with face detection us-
ing RetinaFace [6], which accurately localizes facial regions
in each frame. For aligned facial areas, we maintain a con-
sistent face size of 512× 512 with a 1 : 1 crop ratio. When
processing non-aligned faces, we employ a landmark-based
alignment process using a five-point facial landmark detec-
tor with an eye distance threshold of 5 pixels to filter out
low-quality detections.

Each detected face undergoes diffusion-based restoration
using a latent diffusion model. The process follows a con-
ditional diffusion sampling approach:

zt−1 =

√
αt−1zt −

√
1− αtϵθ(zt)√
αt

+
√
1− αt−1ϵθ(zt)

(11)

where αt =
∏t

i=1(1− βi) and ϵθ is the denoising network.
We implement classifier-free guidance with a scale of w =
3.5:

ϵ̂θ(zt) = (1 + w)ϵθ(zt)− wϵθ(zt, ∅) (12)

where ϵθ(zt, ∅) represents the unconditional prediction.
The diffusion sampling process uses 50 DDIM steps with

a latent shape of R4×64×64 for 512×512 input images. The
input facial image is first encoded to a latent representation
through a VAE encoder, and the diffusion model progres-
sively refines this representation before decoding it back to
pixel space.

For background regions, we employ Real-ESRGAN [28]
with an RRDBNet [8] architecture and a 2× upsampling
scale. The background upsampler processes images in tiles
of 400 × 400 pixels with 10-pixel padding to handle high-
resolution inputs efficiently while maintaining consistent
quality across tile boundaries.

After separate processing of facial and background re-
gions, we integrate the enhanced components using in-
verse affine transformations computed from the original fa-
cial alignment process. This creates a seamless composite
where facial details are preserved and enhanced while main-
taining natural transitions to background areas:

Ifinal =Mface ⊙ T−1(Iface) + (1−Mface)⊙ Ibg (13)

where T−1 represents the inverse transformation that maps
the restored face back to its original position, and Mface is
the binary mask indicating facial regions.

This comprehensive image restoration approach signifi-
cantly enhances the perceptual quality of generated frames,
particularly improving fine facial details that may be lost
or degraded during the initial video diffusion process. The
integration of specialized facial and background processing
ensures optimal quality across the entire frame while main-
taining computational efficiency.

1.5. Gaussian Avatar Submodule
To transform our synthetic data into a high-quality, animat-
able 3D avatar, we employ a two-stage process: first, we fit
an SMPL-X model to our synthetic data sequences, then we
train a 3D Gaussian Splatting representation using the fitted
parameters as guidance.

1.5.1. SMPL-X Fitting Process
Prior to training the 3DGS avatar, we employ a comprehen-
sive fitting process to obtain accurate SMPL-X parameters
from our synthetic data. This multi-stage process ensures
that the avatar’s geometry accurately reflects the subject’s
physical characteristics and articulation.

Keypoint Extraction. The fitting pipeline begins with pose
and shape estimation. We utilize DWPose [32] to extract 2D



whole-body keypoints from each frame of our synthetic se-
quence. These keypoints provide critical information about
body articulation across the sequence. The keypoints are
represented as K ∈ RJ×3, where J = 133 includes 17
body, 68 face, and 42 hand keypoints, with each keypoint
having (x, y, confidence) values. We then employ MM-
POSE [25] with the RTMPose-L [13] model for refinement,
using a confidence threshold of 0.5 to filter reliable detec-
tions.

Initial Parameter Estimation. For facial geometry, we
leverage DECA [7] to estimate initial FLAME parame-
ters. The optimization uses perspective projection with fo-
cal length of 5000 pixels and 1024 × 1024 resolution tex-
tures. The FLAME parameters include shape coefficients
β ∈ R10, expression parameters ϕ ∈ R10, and pose param-
eters for jaw and eyes.

For body pose and shape, we incorporate
Hand4Whole [19] with the configuration: focal length
of 2000, principal point at image center, and input shape
of 256 × 256. This process yields initial estimates for
SMPL-X parameters: global orientation θroot ∈ R3, body
pose θbody ∈ R21×3, jaw pose θjaw ∈ R3, hand poses
θhands ∈ R30×3, and shape parameters βshape ∈ R10.

Parameter Optimization. These initial parameters are re-
fined through an optimization process with multiple objec-
tives. The primary loss function combines reprojection er-
ror, parameter regularization, and temporal smoothness:

Lfit = λkptLkpt + λregLreg + λtempLtemp (14)

The keypoint reprojection loss Lkpt measures the dis-
tance between projected model joints and detected 2D key-
points, weighted by detection confidence:

Lkpt =

J∑
i=1

ci∥Π(Ji(θ, β))−Ki∥22 (15)

where Π is the perspective projection function, Ji(θ, β) is
the 3D position of joint i, Ki is the corresponding 2D key-
point, and ci is its confidence score.

The regularization term Lreg penalizes deviation from
prior pose and shape distributions:

Lreg = ∥β∥22 +
∑
j

∥θj − θmean∥22 (16)

The temporal consistency term Ltemp enforces smooth
transitions between frames:

Ltemp =

T−1∑
t=1

∥θt − θt+1∥22 + ∥βt − βt+1∥22 (17)

The optimization uses the Adam optimizer [16] with
learning rate 1 × 10−3 and loss weights λkpt = 1.0, λreg =

0.001, and λtemp = 0.1. The optimization proceeds in two
stages: first optimizing global position and orientation with
100 iterations, then refining all parameters with 200 itera-
tions.

Parameter Smoothing. To ensure temporal consistency
and reduce jitter, we apply the same smoothing approach
as used in our FLAME parameter tracking process in Sec-
tion 1.3.1. Specifically, we employ Savitzky-Golay [14] fil-
tering with a window length of 9 frames and polynomial
order of 2. For rotation parameters, we utilize the identi-
cal quaternion-based smoothing procedure with continuity
enforcement to handle sign flips.

Segmentation and Depth Estimation. We generate fore-
ground masks using Segment Anything [17] with the ViT-H
backbone. The model uses keypoint-based prompting with
valid keypoints as point coordinates, and a bounding box
computed from these keypoints with an extension ratio of
1.2. We also extract depth information using Depth Any-
thing V2 [31] with the ViT-L backbone. The depth maps
are normalized and aligned with the SMPL-X mesh using
the following procedure:

scale =
σ(depthpred,fg)

σ(depthsmplx,fg)

depth′
pred =

depthpred

scale
depth′

pred = depth′pred − µ(depth′
pred,fg) + µ(depthsmplx,fg)

(18)
where σ and µ represent standard deviation and mean of
depth values, and fg indicates foreground regions.

The extracted SMPL-X parameters Φ = θ, β, together
with corresponding image observations Itt = 1T , fore-
ground masks Mtt = 1T , and aligned depth maps Dt

T
t=1,

constitute a multi-modal conditioning set that guides the op-
timization of our 3D Gaussian representation.

1.5.2. 3DGS Avatar Training Process
With the fitted SMPL-X parameters and processed synthetic
data, we proceed to train the 3DGS-based avatar [20]. The
training begins by initializing the triplane representation [3]
T ∈ R32×128×128, encoding 3D features for both body and
facial regions. Gaussian parameters, including positions
V ∈ RN×3, colors C ∈ RN×3, and opacity O ∈ RN ,
are optimized through backpropagation with the following
multi-objective loss function:

L = λRGBLRGB + λSSIMLSSIM + λLPIPSLLPIPS, (19)

where λRGB = 0.8, λSSIM = 0.2, and λLPIPS = 0.2 are the
weights for the RGB reconstruction, structural similarity,
and perceptual loss, respectively. The model is trained for
5 epochs with a batch size of 1, as required by the Gaussian
splatting renderer.



The optimization process proceeds in two stages. During
the warmup stage, Gaussian positions V are updated using
an adaptive learning rate:

αposition(t) = αinit ×
(
1− t

Tmax

)
+ αfinal ×

t

Tmax
, (20)

where αinit = 1.6 × 10−4, αfinal = 1.6 × 10−6, and
Tmax = 30, 000 iterations. Additional parameters, includ-
ing opacity O, scale S, and feature parameters, are opti-
mized with learning rates αopacity = 0.05, αscale = 0.005,
and αfeature = 0.0025, respectively.

Densification of the Gaussian distribution occurs be-
tween iteration 500 and 15, 000, at intervals of 100 iter-
ations. Gaussians with opacity values below a threshold
(O < 0.005) are pruned, and dense regions are refined us-
ing gradient-based adjustments. The pruning mechanism
ensures efficient representation while preserving fidelity:

Vnew = Vold − η
∂L

∂V
, (21)

where η is the learning rate and ∂L
∂V represents the gradient

of the loss with respect to Gaussian positions.
A hierarchical learning approach progressively increases

the spherical harmonic degree dsh from 0 to 3 over the
course of training. The training loop dynamically adjusts
Gaussian parameters, leveraging an Adam optimizer with
a learning rate of 1 × 10−3 for the overall framework and
parameter-specific rates for finer control. For our exper-
iments, we employ the male SMPL-X [21] model due to
its superior performance in complex sequences. The entire
pipeline runs on a single GPU, ensuring scalability and ef-
ficiency.

2. Details on Generated Synthetic Data
We show our augmented data from the sequences of the
People Snapshot [1] dataset. As shown in Fig. 1, apply-
ing our data augmentation module consisted of the identity
preservation and the image restoration sub-module enhance
the overall quality of the data, especially the facial regions.

3. Challenging Poses
As shown in Fig. 2, our method shows robustness to chal-
lenging poses, including extreme body movements, occlu-
sions, and non-frontal facial orientations. This robustness is
achieved through the integration of pose-guided video dif-
fusion models and the 3D Gaussian splatting framework,
which together enable high-fidelity avatar generation that
remains consistent across a wide range of poses and mo-
tions. The ability to handle such diverse and dynamic poses
is critical for applications requiring realistic and adaptable
avatar rendering. The capability to handle such challeng-
ing poses and motion scenarios establishes the robustness

Input Image Video Diffusion Output Augmented Data Augmented Face

Figure 1. Data Augmentation Results. This figure highlights
the effectiveness of our data augmentation pipeline, showcasing
enhanced facial regions and overall image quality improvements
achieved through the identity preservation and image restoration
sub-modules

Figure 2. Challenging Poses. The figure illustrates the robustness
of our method in handling extreme poses, including non-frontal
views and dynamic motion scenarios, while maintaining high fi-
delity and consistency in the generated avatars.

and versatility of our method, making it well-suited for ap-
plications in gaming, virtual reality, and animation. Fu-
ture enhancements, such as incorporating additional motion
datasets and refining pose-guidance mechanisms, could fur-
ther extend this capability to even more complex and dy-
namic scenarios.

4. Failure Cases

In this section, we analyze several failure cases observed in
SVAD, revealing limitations in specific scenarios that high-
light areas for potential improvement. As in Fig. 3 one of
the primary challenges lies in the generation of back and
side views. The inherent bias towards frontal views within
diffusion models often results in noisy or inaccurate re-
constructions of non-frontal regions. These inconsistencies
are particularly evident in textured areas, such as clothing
and hair, where fine details are difficult to maintain without



Input Image Input Image Input Image 

Figure 3. Failure cases of SVAD. Examples include noisy back
and side views, inconsistent clothing textures, and artifacts in non-
frontal regions.

multi-view constraints.
Another issue arises in maintaining consistent textures

and lighting across different viewpoints. Artifacts such as
abrupt transitions in lighting or shading irregularities ap-
pear, particularly in side or back views. These imperfec-
tions likely stem from limitations in the data augmentation
process, as synthesized views may not fully capture the di-
versity of real-world lighting conditions and texture varia-
tions. These inconsistencies affect the overall visual fidelity
and reduce the photorealism of the rendered avatars.

Additionally, while the 3D Gaussian splatting represen-
tation is effective for free-viewpoint rendering, its reliance
on isotropic Gaussians can lead to oversmoothing in high-
frequency regions such as hands and facial features. This
limitation occasionally causes a loss of sharpness and detail
in regions where fine textures are crucial for realism.

5. Future Work
Addressing these limitations in Sec. 4 requires several
enhancements. Improvements to the data augmentation
pipeline, such as introducing more realistic texture and
lighting variations, could help mitigate shading and tex-
ture artifacts. Regularization techniques could enforce more
consistent geometry and appearance across views, while
hybrid volumetric representations or pose-dependent defor-
mation fields could improve accuracy in challenging poses.
These advancements would help SVAD achieve greater ro-
bustness and fidelity across diverse scenarios.
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