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A PROOFS

In this appendix, we prove all of our theoretical results.

A.1 CORE LEMMAS

Let d : Π × Π → R be the function given by d(π1, π2) =
1
et , where t is the length of the shortest

trajectory ξ such that π1(ξ) ̸= π2(ξ), or 0 if π1 = π2.

Lemma 1. (Π, d) is a compact metric space.

Proof. We must first show that d is a metric, which requires showing that it satisfies the following:

1. Identity: d(π1, π2) = 0 if and only if π1 = π2.

2. Positivity: d(π1, π2) ≥ 0.

3. Symmetry: d(π1, π2) = d(π2, π1).

4. Triange Inequality: d(π1, π3) ≤ d(π1, π2) + d(π2, π3).

It is straightforward to see that 1-3 hold. For 4, let t be the length of the shortest history h such
that π1(h) ̸= π3(h). Note that if d(π1, π3) > d(π1, π2) and d(π1, π3) > d(π2, π3), then it must
be the case that π1(h) = π2(h) for all h of length ≤ t, and that π1(h) = π2(h) for all h of
length ≤ t. However, this is a contradiction, since it would imply that π1(h) = π3(h) for all h of
length ≤ t. Thus either d(π1, π3) ≤ d(π1, π2) or d(π1, π3) ≤ d(π2, π3), which in turn implies that
d(π1, π3) ≤ d(π1, π2) + d(π2, π3).

Thus d is a metric, which means that (Π, d) is a metric space. Next, we will prove that (Π, d) is
compact, using the Heine-Borel theorem. To do this, we must show that (Π, d) is totally bounded
and complete.

To see that (Π, d) is totally bounded, let ϵ be an arbitrary positive real number, and let t = ln(1/ϵ),
so that ϵ = 1/et. Moreover, let Π̂ be the set of all policies that always take action a1 after time t

(but which may behave arbitrarily before time t). Now Π̂ is finite, and for every policy π1 there is
a policy π2 ∈ Π̂ such that d(π1, π2) ≤ ϵ (given by letting π2(ξ) = π1(ξ) for all trajectories ξ with
length at most t). Thus, for every ϵ > 0, (Π, d) has a finite cover. Thus (Π, d) is totally bounded.

To see that (Π, d) is complete, let {πi}∞i=0 be a Cauchy sequence. This implies that for every ϵ > 0
there is a positive integer N such that for all n,m ≥ N we have d(πn, πm) < ϵ. In our case, this
means that there, for each time t is a positive integer N such that for all n,m ≥ N , we have that
πn(ξ) = πm(ξ) for all trajectories ξ shorter than t steps. We can thus define a policy π∞ by letting
π∞(ξ) = δ (where δ ∈ ∆(A)) if there is an N such that, for all n ≥ N , we have that πn(ξ) = δ.
Now limi→∞{πi}∞i=0 = π∞, and π∞ ∈ (Π, d). Thus every Cauchy sequence in (Π, d) has a limit
that is also in (Π, d), and so (Π, d) is complete.

Thus, by the Heine-Borel theorem, we have that (Π, d) is a compact metric space.

Lemma 2. ⟨S,A, τ, µ0, R, d⟩ is episodic if and only if there exists n ∈ N, p ∈ (0, 1] such that for
any policy π and state s, if π is run from s, then after n steps, it will have entered a terminal state
with probability at least p.

Proof. For the first direction, assume that there exists n ∈ N, p ∈ (0, 1] such that for any policy
π and any state s, if π is run from s, then after n steps, it will have entered a terminal state with
probability at least p. Then for any policy π, we have that π after kn steps will have entered a
terminal state with probability at least 1− pk. We of course have that limk→∞ 1− pk = 1, and so π
will almost surely eventually enter a terminal state. Since π was chosen arbitrarily, this means that
⟨S,A, τ, µ0, R, d⟩ must be terminal.

For the other direction, assume that ⟨S,A, τ, µ0, R, d⟩ is episodic. Let π and s be selected arbitrar-
ily. Since every policy eventually enters a terminal state with probability 1, there must be a trajectory
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s, a0, s1, . . . starting in s and ending in a terminal state, such that each transition has positive prob-
ability under π and τ . Moreover, the shortest such trajectory can contain no more than |S| states –
otherwise there must be a loop that occurs with probability 1 (in which case the MDP would not be
episodic). Since π and s were selected arbitrarily, this shows that there is an n = |S| ∈ N such that
for any policy π and state s, if π is run from s, then after n steps, it will have entered a terminal state
with positive probability. It remains to be shown that this probability is bounded below by some
positive constant p.

Let q(π, s) be the probability that π will have entered a terminal state after n steps, starting in state s.
Note that this function is continuous, when viewed as a function from (Π, d) to [0, 1]. In particular,
if π1(ξ) = π2(ξ) for all trajectories ξ of length at most n, then q(π1, s) = q(π2, s). Thus, for
every ϵ > 0 there is a δ = ln(1/n) such that if d(π1, π2) < δ, then |q(π1, s) − q(π2, s)| = 0 < ϵ.
Moreover, by Lemma 1, we have that (Π, d) is a compact metric space. Thus, by the extreme value
theorem, for each s there is a policy πs ∈ Π that minimises q(π, s). Moreover, we have already
established that for any policy π and state s, if π is run from s, then after n steps, it will have entered
a terminal state with positive probability. Thus q(πs, s) > 0. Since S is finite, we can now set p to
mins(πs, s), and thus complete the proof.

A.2 CONVERGENT POLICY VALUES

In this section, we provide the proofs of the claims regarding convergent policy values.
Proposition 1. If ⟨S,A, τ, µ0, R, d⟩ is episodic, then we have that |V π(s)| < ∞ for all policies π
and all states s.

Proof. As per Lemma 2, in any episodic MDP, there is an n and a p such that for any state s and
policy π, we have that π after n steps will have entered a terminal state with probability at least
p. Moreover, since S and A are finite, we have that m = maxs,a,s′ |R(s, a, s′)| ≤ ∞. Since
d(t) ∈ [0, 1], this means the discounted reward obtained over any sequence of n steps is at least
−mn, and at most mn. Since the probability of entering a terminal state along any such sequence
is at least p, we have that

|V π(s)| ≤
(

mn

1− p

)
,

which is finite.

Proposition 2. If ⟨S,A, τ, µ0, R1, d⟩ is not episodic, and
∑∞

t=0 d(t) = ∞, then there is a reward
function R2, policy π, and state s, such that V π(s) = ∞ in ⟨S,A, τ, µ0, R2, d⟩.

Proof. Let R2 be the reward function such that R2(s, a, s
′) = 1 unless s or s′ is terminal. Now,

since ⟨S,A, τ, µ0, R1, d⟩ is not episodic, there is a policy π that, with positive probability, never
enters a terminal state. Let this probability be p. This means that there must be an initial state s0
such that the probability that π never enters a terminal state, conditional on the first state being s0,
is at least p. This means that V π(s0) ≥ p ·

∑∞
t=0 1 = ∞ in the MDP ⟨S,A, τ, µ0, R2, d⟩.

A.3 TEMPORAL CONSISTENCY

Proposition 3. A discount function d is temporally consistent if and only if d(t) = αγt for some
α, γ ∈ [0, 1].

The proof of this proposition is given in Lattimore & Hutter (2014) (their Theorem 13). Their
terminology is slightly different from ours, but their proof applies to our case with essentially no
modification.

A.4 CORRESPONDENCE TO OPTIMALITY

Here, we will establish the relationship between optimal policies, resolute policies, naı̈ve policies,
and sophisticated policies, in the case of exponential discounting.
Theorem 1. If ⟨S,A, τ, µ0, R, γ⟩ is an MDP with exponential discounting, then the following are
equivalent:
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1. π is optimal.

2. π is strongly resolute.

3. π is naı̈ve.

4. π is sophisticated.

Additionally, the following are also equivalent:

5. π is weakly resolute.

6. π maximises J (π).

Moreover, 1-4 imply 5-6.

Proof. First of all, in an exponentially discounted MDP, π1 is optimal if for all states s and policies
π2, we have V π1(s) ≥ V π2(s), and π1 is strongly resolute if for all states s, times t, and policies π2,
we have V π1(s, t) ≥ V π2(s, t). Moreover, since exponential discounting is temporally consistent,
we have that for all t, V π1(s) ≥ V π2(s) if and only if V π1(s, t) ≥ V π2(s, t). From this it follows
that 1 and 2 are equivalent in an exponentially discounted MDP.

Secondly, in an exponentially discounted MDP, we have that a policy π is optimal if and only if
supp(π(s)) ⊆ argmaxa(Q

⋆(s, a)), and π is naı̈ve if and only if for each state s, if a ∈ supp(π(s)),
then there is a policy π⋆ such that π⋆ maximises V π⋆

(s) and a ∈ supp(π⋆(s)). Moreover, if π⋆

maximises V π⋆

(s), then each a ∈ supp(π⋆(s)) must maximise Q⋆. From this, it follows that 1 and
3 are equivalent in exponentially discounted MDPs.

Furthermore, in an exponentially discounted MDP, we have that a policy π is optimal if and only
if it is a fixed point under policy iteration, and π is sophisticated if and only if supp(π(s)) ⊆
argmaxQπ(s, a). From this, it follows that 1 and 4 are equivalent in exponentially discounted
MDPs.

Next, note that in an exponentially discounted MDP, 5 and 6 are definitionally directly equivalent.
Finally, from the fact that optimal policies are optimal from all initial states, we have that 1-4 imply
5-6. This completes the proof.

A.5 RESOLUTE POLICIES

We here provide our proofs about resolute policies.

Lemma 3. In any episodic MDP ⟨S,A, τ, µ0, R, d⟩, each state s and time t, there exists a policy π1

such that V π1(s, t) ≥ V π2(s, t) for all π2.

Proof. We will show that V π(s, t) is continuous, when viewed as a function from (Π, d) to R.
Let π1 be any policy, and ϵ any positive real number. Since S and A are finite, we have m =
maxs,a,s′ |R(s, a, s′)| < ∞. Moreover, as per Lemma 2, since the MDP is episodic, there is an n
and p such that any policy π after n steps will have entered a terminal state with probability at least
p. Thus, if π1(ξ) = π2(ξ) for all trajectories of length kn, then the difference in reward between
π1 and π2 can be at most mnpk/(1 − p). For any k that is sufficiently large (and hence for any
d(π1, π2) that is sufficiently small), we have that this quantity is below ϵ. Thus, for every ϵ there is
a δ such that, if d(π1, π2) < δ then |V π1(s, t)− V π1 | < ϵ. This means that V π(s, t) is continuous,
when viewed as a function from (Π, d) to R.

By Lemma 1, we have that (Π, d) is compact. Thus, by the extreme value theorem, there must exist
a policy π1 such that V π1(s, t) ≥ V π2(s, t) for all π2.

Proposition 4. In any episodic MDP, the resolute Q- function QR exists and is unique.

Proof. Immediate from Lemma 3.

Theorem 2. In any episodic MDP, there exists a deterministic strongly resolute policy.

14



Under review as a conference paper at ICLR 2024

Proof. By Proposition 4, in any episodic MDP, the resolute Q- function QR exists and is unique.
We now have that any policy π is strongly resolute if, for each trajectory ξ, we have that π(ξ) ∈
argmaxaQ

R(s, |ξ|, a), where s is the last state in ξ. There always exists a deterministic policy
satisfying this criterion.

Example 2. Let Loop be the 4-state MDP where S = {s0, s1, s2, st}, A = {up, down}, and
µ0 = s0. We have that τ(s0, up) = s1 and τ(s0, down) = s2. For s ∈ {s1, s2}, we have that
τ(s, a) = s0 with probability 0.95, and st with probability 0.05, for both actions a ∈ A. The reward
function R is zero everywhere, except that R(s0, up, s1) = 3 and R(s2, a, s

′) = 5 for both a ∈ A
and both s′ ∈ {s0, st}. The discount d is the hyperbolic discount function, d(t) = 1/(1 + t). This
environment can be depicted as:

s0start

s1

s2

st

3

5
5

This MDP repeatedly gives the agent a choice between receiving 2 reward instantaneously, or 5
reward in one step, where there is a 5% chance that the episode will end after each choice is made.
With hyperbolic discounting, we have that 3d(t) > 5d(t + 1) if t = 0, and that 3d(t) < 5d(t + 1)
for all t ≥ 1. In other words, the agent would want to pick 3 reward the first time, and 5 reward
afterwards.
Proposition 5. There exists episodic MDPs in which every (strongly or weakly) resolute policy is
non-stationary.

Proof. Consider the MDP Loop, given in Example 2. We will show that there is a non-stationary
policy that outperforms every stationary policy in this MDP, and hence prove that all resolute policies
must be non-stationary.

In this MDP, the only state where the agent can make a meaningful choice is in state s0. Assume that
πp is the stationary policy that chooses left with probability p, and otherwise chooses right. Then
J (πp) is

∞∑
i=1

(0.95i) ∗ (3p/(1 + 2i) + 5 ∗ (1− p)/(2 + 2i)).

This sum can in turn be equivalently expressed as
1

38

(
− 100 log(20)p+ 12

√
95 tanh−1

(
0.5

√
19/5

)
p

− 19p+ 100 log(20)− 95
)
.

This expression is maximised on p ∈ [0, 1] for p = 0, in which case J (πp) ≈ 5.38. This is thus the
highest value obtainable by any stationary policy.

Consider now the policy π where π(ξ) = left if |ξ| = 1, and otherwise returns right (that is, π selects
left on its first visit to s0, and afterwards selects right). Now J (π) is

3 + 0.95 ∗ 5 ∗
∞∑
i=2

(0.95i/(2 + 2i)) ≈ 6.99.
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We have thus shown that there is a non-stationary policy π such that J (π) > J (πp) for all stationary
policies πp. This, in turn, means that all (strongly or weakly) resolute policies in Loop must be non-
stationary.

A.6 NAÏVE POLICIES

We here provide our proofs about naı̈ve policies.

Proposition 6. In any episodic MDP, the naı̈ve Q-function QN exists and is unique.

Proof. Immediate from Proposition 4.

Theorem 3. In any episodic MDP, there exists a stationary deterministic naı̈ve policy.

Proof. By Proposition 4, in any episodic MDP, the naı̈ve Q- function QN exists and is unique. We
now have that any policy π is naı̈ve if, for each trajectory ξ, we have that π(ξ) ∈ argmaxaQ

n(s, a),
where s is the last state in ξ. There always exists a stationary deterministic policy satisfying this
criterion.

A.7 SOPHISTICATED POLICIES

We here provide our proofs about sophisticated policies.

Theorem 4. In any episodic MDP, there exists a stationary sophisticated policy.

Proof. By the Kakutani fixed-point theorem, if X is a non-empty, convex, and compact subset of a
Euclidean space Rn, and ϕ : X → P(X) is a set valued function with the property that

1. ϕ(x) is non-empty, closed, and convex for all x ∈ X , and

2. ϕ is upper hemicontinuous,

then ϕ has a fixed point.

Let Π̂ be the set of all stationary policies. We say that a policy π2 is a local improvement of π1 in s

if supp(π2(s)) ⊆ argmaxaQ
π1(s, a). Let ϕ : Π̂ → P(Π̂) be the function that, given π, returns the

set of all policies which are local improvements of π in all s.

We can begin by noting that Π̂ of course is a non-empty, convex, and compact subset of the Euclidean
space R|S||A|. It is immediate from the definition that ϕ is both convex and closed. Moreover, since
the MDP is episodic, we have that Qπ(s, a) exists (i.e. is finite) for all π, s, a, by Proposition 1.
Since there is a finite number of actions, we thus also have that ϕ(π) is non-empty.

Claude Berge’s Maximum Theorem says that if X and Y are topological spaces, and f : X×Y → R
is continuous, and if moreover

1. f⋆(y) = sup{f(x, y) : x ∈ X}

2. C(y) = {x : f(x, y) = f⋆(x)}

then f⋆ is continuous, and C is upper hemicontinuous. Let X and Y both be equal to Π, and let
f : Π×Π → R be the function where f(π1, π2) =

∑
s Ea∼π2(s)[Q

π1(s, a)]. Now f is continuous,
and C(π1) = {π2 : f(π1, π2) = f⋆(π1)} = ϕ(π1). Claude Berge’s Maximum Theorem then
implies that ϕ is upper hemicontinuous.

The Kakutani fixed-point theorem then implies that ϕ must have a fixed point, which means that
there must be a sophisticated policy. Moreover, by construction, this policy is stationary.
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Example 3. Let Tempt be the MDP where S has 32 states {s0, s1, . . . s31}, A = {up, down},
and µ0 = s0. For i ∈ 2 . . . 30, we have that τ(si, a) = si+1 for both a ∈ A, and we have that
τ(s31, a) = s31 for both a ∈ A. At s0, we have that τ(s0, up) = s1 and τ(s0, down) = s2, and
at s1, we have that τ(s1, a) for both a ∈ A returns s0 with probability 0.99, and otherwise returns
s31. The reward function R is zero everywhere, except that R(s30, a, s31) = 100 for both a ∈ A,
and R(s0, up, s1) = 1. The discount d is the hyperbolic discount function, d(t) = 1/(1 + t). This
environment is depicted in the following graph:

s0start s1

s2

. . . (30 steps)

s31

1
up

dow
n

100

Note that Tempt is episodic, with s31 being the terminal state. Moreover, state s0 is the only state
in which the agent has a meaningful choice to make; in all other states, τ does not depend on the
action. Note also that τ is deterministic everywhere, except at s1 – the nondeterminism at s1 is to
ensure that Tempt is episodic.

Proposition 7. There exists episodic MDPs in which every sophisticated policy is nondeterministic.

Proof. Consider the MDP Tempt, given in Example 3, and let π be any deterministic policy. There
are now two cases; either π always selects up, or there exists a ξ such that π(ξ) = down.

Case 1: Suppose π(ξ) = up for all ξ. We then have

Qπ(ξ, up) ≈ 3.008 Qπ(ξ, down) = 3.3

We thus have that Qπ(ξ, down) > Qπ(ξ, up), even though π(ξ) = up. This means that π is not
sophisticated.

Case 2: Suppose π(ξ) = down for some ξ. We then have

Qπ(ξ, up) ≈ 4.125 Qπ(ξ, down) = 3.3

We thus have that Qπ(ξ, up) > Qπ(ξ, down), even though π(ξ) = down. This means that π is not
sophisticated.

Since Case 1 and 2 are exhaustive, this means that no deterministic policy is sophisticated in Tempt.
However, Tempt is episodic, so by Theorem 4, there must be a policy that is sophisticated in
Tempt. Hence, every sophisticated policy in Tempt is nondeterministic.
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Proposition 8. There exists an episodic MDP M and policies π1, π2 such that both π1 and π2 are
sophisticated in M , but Qπ1 ̸= Qπ2 .

Proof. Consider the MDP Tempt = ⟨S,A, τ, µ0, R, d⟩, given in Example 3, and let Tempt2 =
⟨S,A, τ, µ0, R2, d⟩ be the MDP that is identical to Tempt, except that R2 = −R. Let πup be the
policy that always chooses the action up, and πdown be the policy that always chooses the action
down. We now have that Qπup and Qπdown are given by:

Qπup(s0, up) ≈ −3.008 Qπup(s0, down) = −3.3

Qπdown(s0, up) ≈ −4.125 Qπdown(s0, down) = −3.3

From this, we have that both πup and πdown are sophisticated. However, Qπup ̸= Qπdown .

A.8 IDENTIFIABILITY

Theorem 5. Assume we have an episodic MDP, let u(t) = 1, and let π1 and π2 be policies such
that

Ju(π1) > Ju(π2).

Then if h(t) = 1/(1+k ·t), then there exist an N ∈ N such that for all n ≥ N , if h+n(t) = h(t+n),
we have

Jh+n(π1) > Jh+n(π2).

Moreover, there is a Γ ∈ (0, 1) such that, for all γ ∈ [Γ, 1), if eγ(t) = γt, then we have that

Jeγ (π1) > Jeγ (π2).

Proof. We will prove this by showing that

lim
n→∞

(1 + kn)Jh+n(π) = lim
γ→1

Jeγ (π) = Ju(π).

From this, it follows that if Ju(π1) > Ju(π2), then Jh+n(π1) > Jh+n(π2) and Jeγ (π1) > Jeγ (π2)
for all sufficiently large n, and all γ sufficiently close to 1. Note that the (1 + kn)-term is a scaling
term included to prevent Jh+n(π) from approaching zero – the precise purpose of this will be made
more clear later.

Recall that if limx→∞ fi(x) exists, and if
∑∞

i=0 fi converges uniformly, then

lim
x→∞

∞∑
i=0

fi(x) =

∞∑
i=0

lim
x→∞

fi(x).

Recall also that a sequence of functions
∑∞

i=0 fi converges uniformly if for all ϵ there is a J such
that if j ≥ J then |

∑j
i=0 fi(x)−

∑J
i=0 fi(x)| ≤ ϵ for all x.

We first apply this to hyperbolical discounting. Let

fi(n) =

(
1 + kn

1 + k(n+ i)

)
Eπ [Ri] .

That is, fi(n) is the expected reward of π at the i’th step, discounted as though it were the (n +
i)’th step using hyperbolic discounting with parameter k, and rescaled such that the first step is not
discounted (i.e. so that it is multiplied by 1). Now (1 + kn)Jh+n(π) =

∑∞
i=0 fi(n).

We can begin by noting that limn→∞ fi(n) exists, and that it is equal to Eπ [Ri]. To show that∑∞
i=0 fi converges uniformly, recall that Lemma 2 says that there exists a t and a p such that for

any policy π and any state s, we have that if π is run from s, then it will after t steps have entered
a terminal state with probability at least p. Moreover, since S and A are finite, we have that m =
maxs,a,s′ |R(s, a, s′)| < ∞. This means that |Eπ[Ri]| ≤ mp⌊i/t⌋, which in turn also means that
|fi(n)| ≤ mp⌊i/t⌋, since (1 + kn)/(1 + k(n+ i)) ∈ [0, 1]. This implies that for all ℓ,∣∣∣∣∣

∞∑
i=ℓ·t

fi(n)

∣∣∣∣∣ ≤ mtpℓ

1− p
.
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By making ℓ large enough, this quantity can be made arbitrarily close to 0. Thus
∑∞

i=0 fi converges
uniformly. We therefore have that

lim
n→∞

(1 + kn)Jh+n(π) = lim
n→∞

∞∑
i=0

fi(n)

=

∞∑
i=0

lim
n→∞

fi(n)

=

∞∑
i=0

Eπ [Ri]

= Jc(π)

Thus, if we have that Jc(π1) > Jc(π2), then it follows that limn→∞(1 + kn)Jh+n(π1) >
limn→∞(1 + kn)Jh+n(π2). Moreover, we of course have that Jh+n(π1) > Jh+n(π2) if and only
if (1+ kn)Jh+n(π1) > (1+ kn)Jh+n(π2). Thus limn→∞ Jh+n(π1) > limn→∞ Jh+n(π2), which
in turn means that there exist an N ∈ N such that for all n ≥ N , we have Jh+n(π1) > Jh+n(π2).
This completes the first part.

For the second part, simply let

fi(γ) = γiEπ [Ri] .

That is, fi(γ) is the expected reward of π at the i’th step, exponentially discounted with discount
factor γ. Now Jeγ (π) =

∑∞
i=0 fi(γ). We of course have that limγ→1 fi(γ) exists, and that it is

equal to Eπ [Ri], and we can show that
∑∞

i=0 fi converges uniformly using the same argument as
before. We therefore have that

lim
γ→1

Jeγ (π) = lim
γ→1

∞∑
i=0

fi(γ)

=

∞∑
i=0

lim
1→γ

fi(γ)

=

∞∑
i=0

Eπ [Ri]

= Jc(π)

Thus, if Jc(π1) > Jc(π2), then limγ→1 Jeγ (π1) > limγ→1 Jeγ (π2), which in turn means that
there is a Γ ∈ (0, 1) such that, for all γ ∈ [Γ, 1), we have that Jeγ (π1) > Jeγ (π2). This completes
the second part, and the proof.

Theorem 6. Let d be a discount function, and let fτ,d be a behavioural model that is regularly
resolute, regularly naı̈ve, or regularly sophisticated, for transition function τ and discount d. Then
for any γ ∈ (0, 1], unless there is an α ∈ (0, 1] such that d(t) = αγt for all t ≤ |S| − 2, there exists
a transition function τ such that fτ is not OPTτ,γ-identifiable.

Proof. Pick an arbitrary discount function d and exponential discount rate γ, and assume that there
is no α such that d(t) = αγt for all t ≤ |S| − 2.

First assign an integer value to every state in S, so that S = {s0 . . . sn}, where s0 ∈ supp(µ0) and
sn is the terminal state. We assume that A contains at least two actions a1, a2. Now consider the
transition function τ where τ(s0, a1) = s1 and τ(s0, ai) = sn for all ai ̸= a1. For i ∈ {1 . . . n−1},
let τ(si, a) = si+1 for all a, and let τ(sn, a) = sn for all a. This function can be visualised as:
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s0start

s1

. . . (n− 2 steps)

sn−1

sn

a1

a2

Let the reward function R be selected arbitrarily, and let ⟨S,A, τ, µ0, R, d⟩ be the resulting MDP.
Let α = d(0). By assumption, there is no α such that d(t) = αγt for all t ≤ |S| − 2, and so there
must be a t ≤ |S| − 2 such that d(t) ̸= αγt. From the construction of α, we also have that it must
be the case that t ̸= 0.

Let R1 be selected arbitrarily, and consider the reward function R2 where R2(s0, a, sn) =
R1(s0, a, sn) + x/d(0) for all a ̸= a1, R2(st, a, st+1) = R1(st, a, st+1) + x/d(t) for all a, and
R′ = R for all other transitions.7 We now have that R1 and R2 share the same resolute and naı̈ve
advantage function, i.e. AR

1 = AR
2 and AN

1 = AN
2 . Moreover, for any policy π, we have that and

Aπ
1 = Aπ

2 . Therefore, since fτ,d is regularly resolute, regularly naı̈ve, or regularly sophisticated, we
have that fτ,d(R1) = fτ,d(R2).

However, since d(t) ̸= d(0)γt, we can ensure that R1 and R2 have different optimal policies (under
discounting with γ), by making x sufficiently large or sufficiently small. To see this, note that
Q⋆

2(s0, a1) − Q⋆
1(s0, a1) = x · γt/d(t), and Q⋆

2(s0, ai) − Q⋆
1(s0, ai) = x/α for ai ̸= a1. Since

d(t) ̸= αγt, these quantities are not equal. Thus, if a1 is an optimal action at s0 under R1 and
γt/d(t) > 1/α, then for any x that is sufficiently negative, we have that a1 is not an optimal action
at s0 under R2. Similarly, if a1 is an optimal action at s0 under R1 and γt/d(t) < 1/α, then x has
to be sufficiently large, and so on. We can therefore always ensure that R1 and R2 have different
optimal actions at s0.

Thus, for all R1 there is an R2 such that fτ,d(R1) = fτ,d(R2), but R1 and R2 have different optimal
policies. Thus f is not OPTτ,γ-identifiable.

Theorem 7. Let d be a discount function, let τ be a non-trivial acyclic transition function, and let
fτ,d be a behavioural model that is regularly resolute, regularly naı̈ve, or regularly sophisticated,
for transition function τ and discount d. Then for any γ ∈ (0, 1], unless γ = d(1)/d(0), we have
that fτ,d is not OPTτ,γ-identifiable.

Proof. Let τ be an arbitrary non-trivial acyclic transition function, let γ ∈ (0, 1] be selected arbi-
trarily, and let d be an arbitrary discount function such that γ ̸= d(1)/d(0). Moreover, let R1 be an

7In other words, if the agent goes right at s0, it will immediately receive an extra x/d(0) reward, and if it
goes left, it will receive an extra x/d(t) reward after t steps.
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arbitrary reward function. We will show that there exists a reward function R2 such that R1 and R2

have different optimal policies (under τ and γ), but fτ,d(R1) = fτ,d(R2).

Recall that a state s′ is controllable if there is a non-terminal state s and actions a1, a2 such that
P(τ(s, a1) = s′) ̸= P(τ(s, a2) = s′). Since τ is non-trivial, there is at least one controllable state.
Moreover, since τ is acyclic, and since S is finite, there must be a controllable state that cannot be
reached from any other controllable state. Call this state sc. Since sc is not terminal, there are states
which are reachable from sc.

Now let R2 be the reward function where R2(s, a, sc) = R1(s, a, sc) + x/d(0) and R2(sc, a, s) =
R1(sc, a, s) − x/d(1) for all s and a, and R2 = R1 for all other transitions. We now have that
R1 and R2 share the same resolute and naı̈ve advantage function, i.e. AR

1 = AR
2 and AN

1 = AN
2 .

Moreover, for any policy π, we have that and Aπ
1 = Aπ

2 . To see this, note that:

1. In all states s which are neither reachable from sc, nor able to reach sc, we of course have
that A{∗}

1 = A
{∗}
2 , for ∗ ∈ {R,N, π}. R1 and R2 only differ on transitions that begin

or end in sc, and so they must induce the same advantage functions in states which are
disconnected from sc.

2. In all states s which are reachable from sc, we also have that A{∗}
1 = A

{∗}
2 , for ∗ ∈

{R,N, π}. Again, R1 and R2 only differ on transitions that begin or end in sc. Since τ is
acyclic, we have that if a state s is reachable from sc, then it cannot reach sc. Thus R1 and
R2 must induce the same advantage functions in such states.

3. In sc, we have that every outgoing transition gets an extra x · d(0)/d(1) reward, and
that any subsequent transition after that is unchanged. This straightforwardly means
that for all actions a, we have that QN

2 (sc, a) = QN
1 (sc, a) + x · d(0)/d(1), and that

Qπ
2 (sc, a) = Qπ

1 (sc, a) + x · d(0)/d(1) for all π. Thus AN
2 (sc, a) = AN

1 (sc, a) and
Aπ

2 (sc, a) = Aπ
1 (sc, a). Similarly, AR

2 (sc, t, a) = AR
1 (sc, t, a) for all t.

4. Finally, for the most complicated case, suppose s can reach sc, and let a be an arbitrary
action. Let As,a be the difference between the expected future discounted R1-reward and
R2-reward, if you take action a in state s and then following π, conditional on the event that
τ(s, a) returns a state which is controllable from s. Moreover, let Bs,a be the difference
between the expected future discounted R1-reward and R2-reward, if you take action a in
state s and then following π, conditional on the event that τ(s, a) returns a state which
is not controllable from s. Now Qπ

2 (s, a) = Qπ
1 (s, a) + As,a + Bs,a. Moreover, from

the definition of controllable states, we have that Bs,a1
= Bs,a2

for all actions s1, s2, and
so we can express this variable as Bs. Next, note that if a state s′ is controllable from
s, then either s′ = sc, or sc is not reachable from s′ (since sc is not reachable from any
controllable state). If s′ ̸= sc, and sc is not reachable from s′, then the difference in future
discounted R1-reward and R2-reward, conditional on transitioning to s′, is zero. Similarly,
the difference in future discounted R1-reward and R2-reward, conditional on transitioning
to sc, is d(0) · x/d(0)− d(1) · x/d(1) = 0. Thus, As,a = 0, and each Q-function is shifted
by a constant value Bs, which means that the advantage functions are unaffected.

Thus R1 and R2 share the same resolute and naı̈ve advantage function, i.e. AR
1 = AR

2 and AN
1 = AN

2 .
Moreover, for any policy π, we have that and Aπ

1 = Aπ
2 . Therefore, since fτ,d is regularly resolute,

regularly naı̈ve, or regularly sophisticated, we have that fτ,d(R1) = fτ,d(R2).

However, by making x sufficiently large or sufficnently small, we can ensure that R1 and R2 have
different optimal policies. To see this, note that since sc is controllable, there must be a state si
and actions a1, a2 such that P(τ(si, a1) = sc) ̸= P(τ(si, a2) = sc). Let P(τ(si, a1) = sc) = p
and P(τ(si, a2) = sc) = q. Since τ is acyclic, we have that Q⋆

2(s, a) = Q⋆
1(s, a) for all states

s which are reachable from sc, and Q⋆
2(sc, a) = Q⋆

1(sc, a) − x/d(1) for all a. However, in si,
we have that Q⋆

2(si, a1) = Q⋆
1(si, a1) + p(x/d(0) − γx/d(1)) and Q⋆

2(si, a2) = Q⋆
1(si, a2) +

q(x/d(0) − γx/d(1)). Since γ ̸= d(1)/d(0), we have that x/d(0) − γx/d(1) ̸= 0. Moreover,
p ̸= q. Therefore, by making x larger or smaller, we can increase the value of Q⋆

2(si, a1) relative
to Q⋆

2(si, a2), and vice versa. In particular, if Q⋆
1(si, a1) ≥ Q⋆

1(si, a2), then we can ensure that
Q⋆

1(si, a1) < Q⋆
1(si, a2), and vice versa. This means that we can ensure that R1 and R2 have
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different optimal policies. Thus, for all R1 there is an R2 such that fτ,d(R1) = fτ,d(R2), but R1

and R2 have different optimal policies. Thus fτ,d is not OPTτ,γ-identifiable.

We should also note that Theorem 7 will be hard to generalise, without adding assumptions. To see
this, consider a transition function that looks as follows:

s0start

s1 s2

s3

This transition function is acylclic and non-trivial, but here, for any γ and any discount function
d such that d(1)/d(0), we have that any regularly resolute, regularly naı̈ve, or regularly sophisti-
cated behavioural model fτ,d is OPTτ,γ-identifiable. This makes it tricky to generalise Theorem 7,
without adding stronger assumptions about d.
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