A PROOFS

In this appendix, we prove all of our theoretical results.

A.1 CORE LEMMAS

Let $d: \Pi \times \Pi \to \mathbb{R}$ be the function given by $d(\pi_1, \pi_2) = \frac{1}{e^t}$, where t is the length of the shortest trajectory ξ such that $\pi_1(\xi) \neq \pi_2(\xi)$, or 0 if $\pi_1 = \pi_2$.

Lemma 1. (Π, d) is a compact metric space.

Proof. We must first show that d is a metric, which requires showing that it satisfies the following:

- 1. Identity: $d(\pi_1, \pi_2) = 0$ if and only if $\pi_1 = \pi_2$.
- 2. Positivity: $d(\pi_1, \pi_2) \ge 0$.
- 3. Symmetry: $d(\pi_1, \pi_2) = d(\pi_2, \pi_1)$.
- 4. Triange Inequality: $d(\pi_1, \pi_3) \le d(\pi_1, \pi_2) + d(\pi_2, \pi_3)$.

It is straightforward to see that 1-3 hold. For 4, let t be the length of the shortest history h such that $\pi_1(h) \neq \pi_3(h)$. Note that if $d(\pi_1, \pi_3) > d(\pi_1, \pi_2)$ and $d(\pi_1, \pi_3) > d(\pi_2, \pi_3)$, then it must be the case that $\pi_1(h) = \pi_2(h)$ for all h of length $\leq t$, and that $\pi_1(h) = \pi_2(h)$ for all h of length $\leq t$. However, this is a contradiction, since it would imply that $\pi_1(h) = \pi_3(h)$ for all h of length $\leq t$. Thus either $d(\pi_1, \pi_3) \leq d(\pi_1, \pi_2)$ or $d(\pi_1, \pi_3) \leq d(\pi_2, \pi_3)$, which in turn implies that $d(\pi_1, \pi_3) \leq d(\pi_1, \pi_2) + d(\pi_2, \pi_3)$.

Thus d is a metric, which means that (Π, d) is a metric space. Next, we will prove that (Π, d) is compact, using the Heine-Borel theorem. To do this, we must show that (Π, d) is totally bounded and complete.

To see that (Π, d) is totally bounded, let ϵ be an arbitrary positive real number, and let $t = \ln(1/\epsilon)$, so that $\epsilon = 1/e^t$. Moreover, let $\hat{\Pi}$ be the set of all policies that always take action a_1 after time t(but which may behave arbitrarily before time t). Now $\hat{\Pi}$ is finite, and for every policy π_1 there is a policy $\pi_2 \in \hat{\Pi}$ such that $d(\pi_1, \pi_2) \leq \epsilon$ (given by letting $\pi_2(\xi) = \pi_1(\xi)$ for all trajectories ξ with length at most t). Thus, for every $\epsilon > 0$, (Π, d) has a finite cover. Thus (Π, d) is totally bounded.

To see that (Π, d) is complete, let $\{\pi_i\}_{i=0}^{\infty}$ be a Cauchy sequence. This implies that for every $\epsilon > 0$ there is a positive integer N such that for all $n, m \ge N$ we have $d(\pi_n, \pi_m) < \epsilon$. In our case, this means that there, for each time t is a positive integer N such that for all $n, m \ge N$, we have that $\pi_n(\xi) = \pi_m(\xi)$ for all trajectories ξ shorter than t steps. We can thus define a policy π_∞ by letting $\pi_\infty(\xi) = \delta$ (where $\delta \in \Delta(\mathcal{A})$) if there is an N such that, for all $n \ge N$, we have that $\pi_n(\xi) = \delta$. Now $\lim_{i\to\infty} \{\pi_i\}_{i=0}^{\infty} = \pi_\infty$, and $\pi_\infty \in (\Pi, d)$. Thus every Cauchy sequence in (Π, d) has a limit that is also in (Π, d) , and so (Π, d) is complete.

Thus, by the Heine-Borel theorem, we have that (Π, d) is a compact metric space.

Lemma 2. $\langle S, A, \tau, \mu_0, R, d \rangle$ is episodic if and only if there exists $n \in \mathbb{N}$, $p \in (0, 1]$ such that for any policy π and state s, if π is run from s, then after n steps, it will have entered a terminal state with probability at least p.

Proof. For the first direction, assume that there exists $n \in \mathbb{N}$, $p \in (0, 1]$ such that for any policy π and any state s, if π is run from s, then after n steps, it will have entered a terminal state with probability at least p. Then for any policy π , we have that π after kn steps will have entered a terminal state with probability at least $1 - p^k$. We of course have that $\lim_{k\to\infty} 1 - p^k = 1$, and so π will almost surely eventually enter a terminal state. Since π was chosen arbitrarily, this means that $\langle S, A, \tau, \mu_0, R, d \rangle$ must be terminal.

For the other direction, assume that $\langle S, A, \tau, \mu_0, R, d \rangle$ is episodic. Let π and s be selected arbitrarily. Since every policy eventually enters a terminal state with probability 1, there must be a trajectory

 s, a_0, s_1, \ldots starting in s and ending in a terminal state, such that each transition has positive probability under π and τ . Moreover, the *shortest* such trajectory can contain no more than |S| states – otherwise there must be a loop that occurs with probability 1 (in which case the MDP would not be episodic). Since π and s were selected arbitrarily, this shows that there is an $n = |S| \in \mathbb{N}$ such that for any policy π and state s, if π is run from s, then after n steps, it will have entered a terminal state with positive probability. It remains to be shown that this probability is bounded below by some positive constant p.

Let $q(\pi, s)$ be the probability that π will have entered a terminal state after n steps, starting in state s. Note that this function is continuous, when viewed as a function from (Π, d) to [0, 1]. In particular, if $\pi_1(\xi) = \pi_2(\xi)$ for all trajectories ξ of length at most n, then $q(\pi_1, s) = q(\pi_2, s)$. Thus, for every $\epsilon > 0$ there is a $\delta = \ln(1/n)$ such that if $d(\pi_1, \pi_2) < \delta$, then $|q(\pi_1, s) - q(\pi_2, s)| = 0 < \epsilon$. Moreover, by Lemma 1, we have that (Π, d) is a compact metric space. Thus, by the extreme value theorem, for each s there is a policy $\pi_s \in \Pi$ that minimises $q(\pi, s)$. Moreover, we have already established that for any policy π and state s, if π is run from s, then after n steps, it will have entered a terminal state with positive probability. Thus $q(\pi_s, s) > 0$. Since S is finite, we can now set p to $\min_s(\pi_s, s)$, and thus complete the proof.

A.2 CONVERGENT POLICY VALUES

In this section, we provide the proofs of the claims regarding convergent policy values.

Proposition 1. If $\langle S, A, \tau, \mu_0, R, d \rangle$ is episodic, then we have that $|V^{\pi}(s)| < \infty$ for all policies π and all states s.

Proof. As per Lemma 2, in any episodic MDP, there is an n and a p such that for any state s and policy π , we have that π after n steps will have entered a terminal state with probability at least p. Moreover, since S and A are finite, we have that $m = \max_{s,a,s'} |R(s,a,s')| \leq \infty$. Since $d(t) \in [0,1]$, this means the discounted reward obtained over any sequence of n steps is at least -mn, and at most mn. Since the probability of entering a terminal state along any such sequence is at least p, we have that

$$|V^{\pi}(s)| \le \left(\frac{mn}{1-p}\right),$$

which is finite.

Proposition 2. If $\langle S, A, \tau, \mu_0, R_1, d \rangle$ is not episodic, and $\sum_{t=0}^{\infty} d(t) = \infty$, then there is a reward function R_2 , policy π , and state s, such that $V^{\pi}(s) = \infty$ in $\langle S, A, \tau, \mu_0, R_2, d \rangle$.

Proof. Let R_2 be the reward function such that $R_2(s, a, s') = 1$ unless s or s' is terminal. Now, since $\langle S, A, \tau, \mu_0, R_1, d \rangle$ is not episodic, there is a policy π that, with positive probability, never enters a terminal state. Let this probability be p. This means that there must be an initial state s_0 such that the probability that π never enters a terminal state, conditional on the first state being s_0 , is at least p. This means that $V^{\pi}(s_0) \ge p \cdot \sum_{t=0}^{\infty} 1 = \infty$ in the MDP $\langle S, A, \tau, \mu_0, R_2, d \rangle$.

A.3 TEMPORAL CONSISTENCY

Proposition 3. A discount function d is temporally consistent if and only if $d(t) = \alpha \gamma^t$ for some $\alpha, \gamma \in [0, 1]$.

The proof of this proposition is given in Lattimore & Hutter (2014) (their Theorem 13). Their terminology is slightly different from ours, but their proof applies to our case with essentially no modification.

A.4 CORRESPONDENCE TO OPTIMALITY

Here, we will establish the relationship between optimal policies, resolute policies, naïve policies, and sophisticated policies, in the case of exponential discounting.

Theorem 1. If $\langle S, A, \tau, \mu_0, R, \gamma \rangle$ is an MDP with exponential discounting, then the following are equivalent:

- 1. π is optimal.
- 2. π is strongly resolute.
- 3. π is naïve.
- 4. π is sophisticated.

Additionally, the following are also equivalent:

5. π is weakly resolute.

6. π maximises $\mathcal{J}(\pi)$.

Moreover, 1-4 imply 5-6.

Proof. First of all, in an exponentially discounted MDP, π_1 is optimal if for all states s and policies π_2 , we have $V^{\pi_1}(s) \ge V^{\pi_2}(s)$, and π_1 is strongly resolute if for all states s, times t, and policies π_2 , we have $V^{\pi_1}(s,t) \ge V^{\pi_2}(s,t)$. Moreover, since exponential discounting is temporally consistent, we have that for all t, $V^{\pi_1}(s) \ge V^{\pi_2}(s)$ if and only if $V^{\pi_1}(s,t) \ge V^{\pi_2}(s,t)$. From this it follows that 1 and 2 are equivalent in an exponentially discounted MDP.

Secondly, in an exponentially discounted MDP, we have that a policy π is optimal if and only if $\operatorname{supp}(\pi(s)) \subseteq \operatorname{argmax}_a(Q^*(s, a))$, and π is naïve if and only if for each state s, if $a \in \operatorname{supp}(\pi(s))$, then there is a policy π^* such that π^* maximises $V^{\pi^*}(s)$ and $a \in \operatorname{supp}(\pi^*(s))$. Moreover, if π^* maximises $V^{\pi^*}(s)$, then each $a \in \operatorname{supp}(\pi^*(s))$ must maximise Q^* . From this, it follows that 1 and 3 are equivalent in exponentially discounted MDPs.

Furthermore, in an exponentially discounted MDP, we have that a policy π is optimal if and only if it is a fixed point under *policy iteration*, and π is sophisticated if and only if $\operatorname{supp}(\pi(s)) \subseteq \operatorname{argmax} Q^{\pi}(s, a)$. From this, it follows that 1 and 4 are equivalent in exponentially discounted MDPs.

Next, note that in an exponentially discounted MDP, 5 and 6 are definitionally directly equivalent. Finally, from the fact that optimal policies are optimal from all initial states, we have that 1-4 imply 5-6. This completes the proof. $\hfill \Box$

A.5 RESOLUTE POLICIES

We here provide our proofs about resolute policies.

Lemma 3. In any episodic MDP $\langle S, A, \tau, \mu_0, R, d \rangle$, each state *s* and time *t*, there exists a policy π_1 such that $V^{\pi_1}(s, t) \ge V^{\pi_2}(s, t)$ for all π_2 .

Proof. We will show that $V^{\pi}(s,t)$ is continuous, when viewed as a function from (Π, d) to \mathbb{R} . Let π_1 be any policy, and ϵ any positive real number. Since S and A are finite, we have $m = \max_{s,a,s'} |R(s,a,s')| < \infty$. Moreover, as per Lemma 2, since the MDP is episodic, there is an n and p such that any policy π after n steps will have entered a terminal state with probability at least p. Thus, if $\pi_1(\xi) = \pi_2(\xi)$ for all trajectories of length kn, then the difference in reward between π_1 and π_2 can be at most $mnp^k/(1-p)$. For any k that is sufficiently large (and hence for any $d(\pi_1, \pi_2)$ that is sufficiently small), we have that this quantity is below ϵ . Thus, for every ϵ there is a δ such that, if $d(\pi_1, \pi_2) < \delta$ then $|V^{\pi_1}(s, t) - V^{\pi_1}| < \epsilon$. This means that $V^{\pi}(s, t)$ is continuous, when viewed as a function from (Π, d) to \mathbb{R} .

By Lemma 1, we have that (Π, d) is compact. Thus, by the extreme value theorem, there must exist a policy π_1 such that $V^{\pi_1}(s, t) \ge V^{\pi_2}(s, t)$ for all π_2 .

Proposition 4. In any episodic MDP, the resolute Q-function Q^{R} exists and is unique.

Proof. Immediate from Lemma 3.

Theorem 2. In any episodic MDP, there exists a deterministic strongly resolute policy.

Proof. By Proposition 4, in any episodic MDP, the resolute Q-function $Q^{\mathbb{R}}$ exists and is unique. We now have that any policy π is strongly resolute if, for each trajectory ξ , we have that $\pi(\xi) \in \operatorname{argmax}_a Q^{\mathbb{R}}(s, |\xi|, a)$, where s is the last state in ξ . There always exists a deterministic policy satisfying this criterion.

Example 2. Let Loop be the 4-state MDP where $S = \{s_0, s_1, s_2, s_t\}$, $A = \{up, down\}$, and $\mu_0 = s_0$. We have that $\tau(s_0, up) = s_1$ and $\tau(s_0, down) = s_2$. For $s \in \{s_1, s_2\}$, we have that $\tau(s, a) = s_0$ with probability 0.95, and s_t with probability 0.05, for both actions $a \in A$. The reward function R is zero everywhere, except that $R(s_0, up, s_1) = 3$ and $R(s_2, a, s') = 5$ for both $a \in A$ and both $s' \in \{s_0, s_t\}$. The discount d is the hyperbolic discount function, d(t) = 1/(1+t). This environment can be depicted as:

This MDP repeatedly gives the agent a choice between receiving 2 reward instantaneously, or 5 reward in one step, where there is a 5% chance that the episode will end after each choice is made. With hyperbolic discounting, we have that 3d(t) > 5d(t+1) if t = 0, and that 3d(t) < 5d(t+1) for all $t \ge 1$. In other words, the agent would want to pick 3 reward the first time, and 5 reward afterwards.

Proposition 5. There exists episodic MDPs in which every (strongly or weakly) resolute policy is non-stationary.

Proof. Consider the MDP Loop, given in Example 2. We will show that there is a non-stationary policy that outperforms every stationary policy in this MDP, and hence prove that all resolute policies must be non-stationary.

In this MDP, the only state where the agent can make a meaningful choice is in state s_0 . Assume that π_p is the stationary policy that chooses left with probability p, and otherwise chooses right. Then $\mathcal{J}(\pi_p)$ is

$$\sum_{i=1}^{\infty} (0.95^i) * (3p/(1+2i) + 5 * (1-p)/(2+2i))$$

This sum can in turn be equivalently expressed as

$$\frac{1}{38} \Big(-100 \log(20)p + 12\sqrt{95} \tanh^{-1} \left(0.5\sqrt{19/5} \right) p \\ -19p + 100 \log(20) - 95 \Big).$$

This expression is maximised on $p \in [0, 1]$ for p = 0, in which case $\mathcal{J}(\pi_p) \approx 5.38$. This is thus the highest value obtainable by any stationary policy.

Consider now the policy π where $\pi(\xi) = \text{left if } |\xi| = 1$, and otherwise returns right (that is, π selects left on its first visit to s_0 , and afterwards selects right). Now $\mathcal{J}(\pi)$ is

$$3 + 0.95 * 5 * \sum_{i=2}^{\infty} (0.95^i / (2+2i)) \approx 6.99.$$

We have thus shown that there is a non-stationary policy π such that $\mathcal{J}(\pi) > \mathcal{J}(\pi_p)$ for all stationary policies π_p . This, in turn, means that all (strongly or weakly) resolute policies in Loop must be non-stationary.

A.6 NAÏVE POLICIES

We here provide our proofs about naïve policies.

Proposition 6. In any episodic MDP, the naïve Q-function Q^N exists and is unique.

Proof. Immediate from Proposition 4.

Theorem 3. In any episodic MDP, there exists a stationary deterministic naïve policy.

Proof. By Proposition 4, in any episodic MDP, the naïve Q-function Q^N exists and is unique. We now have that any policy π is naïve if, for each trajectory ξ , we have that $\pi(\xi) \in \operatorname{argmax}_a Q^n(s, a)$, where s is the last state in ξ . There always exists a stationary deterministic policy satisfying this criterion.

A.7 SOPHISTICATED POLICIES

We here provide our proofs about sophisticated policies.

Theorem 4. In any episodic MDP, there exists a stationary sophisticated policy.

Proof. By the Kakutani fixed-point theorem, if X is a non-empty, convex, and compact subset of a Euclidean space \mathbb{R}^n , and $\phi: X \to \mathcal{P}(X)$ is a set valued function with the property that

- 1. $\phi(x)$ is non-empty, closed, and convex for all $x \in X$, and
- 2. ϕ is upper hemicontinuous,

then ϕ has a fixed point.

Let $\hat{\Pi}$ be the set of all stationary policies. We say that a policy π_2 is a *local improvement* of π_1 in s if $\operatorname{supp}(\pi_2(s)) \subseteq \operatorname{argmax}_a Q^{\pi_1}(s, a)$. Let $\phi : \hat{\Pi} \to \mathcal{P}(\hat{\Pi})$ be the function that, given π , returns the set of all policies which are local improvements of π in all s.

We can begin by noting that $\hat{\Pi}$ of course is a non-empty, convex, and compact subset of the Euclidean space $\mathbb{R}^{|S||A|}$. It is immediate from the definition that ϕ is both convex and closed. Moreover, since the MDP is episodic, we have that $Q^{\pi}(s, a)$ exists (i.e. is finite) for all π, s, a , by Proposition 1. Since there is a finite number of actions, we thus also have that $\phi(\pi)$ is non-empty.

Claude Berge's Maximum Theorem says that if X and Y are topological spaces, and $f: X \times Y \to \mathbb{R}$ is continuous, and if moreover

- 1. $f^{\star}(y) = \sup\{f(x,y) : x \in X\}$
- 2. $C(y) = \{x : f(x, y) = f^{\star}(x)\}$

then f^* is continuous, and C is upper hemicontinuous. Let X and Y both be equal to Π , and let $f: \Pi \times \Pi \to \mathbb{R}$ be the function where $f(\pi_1, \pi_2) = \sum_s \mathbb{E}_{a \sim \pi_2(s)}[Q^{\pi_1}(s, a)]$. Now f is continuous, and $C(\pi_1) = \{\pi_2 : f(\pi_1, \pi_2) = f^*(\pi_1)\} = \phi(\pi_1)$. Claude Berge's Maximum Theorem then implies that ϕ is upper hemicontinuous.

The Kakutani fixed-point theorem then implies that ϕ must have a fixed point, which means that there must be a sophisticated policy. Moreover, by construction, this policy is stationary.

Example 3. Let Tempt be the MDP where S has 32 states $\{s_0, s_1, \ldots, s_{31}\}$, $\mathcal{A} = \{up, down\}$, and $\mu_0 = s_0$. For $i \in 2 \ldots 30$, we have that $\tau(s_i, a) = s_{i+1}$ for both $a \in \mathcal{A}$, and we have that $\tau(s_{31}, a) = s_{31}$ for both $a \in \mathcal{A}$. At s_0 , we have that $\tau(s_0, up) = s_1$ and $\tau(s_0, down) = s_2$, and at s_1 , we have that $\tau(s_1, a)$ for both $a \in \mathcal{A}$ returns s_0 with probability 0.99, and otherwise returns s_{31} . The reward function R is zero everywhere, except that $R(s_{30}, a, s_{31}) = 100$ for both $a \in \mathcal{A}$, and $R(s_0, up, s_1) = 1$. The discount d is the hyperbolic discount function, d(t) = 1/(1 + t). This environment is depicted in the following graph:

Note that Tempt is episodic, with s_{31} being the terminal state. Moreover, state s_0 is the only state in which the agent has a meaningful choice to make; in all other states, τ does not depend on the action. Note also that τ is deterministic everywhere, except at s_1 – the nondeterminism at s_1 is to ensure that Tempt is episodic.

Proposition 7. There exists episodic MDPs in which every sophisticated policy is nondeterministic.

Proof. Consider the MDP Tempt, given in Example 3, and let π be any deterministic policy. There are now two cases; either π always selects up, or there exists a ξ such that $\pi(\xi) = \text{down}$.

Case 1: Suppose $\pi(\xi) = up$ for all ξ . We then have

$$Q^{\pi}(\xi, up) \approx 3.008$$
 $Q^{\pi}(\xi, down) = 3.\overline{3}$

We thus have that $Q^{\pi}(\xi, \text{down}) > Q^{\pi}(\xi, \text{up})$, even though $\pi(\xi) = \text{up}$. This means that π is not sophisticated.

Case 2: Suppose $\pi(\xi) = \text{down for some } \xi$. We then have

$$Q^{\pi}(\xi, up) \approx 4.125$$
 $Q^{\pi}(\xi, down) = 3.\overline{3}$

We thus have that $Q^{\pi}(\xi, up) > Q^{\pi}(\xi, down)$, even though $\pi(\xi) = down$. This means that π is not sophisticated.

Since Case 1 and 2 are exhaustive, this means that no deterministic policy is sophisticated in Tempt. However, Tempt is episodic, so by Theorem 4, there must be a policy that is sophisticated in Tempt. Hence, every sophisticated policy in Tempt is nondeterministic.

Proposition 8. There exists an episodic MDP M and policies π_1, π_2 such that both π_1 and π_2 are sophisticated in M, but $Q^{\pi_1} \neq Q^{\pi_2}$.

Proof. Consider the MDP Tempt = $\langle S, A, \tau, \mu_0, R, d \rangle$, given in Example 3, and let Tempt₂ = $\langle S, A, \tau, \mu_0, R_2, d \rangle$ be the MDP that is identical to Tempt, except that $R_2 = -R$. Let π_{up} be the policy that always chooses the action up, and π_{down} be the policy that always chooses the action down. We now have that $Q^{\pi_{up}}$ and $Q^{\pi_{down}}$ are given by:

 $\begin{array}{ll} Q^{\pi_{\rm up}}(s_0,{\rm up})\approx-3.008 & Q^{\pi_{\rm up}}(s_0,{\rm down})=-3.\overline{3}\\ Q^{\pi_{\rm down}}(s_0,{\rm up})\approx-4.125 & Q^{\pi_{\rm down}}(s_0,{\rm down})=-3.\overline{3} \end{array}$

From this, we have that both π_{up} and π_{down} are sophisticated. However, $Q^{\pi_{up}} \neq Q^{\pi_{down}}$.

A.8 IDENTIFIABILITY

Theorem 5. Assume we have an episodic MDP, let u(t) = 1, and let π_1 and π_2 be policies such that

$$\mathcal{J}_u(\pi_1) > \mathcal{J}_u(\pi_2)$$

Then if $h(t) = 1/(1+k \cdot t)$, then there exist an $N \in \mathbb{N}$ such that for all $n \ge N$, if $h^{+n}(t) = h(t+n)$, we have

$$\mathcal{J}_{h^{+n}}(\pi_1) > \mathcal{J}_{h^{+n}}(\pi_2).$$

Moreover, there is a $\Gamma \in (0,1)$ such that, for all $\gamma \in [\Gamma, 1)$, if $e^{\gamma}(t) = \gamma^t$, then we have that $\mathcal{J}_{e^{\gamma}}(\pi_1) > \mathcal{J}_{e^{\gamma}}(\pi_2)$.

Proof. We will prove this by showing that

$$\lim_{n \to \infty} (1 + kn) \mathcal{J}_{h^{+n}}(\pi) = \lim_{\gamma \to 1} \mathcal{J}_{e^{\gamma}}(\pi) = \mathcal{J}_u(\pi).$$

From this, it follows that if $\mathcal{J}_u(\pi_1) > \mathcal{J}_u(\pi_2)$, then $\mathcal{J}_{h^{+n}}(\pi_1) > \mathcal{J}_{h^{+n}}(\pi_2)$ and $\mathcal{J}_{e^{\gamma}}(\pi_1) > \mathcal{J}_{e^{\gamma}}(\pi_2)$ for all sufficiently large n, and all γ sufficiently close to 1. Note that the (1 + kn)-term is a scaling term included to prevent $\mathcal{J}_{h^{+n}}(\pi)$ from approaching zero – the precise purpose of this will be made more clear later.

Recall that if $\lim_{x\to\infty} f_i(x)$ exists, and if $\sum_{i=0}^{\infty} f_i$ converges uniformly, then

2

$$\lim_{x \to \infty} \sum_{i=0}^{\infty} f_i(x) = \sum_{i=0}^{\infty} \lim_{x \to \infty} f_i(x).$$

Recall also that a sequence of functions $\sum_{i=0}^{\infty} f_i$ converges uniformly if for all ϵ there is a J such that if $j \ge J$ then $|\sum_{i=0}^{j} f_i(x) - \sum_{i=0}^{J} f_i(x)| \le \epsilon$ for all x.

We first apply this to hyperbolical discounting. Let

$$f_i(n) = \left(\frac{1+kn}{1+k(n+i)}\right) \mathbb{E}_{\pi}\left[R_i\right].$$

That is, $f_i(n)$ is the expected reward of π at the *i*'th step, discounted as though it were the (n + i)'th step using hyperbolic discounting with parameter k, and rescaled such that the first step is not discounted (i.e. so that it is multiplied by 1). Now $(1 + kn)\mathcal{J}_{h^{+n}}(\pi) = \sum_{i=0}^{\infty} f_i(n)$.

We can begin by noting that $\lim_{n\to\infty} f_i(n)$ exists, and that it is equal to $\mathbb{E}_{\pi}[R_i]$. To show that $\sum_{i=0}^{\infty} f_i$ converges uniformly, recall that Lemma 2 says that there exists a t and a p such that for any policy π and any state s, we have that if π is run from s, then it will after t steps have entered a terminal state with probability at least p. Moreover, since S and A are finite, we have that $m = \max_{s,a,s'} |R(s,a,s')| < \infty$. This means that $|\mathbb{E}_{\pi}[R_i]| \leq mp^{\lfloor i/t \rfloor}$, which in turn also means that $|f_i(n)| \leq mp^{\lfloor i/t \rfloor}$, since $(1 + kn)/(1 + k(n + i)) \in [0, 1]$. This implies that for all ℓ ,

$$\left|\sum_{i=\ell\cdot t}^{\infty} f_i(n)\right| \le \frac{mtp^{\ell}}{1-p}.$$

By making ℓ large enough, this quantity can be made arbitrarily close to 0. Thus $\sum_{i=0}^{\infty} f_i$ converges uniformly. We therefore have that

$$\lim_{n \to \infty} (1 + kn) \mathcal{J}_{h^{+n}}(\pi) = \lim_{n \to \infty} \sum_{i=0}^{\infty} f_i(n)$$
$$= \sum_{i=0}^{\infty} \lim_{n \to \infty} f_i(n)$$
$$= \sum_{i=0}^{\infty} \mathbb{E}_{\pi} [R_i]$$
$$= \mathcal{J}_c(\pi)$$

Thus, if we have that $\mathcal{J}_c(\pi_1) > \mathcal{J}_c(\pi_2)$, then it follows that $\lim_{n\to\infty}(1+kn)\mathcal{J}_{h^{+n}}(\pi_1) > \lim_{n\to\infty}(1+kn)\mathcal{J}_{h^{+n}}(\pi_2)$. Moreover, we of course have that $\mathcal{J}_{h^{+n}}(\pi_1) > \mathcal{J}_{h^{+n}}(\pi_2)$ if and only if $(1+kn)\mathcal{J}_{h^{+n}}(\pi_1) > (1+kn)\mathcal{J}_{h^{+n}}(\pi_2)$. Thus $\lim_{n\to\infty}\mathcal{J}_{h^{+n}}(\pi_1) > \lim_{n\to\infty}\mathcal{J}_{h^{+n}}(\pi_2)$, which in turn means that there exist an $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\mathcal{J}_{h^{+n}}(\pi_1) > \mathcal{J}_{h^{+n}}(\pi_2)$. This completes the first part.

For the second part, simply let

$$f_i(\gamma) = \gamma^i \mathbb{E}_{\pi} \left[R_i \right].$$

That is, $f_i(\gamma)$ is the expected reward of π at the *i*'th step, exponentially discounted with discount factor γ . Now $\mathcal{J}_{e^{\gamma}}(\pi) = \sum_{i=0}^{\infty} f_i(\gamma)$. We of course have that $\lim_{\gamma \to 1} f_i(\gamma)$ exists, and that it is equal to $\mathbb{E}_{\pi}[R_i]$, and we can show that $\sum_{i=0}^{\infty} f_i$ converges uniformly using the same argument as before. We therefore have that

$$\lim_{\gamma \to 1} \mathcal{J}_{e^{\gamma}}(\pi) = \lim_{\gamma \to 1} \sum_{i=0}^{\infty} f_i(\gamma)$$
$$= \sum_{i=0}^{\infty} \lim_{1 \to \gamma} f_i(\gamma)$$
$$= \sum_{i=0}^{\infty} \mathbb{E}_{\pi} [R_i]$$
$$= \mathcal{J}_c(\pi)$$

Thus, if $\mathcal{J}_c(\pi_1) > \mathcal{J}_c(\pi_2)$, then $\lim_{\gamma \to 1} \mathcal{J}_{e^{\gamma}}(\pi_1) > \lim_{\gamma \to 1} \mathcal{J}_{e^{\gamma}}(\pi_2)$, which in turn means that there is a $\Gamma \in (0, 1)$ such that, for all $\gamma \in [\Gamma, 1)$, we have that $\mathcal{J}_{e^{\gamma}}(\pi_1) > \mathcal{J}_{e^{\gamma}}(\pi_2)$. This completes the second part, and the proof.

Theorem 6. Let d be a discount function, and let $f_{\tau,d}$ be a behavioural model that is regularly resolute, regularly naïve, or regularly sophisticated, for transition function τ and discount d. Then for any $\gamma \in (0, 1]$, unless there is an $\alpha \in (0, 1]$ such that $d(t) = \alpha \gamma^t$ for all $t \leq |\mathcal{S}| - 2$, there exists a transition function τ such that f_{τ} is not $OPT_{\tau,\gamma}$ -identifiable.

Proof. Pick an arbitrary discount function d and exponential discount rate γ , and assume that there is no α such that $d(t) = \alpha \gamma^t$ for all $t \leq |\mathcal{S}| - 2$.

First assign an integer value to every state in S, so that $S = \{s_0 \dots s_n\}$, where $s_0 \in \text{supp}(\mu_0)$ and s_n is the terminal state. We assume that A contains at least two actions a_1, a_2 . Now consider the transition function τ where $\tau(s_0, a_1) = s_1$ and $\tau(s_0, a_i) = s_n$ for all $a_i \neq a_1$. For $i \in \{1 \dots n-1\}$, let $\tau(s_i, a) = s_{i+1}$ for all a_i and let $\tau(s_n, a) = s_n$ for all a. This function can be visualised as:

Let the reward function R be selected arbitrarily, and let $\langle S, A, \tau, \mu_0, R, d \rangle$ be the resulting MDP. Let $\alpha = d(0)$. By assumption, there is no α such that $d(t) = \alpha \gamma^t$ for all $t \leq |S| - 2$, and so there must be a $t \leq |S| - 2$ such that $d(t) \neq \alpha \gamma^t$. From the construction of α , we also have that it must be the case that $t \neq 0$.

Let R_1 be selected arbitrarily, and consider the reward function R_2 where $R_2(s_0, a, s_n) = R_1(s_0, a, s_n) + x/d(0)$ for all $a \neq a_1$, $R_2(s_t, a, s_{t+1}) = R_1(s_t, a, s_{t+1}) + x/d(t)$ for all a, and R' = R for all other transitions.⁷ We now have that R_1 and R_2 share the same resolute and naïve advantage function, i.e. $A_1^{\rm R} = A_2^{\rm R}$ and $A_1^{\rm N} = A_2^{\rm N}$. Moreover, for any policy π , we have that and $A_1^{\pi} = A_2^{\pi}$. Therefore, since $f_{\tau,d}$ is regularly resolute, regularly naïve, or regularly sophisticated, we have that $f_{\tau,d}(R_1) = f_{\tau,d}(R_2)$.

However, since $d(t) \neq d(0)\gamma^t$, we can ensure that R_1 and R_2 have different optimal policies (under discounting with γ), by making x sufficiently large or sufficiently small. To see this, note that $Q_2^*(s_0, a_1) - Q_1^*(s_0, a_1) = x \cdot \gamma^t/d(t)$, and $Q_2^*(s_0, a_i) - Q_1^*(s_0, a_i) = x/\alpha$ for $a_i \neq a_1$. Since $d(t) \neq \alpha \gamma^t$, these quantities are not equal. Thus, if a_1 is an optimal action at s_0 under R_1 and $\gamma^t/d(t) > 1/\alpha$, then for any x that is sufficiently negative, we have that a_1 is not an optimal action at s_0 under R_2 . Similarly, if a_1 is an optimal action at s_0 under R_1 and $\gamma^t/d(t) < 1/\alpha$, then x has to be sufficiently *large*, and so on. We can therefore always ensure that R_1 and R_2 have different optimal actions at s_0 .

Thus, for all R_1 there is an R_2 such that $f_{\tau,d}(R_1) = f_{\tau,d}(R_2)$, but R_1 and R_2 have different optimal policies. Thus f is not $OPT_{\tau,\gamma}$ -identifiable.

Theorem 7. Let d be a discount function, let τ be a non-trivial acyclic transition function, and let $f_{\tau,d}$ be a behavioural model that is regularly resolute, regularly naïve, or regularly sophisticated, for transition function τ and discount d. Then for any $\gamma \in (0,1]$, unless $\gamma = d(1)/d(0)$, we have that $f_{\tau,d}$ is not $OPT_{\tau,\gamma}$ -identifiable.

Proof. Let τ be an arbitrary non-trivial acyclic transition function, let $\gamma \in (0, 1]$ be selected arbitrarily, and let d be an arbitrary discount function such that $\gamma \neq d(1)/d(0)$. Moreover, let R_1 be an

⁷In other words, if the agent goes right at s_0 , it will immediately receive an extra x/d(0) reward, and if it goes left, it will receive an extra x/d(t) reward after t steps.

arbitrary reward function. We will show that there exists a reward function R_2 such that R_1 and R_2 have different optimal policies (under τ and γ), but $f_{\tau,d}(R_1) = f_{\tau,d}(R_2)$.

Recall that a state s' is *controllable* if there is a non-terminal state s and actions a_1, a_2 such that $\mathbb{P}(\tau(s, a_1) = s') \neq \mathbb{P}(\tau(s, a_2) = s')$. Since τ is non-trivial, there is at least one controllable state. Moreover, since τ is acyclic, and since S is finite, there must be a controllable state that cannot be reached from any other controllable state. Call this state s_c . Since s_c is not terminal, there are states which are reachable from s_c .

Now let R_2 be the reward function where $R_2(s, a, s_c) = R_1(s, a, s_c) + x/d(0)$ and $R_2(s_c, a, s) = R_1(s_c, a, s) - x/d(1)$ for all s and a, and $R_2 = R_1$ for all other transitions. We now have that R_1 and R_2 share the same resolute and naïve advantage function, i.e. $A_1^{\rm R} = A_2^{\rm R}$ and $A_1^{\rm N} = A_2^{\rm N}$. Moreover, for any policy π , we have that and $A_1^{\pi} = A_2^{\pi}$. To see this, note that:

- 1. In all states s which are neither reachable from s_c , nor able to reach s_c , we of course have that $A_1^{\{*\}} = A_2^{\{*\}}$, for $* \in \{R, N, \pi\}$. R_1 and R_2 only differ on transitions that begin or end in s_c , and so they must induce the same advantage functions in states which are disconnected from s_c .
- 2. In all states s which are reachable from s_c , we also have that $A_1^{\{*\}} = A_2^{\{*\}}$, for $* \in \{R, N, \pi\}$. Again, R_1 and R_2 only differ on transitions that begin or end in s_c . Since τ is acyclic, we have that if a state s is reachable from s_c , then it cannot reach s_c . Thus R_1 and R_2 must induce the same advantage functions in such states.
- 3. In s_c , we have that every outgoing transition gets an extra $x \cdot d(0)/d(1)$ reward, and that any subsequent transition after that is unchanged. This straightforwardly means that for all actions a, we have that $Q_2^N(s_c, a) = Q_1^N(s_c, a) + x \cdot d(0)/d(1)$, and that $Q_2^{\pi}(s_c, a) = Q_1^{\pi}(s_c, a) + x \cdot d(0)/d(1)$ for all π . Thus $A_2^N(s_c, a) = A_1^N(s_c, a)$ and $A_2^{\pi}(s_c, a) = A_1^{\pi}(s_c, a)$. Similarly, $A_2^R(s_c, t, a) = A_1^R(s_c, t, a)$ for all t.
- 4. Finally, for the most complicated case, suppose s can reach s_c , and let a be an arbitrary action. Let $A_{s,a}$ be the difference between the expected future discounted R_1 -reward and R_2 -reward, if you take action a in state s and then following π , conditional on the event that $\tau(s, a)$ returns a state which is controllable from s. Moreover, let $B_{s,a}$ be the difference between the expected future discounted R_1 -reward and R_2 -reward, if you take action a in state s and then following π , conditional on the event that $\tau(s, a)$ returns a state which is controllable from s. Moreover, let $B_{s,a}$ be the difference between the expected future discounted R_1 -reward and R_2 -reward, if you take action a in state s and then following π , conditional on the event that $\tau(s, a)$ returns a state which is not controllable from s. Now $Q_2^{\pi}(s, a) = Q_1^{\pi}(s, a) + A_{s,a} + B_{s,a}$. Moreover, from the definition of controllable states, we have that $B_{s,a_1} = B_{s,a_2}$ for all actions s_1, s_2 , and so we can express this variable as B_s . Next, note that if a state s' is controllable from any controllable state). If $s' \neq s_c$, and s_c is not reachable from s', then the difference in future discounted R_1 -reward and R_2 -reward, conditional on transitioning to s', is zero. Similarly, the difference in future discounted R_1 -reward and R_2 -reward, conditional on transitioning to s_c , is $d(0) \cdot x/d(0) d(1) \cdot x/d(1) = 0$. Thus, $A_{s,a} = 0$, and each Q-function is shifted by a constant value B_s , which means that the advantage functions are unaffected.

Thus R_1 and R_2 share the same resolute and naïve advantage function, i.e. $A_1^{\rm R} = A_2^{\rm R}$ and $A_1^{\rm N} = A_2^{\rm N}$. Moreover, for any policy π , we have that and $A_1^{\pi} = A_2^{\pi}$. Therefore, since $f_{\tau,d}$ is regularly resolute, regularly naïve, or regularly sophisticated, we have that $f_{\tau,d}(R_1) = f_{\tau,d}(R_2)$.

However, by making x sufficiently large or sufficiently small, we can ensure that R_1 and R_2 have different optimal policies. To see this, note that since s_c is controllable, there must be a state s_i and actions a_1, a_2 such that $\mathbb{P}(\tau(s_i, a_1) = s_c) \neq \mathbb{P}(\tau(s_i, a_2) = s_c)$. Let $\mathbb{P}(\tau(s_i, a_1) = s_c) = p$ and $\mathbb{P}(\tau(s_i, a_2) = s_c) = q$. Since τ is acyclic, we have that $Q_2^*(s, a) = Q_1^*(s, a)$ for all states s which are reachable from s_c , and $Q_2^*(s_c, a) = Q_1^*(s_c, a) - x/d(1)$ for all a. However, in s_i , we have that $Q_2^*(s_i, a_1) = Q_1^*(s_i, a_1) + p(x/d(0) - \gamma x/d(1))$ and $Q_2^*(s_i, a_2) = Q_1^*(s_i, a_2) + q(x/d(0) - \gamma x/d(1))$. Since $\gamma \neq d(1)/d(0)$, we have that $x/d(0) - \gamma x/d(1) \neq 0$. Moreover, $p \neq q$. Therefore, by making x larger or smaller, we can increase the value of $Q_2^*(s_i, a_1)$ relative to $Q_2^*(s_i, a_2)$, and vice versa. In particular, if $Q_1^*(s_i, a_1) \geq Q_1^*(s_i, a_2)$, then we can ensure that $Q_1^*(s_i, a_1) < Q_1^*(s_i, a_2)$, and vice versa. This means that we can ensure that R_1 and R_2 have

different optimal policies. Thus, for all R_1 there is an R_2 such that $f_{\tau,d}(R_1) = f_{\tau,d}(R_2)$, but R_1 and R_2 have different optimal policies. Thus $f_{\tau,d}$ is not $OPT_{\tau,\gamma}$ -identifiable.

We should also note that Theorem 7 will be hard to generalise, without adding assumptions. To see this, consider a transition function that looks as follows:

This transition function is acylclic and non-trivial, but here, for any γ and any discount function d such that d(1)/d(0), we have that any regularly resolute, regularly naïve, or regularly sophisticated behavioural model $f_{\tau,d}$ is $OPT_{\tau,\gamma}$ -identifiable. This makes it tricky to generalise Theorem 7, without adding stronger assumptions about d.