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1 Appendix A: proofs of theorems 1 and 2

Theorem 1: Loo-nonexpansive AND problem. 3! f(x,y) = min(x,y) such that
following holds:

Cl f(xz,y) is defined for =,y € [O 1]

C2 £(0,0) = f(0,1) = f(1,0) =0, f(1,1)=1
C3 a<A, b<B = f(a, b)gf( B) (monotonicity)
C4 |f(a+ Aa,b+ Ab) — f(a,b)| < maz(|Aal,|Ab|)

Proof. We will prove Theorem 1 by demonstrating that conditions C1...C4 con-
strain f(z,y) in such a way that the only possible solution is f(z,y) = min(z,y).
The monotonicity condition C3 combined with C2 means that

v yel0,1] f(0,y) =0 (1)

Conditions C3 (monotonicity) and C4 (nonexpansivity), when combined with
'reference’ function values f(0,0) and f(1,1), constrain f along line connecting
these two points:

[f(y,y) — f(0,0)] < |yl = fly,y)—0<y = fly,y)<y (2
If(L,D) = flyn<N-yl = 1-flyy)<l-y = fly,y)>y 3)

As result, we have

Vyelo, 1] f(y,y) =y (4)

Similarly to the previous paragraph, nonexpansivity condition C4 combined
with equations 1 and 4 constrains f(z,y) along line connecting points (0,y) and
(y,y), i.e. V 0<ax<y<1 following holds:

|f(z,y) = £(O, )] < |=] = f(z,y) -0<=z = flz,y)<z (5)

006
007

009

024

026
027
028
029
030



2 ECCV-20 VIPriors workshop submission ID 0006

As result, we have

V0<zr<y<l f(z,y) =2 =min(z,y)
Due to the symmetry of the problem, it is obvious that the following also
holds:
VO0<y<z<l f(z,y) =y =min(z,y)

So, finally,

Va,y € [Oa 1] f(xay) = mm(x,y)

what was to be shown.

Theorem 2: Loo-nonexpansive OR problem. 3! g(x,y) = max(z,y) such that
following holds:

Cl g(z,y) is defined for z,y € [

1]
€2 ¢(0,0) =0, ¢(0,1) = ¢(1,0) = g(1,1) =
C3 a<A, b<B = ¢(a, b)<g(A B) (monotomcity)
C4 lg(a+ Aa,b+ Ab) — g(a, )| < maz(|Aal, | 2b])

Proof. Similarly to the previous proof, we will prove Theorem 2 by demonstrating
that conditions C1...C4 constrain g(z,y) in such a way that the only possible
solution is g(z,y) = maz(x,y).

The monotonicity condition C3, when combined with ’reference’ function
values ¢g(1,0) and g(1,1), constrains g along line connecting these two points:

Vyel0,1] g(l,y) =1 (7)

Similarly, conditions C3 (monotonicity) and C4 (nonexpansivity), when com-
bined with ’reference’ function values ¢(0,0) and g(1,1), constrain g along line
connecting these two points:

lg(y,y) — 9(0,0)] < [yl = g(y,y) —0<y = g(y,y) <y (8
lg(1,1) — g(y,y)| < [1—y| = 1-gyy)<l-y = glwy) >y (9)

As result, we have

vV yel0,1] g(y,y) =y (10)

045

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

065
066

068
069
070
071

073
074
075

077
078
079
080

082
083

085
086
087
088
089



ECCV-20 VIPriors workshop submission ID 0006 3

Similarly to previous paragraphs, nonexpansivity condition C4 combined
with equations 7 and 10 constrains g(z,y) along line connecting points (y,y)
and (1,y), i.e. V 0<y<z<1 following holds:

lg(Ly) —g(z, )| <1 -2 = 1-g(r,y)<l-z = g(z,y)>z (11)
lg(z,y) —g(y,y)| <z -yl = glz,y)—y<z—-—y = glz,y)<z (12)

As result, we have

V0<y<z<l g¢g(z,y) =z =mazx(z,y)

Due to the symmetry of the problem, it is obvious that the following also
holds:

V0<z<y<1l g(z,y) =y = maz(z,y)

So, finally,

Va,y € [0,1] g(z,y) = max(z,y)

what was to be shown.

103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134



