Supplementary Material

In this appendix, we provide the proofs of the results presented in the paper; in addition to the case of
strongly-convex-strongly-concave functions (discussed therein), here we establish results also for the
case of (non strongly) convex-concave functions. In this latter setting, Assumption 1 (iii) (cf. Sec. 2)
is fulfilled with y = 0; in addition, for some G > 0 it holds || F,, (2*)|| < G, for all m. In the general
convex-concave case, we also assume that the set Z is compact and introduce €2 — the diameter of Z.

For the sake of convenience, we summarize next the main lower/upper complexity bounds.
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Table 1: Comparison of lower and upper bounds on communication rounds for J-related smooth
strongly-convex—strongly-concave (sc) or convex-concave (c) saddle-point problems in centralized
and decentralized cases. Notation: L — smothness constant of f,,,, u — strongly-convex-strongly-
concave constant, {) — diameter of optimization set, A, p — diameter of communication graph and
eigengap of the gossip matrix, € — precision. In the case of upper bounds for the convex-concave case,
the convergence is in terms of the “saddle-point residual” [cf. ]; for (sc) functions, it is in terms
of the (square) distance to the solution.

A Lower Complexity Bounds

We construct the following bilinearly functions with 6, 4 and d, = d,, = d. Let us consider a linear
graph G of M > 3 nodes. Define p = [—-| andlet B={1,...p}and B={M —p+1,...,M},
with |B| = |B| = p. The distance in edges [ between B and B can be bounded by M — 2p + 1. We
then construct the following bilinear functions on the graph:

fe,y) = 52T Ay + & - 16plal|? — & - 16pllyl|? + STy, m € B;
fm(@,y) = fo(z,y) = §2T Aoy + J7 - 16pl|2|* — F7 - 16u[ly[|*, meB; (13
f3(z,y) = & - 16p[lz)? — & - 16pu]y|?, otherwise;

where e; = (1,0...,0) and

1 0 1 -2
1 -2 1 0
1 0 1 -2

1 -2 1 0
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Consider the global objective function:

M
P w) =32 3 fmlay) = 12 (Bl file,y) + Bl fale,) + (M ~ |B| = |B) - fs(a,9))
m=1

p T
= 14
M 128u61 ¥ (14

2p 6 p 2 P 2
=— .-z Ay+ -— -16 ——-16
LSl g+ L vl — L 16ply) +
with A = £ (A4, + A2).
It is easy to check that

V2 Si(00) = V2, faley) = V3 foleg) = V2,0 (ey) = B 16ul;

p
Vi l1(@,y) = Vi, fo(w,y) = Vi, fa(@,y) = Vi, f(@,y) = 17 - 16ply;

0 o
Vifilay) = 34 Vi fa(ey) = 742

D 0
Vi fs(wy) =0, Vi, fry) =3 5A

Note that f1, fo, f3 are L-—smooth (for L > §), u-strongly-convex—strongly-concave, and J-related;
the last is a consequence of the following

5
I92,160) = V2,1l < 192, )l + 192, el <5 (342 ) <6

5. »p
192, a(o) = T2, 1)l < 192, Rl + 192, o] <5 (3447 ) <6

P
IV2, Fs(2,y) = Vi, f@ )l < IVE, fs(@ )]l + 1V, (@)l < 97 < 6.

Lemma 1 Let Problem be solved by any method that satisfies Definition 1. Then after K
communication rounds, only the first L%J coordinates of the global output can be non-zero while the

rest of the d — L%J coordinates are strictly equal to zero. Here | = M — 2p + 1 (distance in edges
between B and B).
Proof: We begin introducing some notation, instrumental for our proof. Let
Ey :={0}, Ek :=spanfes,...,ex}.
Note that, the initialization reads My, = Ey, MY, = Ej.

Suppose that, for some m, M? = Ex and MY = Ex, at some given time. Let us analyze how
ME MY can change by performing only local computations.

Firstly, we consider the case when K odd. We have the following:
o For machines m which own f1, it holds
ax + BAry € spanfer , ', Ay, A1 AT2'} = Ek,
0y — pAlx € span{y’ , ATz, AT Ay} = Ex.
Since A; has a block diagonal structure with alternating blocks 1 x 1 and 2 x 2, A1_1 admits the
same partitions into 1 X 1 and 2 x 2 blocks on the diagonal. Therefore, after local computations,

we have M? = Ey and MY = FEj. The situation does not change, no matter how many local
computations one does.

e For machines m which own f5, it holds
ax + BAzy € span{a’, Asy’, AQAQTJU/} = FEky1,
Oy — oAl € span{y’ AT A2TA2y’} = Fg.1,
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for given 2/, 2" € MZ, and y',y" € MY,. Tt means that, after local computations, one has
M? = Eky1 and MY, = Eg ;. Therefore, machines with function f> can progress by one new
non-zero coordinate.

This means that we constantly have to transfer progress from the group of machines with f; to the
group of machines with f5 and back. Initially, all devices have zero coordinates. Further, machines
with f; can receive the first nonzero coordinate (but only the first, the second is not), and the rest of
the devices are left with all zeros. Next, we pass the first non-left coordinate to machines with fs.
To do so, I communication rounds are needed. By doing so, they can make the second coordinate
non-zero, and then transfer this progress to the machines with f;. Then the process continues in the
same way. This completes the proof.

O

The next lemma is devoted to provide an approximate solution of problem (14), and shows that this
approximation is close to a real solution. The proof of the lemma follows closely that of [46, Lemma
3.3], and is reported for the sake of completeness.

Lemma 2 (Lemma 3.3 from [46]) Ler o = (6?‘)2 and g = 1 (2+ a — Va? +4a) € (0;1)-the
smallest root of ¢ — (2 + a)q + 1 = 0, and let define

3

—x q .
g5 = - i €[d].
The following bound holds when §* := [y7, .. .yfl]T is used to approximate the solution y*:
e
17" =yl < ———-
a(l—q)

Proof: Let us write the dual function for (14):

P 1 52 52
9) =17 [—yT (ATA + 32#1) y+ ety ,

27 \ 1284 1281
where it is not difficult to check that
1 -1
-1 2 -1
-1 2 -1
-1 2 -1
AAT =
-1 2 -1
-1 2 -1
-1 2
The optimality of dual problem Vg(y*) = 0 gives
o AT A+ 32ul ) y* -
=——c¢
1284 BEJY = 198, 1

or

(ATA + aI) Y =ey.
Equivalently, we can write
(I+ajyi —ys =1,
—yi + 2+ a)ys —y3 =0,
“Yao+ 2+ )y, —y; =0,
—Yi1 +(2+a)y;=0.
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On the other hand, the approximation 4* satisfies the following set of equations:

(L+a)ii =93 =1,
Ui+ 2+ o)y —y3 =0,

or equivalently

(ATA+al)y* =e1 + f_

Therefore, the difference between §* and y* reads

gy -yt = (ATA—Q—aI)i

The statement of the lemma follow from the above equality and o =11 > (ATA +al ) )
O

The next lemma provides a lower bound for the solution of in the distributed case (13)). The
proof follows closely that of [46, Lemma 3.4] and is reported for the sake of completeness.

Lemma 3 Consider a distributed saddle-point problem with objective function given by (14). For

any K, choose any problem size d > max {21ogq (4f) 2K}, where o = (MTM)Q and q =

3 (2+a— Va2 +4a) € (0;1). Then, any output &, § produced by any method satisfying Definition
1 after K communications rounds, is such that

2i¢ [lyo — y*|I*

S *2 2>
& = "2+ g 571> > ¢

Proof: From Lemma 1 we know that after ' communication rounds only k= LKJ first coordinates
in the output can be non-zero. By definition of §*, with ¢ < 1 and &k < 5, we have

v

||Z7*Z7*||2 y,)Q:L\/q2+q4+_“+q2(d7k)
I—q

S N T e 1 R S P
Va(i—q) VI

Using LemmaEfor d > 2log, ( 1 f) we can guarantee that §* ~ y* (for more detailed proof see
[46]) and

2 o —w"l® e lwo —w”I®
6 -

k
* |12 __
—llyo —y*I° =¢ T

. 2 2> 25
1z =2+ g —y*[I* > |19 —y*II* > *16

O

A.1 Centralized case (Theorem 1)

Building on the above preliminary results, we are now ready to prove our complexity lower bound as
stated in Theorem 1 of the paper. The following theorem is a more detailed version of the statement
in Theorem 1.

Theorem 5 Let L, 11,6 > 0 (with L > pand L > §), A € N and K € N There exists a centralized
saddle-point problem on graph G for which the following statements are true:
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o the diameter of graph G is equal to A,
M
of = ﬁ S fm : R¥x R — R are L-Lipschitz continuous, i — strongly-convex-strongly-concave,
m=1
e f,, are L-Lipschitz continuous, p — strongly-convex-strongly-concave, d-related,
e size d > max{210gq (4%@) ,QK}, where o = (64Tu)2 and q = % (2 +a—Va? +4a) €
(0;1),
o the solution of the problem is non-zero: x* # 0, y* # 0.

Then for any output Z of any procedure (Definition 1) with K communication rounds, one can obtain
the following estimate:

o K 1 .
12 == =Q | exp | -3 = llyo —*1”
1. /14 (L) _1
g 324 g
Proof: It suffices to consider a linear graph with A + 1 vertices {v1,...,va+1} and apply Lemma 1

and Lemma 3. We have .
1

(1) o lyo — y*1I?
a) T 16(|z — a*[]2 + g — y*[?)

Taking the logarithm on both sides, we get

2K lyo — y*||? 1
> In - * 12 - + 12 1y
! 16([|2 — 2*|1> 4+ |g — »*|I?) ) In(qg~1)

1 1 1+ -/ +a

Next, we work with

In(g—1) ml+(1-a)/q)  faz i, a
YT ta-5 L1
N « V4 a2

Finally, one can then write

2K — |2 1 S|
zln( i IIyOQyHA 2) 1 1+(6) 1)
! 16(||2 — 2*[2 + [l —y*11?) ) \ 2 32p 2

and

1 2K llyo — y*|?

— | = = = )
L s\2 1 U] T 16(lE = 2P+ g - yrl?)
= 1+(7) -5
2 324 2

which completes the proof, with [ > %A.

exp

A.2 Decentralized case (Theorem 2)

The lower complexity bound as stated in Theorem 2 is proved next. The next theorem is a more
detailed version of Theorem 2.



Theorem 6 Let L, 11,0 > 0 (with L > pand L > 6), p € (0;1] and K € N. There exists a
distributed saddle-point problem. For which the following statements are true:

e a gossip matrix W have p(W) = p,
M
of= ﬁ S fm : RE*xR? — R are L-Lipschitz continuous, i — strongly-convex-strongly-concave,
m=1
e f, are L-Lipschitz continuous, p — strongly-convex-strongly-concave, § - related,
2
e size d > max{Zlogq ( f) 2K}, where o = (MT“) and q = % (2+a — Va2 +4a) €
(0;1),
o the solution of the problem is non-zero: x* # 0, y* # 0.

Then for any output z of any procedure (Definition 1) with T' communication rounds, which satisfy
Definition 1, one can obtain the following estimate:

1

12— 2*|* = @ | exp ﬁK - lyo — y*|1?
/ 1
1+ (32u> T 20
Proof: The proof follow similar steps as in the proof of [37, Theorem 2]. Let vy; = 1 +22: I be g
IVI

decreasing sequence of positive numbers. Since 72 = 1 and lim,,, vas = 0, there exists M > 2 such
that yar > p > yar41-

o If M > 3, let us consider linear graph of size M with vertexes v1,...vys, and weighted with
w2 =1—aand w; ;41 = 1fori > 2. Then we applied Lemmas 1 and 3 and get:

s lyo =y II”.
16

If W, is the Laplacian of the weighted graph G, one can note that with a = 0, p(W,) = s, with
a =1-p(W,) = 0. Hence, there exists a € (0; 1] such that p(W,) = p. Then p > ypr41 > ﬁ,

andM>£—124f Flnally,l—M—Qp—l—lZ%—lz%(%—1)—12V51nce

& — 2|2 + g — y*|* > ¢*F

p<7y3= 3. Hence,

%12
I~ 22 g | > oo e VI

Similarly to the proof of the previous theorem

1 lyo —y*|I>
exp \/EK > ~ ” - TR (15)
) 2 16([|2 — 2*[12 + 1§ — y*[1?)
+ (32u) 20
o If M = 2, we construct a totally connected network with 3 nodes with weight w3 = a € [0; 1]
Let W, is the Laplacian. If @ = 0, then the network is a linear graph and p(W,) = 3 = % Hence,
there exists a € [0;1] such that p(W,) = p. Finally, B = {v;}, B = {vs}and ] > 1 > ﬁ.
Whence it follows that in this case is also valid.
|

A.3 Regularization and convex-concave case

To establish the lower bounds for the case of (non strongly) convex-concave problems, one can use
the classical trick of introducing a regularization and consider instead the following objective function
€ 02

9 " ||:17 - ||

2
g(x,y)Jr49 492 Ny — |7,
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which is strongly-convex-strongly-concave with constant 1 = 5&5, where ¢ is a precision within the
solution of the original problem is computed and €2 is the diameter of the sets X and ). The resulting
new SPP problem is solved to €/2-precision in order to guarantee an accuracy € on the solution of
the original problem. Therefore, one can directly leverage the lower bound estimates (6) and (7) with
the new constants above; this leads to the following lower bounds on the number of communications

2 2
a(a%), oLy,
5 N

for the centralized and decentralized case, respectively.

B Optimal algorithms

For the general convex-concave case we introduce the following metric to measure convergence:

gap(z) = gap(x,y) = g}gf(x, y') - miy f(z JY)- (16)

B.1 Centralized case

B.1.1 Strongly-convex-strongly-concave case (Proof of Theorem [3)

We begin introducing some intermediate results. Throughout this section, we tacitly subsume all the
assumptions as in Theorem 3]

Lemma 4 Let {z*} be the sequence generated by Algorithm |Z over G with a master node. The
following holds:

15— 2| < (1= ) |2 = 2| = (1= By — 4920%) || 2% — ||

e 4
+ <2 2= +47262) u — i
b

| 2

A7)
Proof: Define w* = u* + v - (F(2*) — Fy(2¥) — F(u*) + Fy(u*)). Using the non-expansiveness
of the Euclidean projection, we have

2441 = =* = [lprojz [w"] = projz =7

< lo* — =’

2% = 2| 2wt — 2R R — ) o+ - 2

= [l = 2|+ 20wk — 25 a2 20wk — 2R 2 ak) + [t - 2F)

= ||o* - = 2 L ogwh — 2k b — )+ |w® — 2 2 | — & ‘2

= [ = I 2ty (P = R = P+ Rb) - 2460 = )

k ~k

2 2
A

Tt —a
420k 4y (F(F) — Fy(29) — 2%,k — 27)

— 2y (F(uk) — F(ub), a" — 2) + |Juh —aF|” — ||F —aF|.

*

= -2

Substituting the expression of v, we have
45 = 2P < b 2 2t ok i = =) - 2P~ B ), 8 - 2
+ ot — @k — || - ||

|2 +2(0F —oF ik — %) — 2y(F(uF) — FL(ub), 0F — 2%)
2 ’2

k

*

-

+2(uf —aF, ab = 27y + |l - b b ak

-
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Invoking the optimality of @*, (yFy (@*) + a% — v*, a% — 2) < 0 (for all z € Z), yields:

P oy (Fy(aF), iF — 27) — 2y(F(uF) — Fy(uF), @ — 2%)
?

R I

2 )t -
? (R (i), @ — ) — 2 {F () - By (@), i — =)
k

+ 2<’Y(F(ﬂk) - Fl(ﬁk) — F(uk) + Fl(uk)) +uf —ak ok — 2*)

S

Tt — b))k

(18)

I
Invoking the optimality of the solution z*: (yF(z*),z* — z) < 0 (for all z € Z) along with the
p-strong convexity-strong concavity of f, we obtain

J#54 = 2P < ¥ = 27| —2np (@) - ), - 2)

+20(F(@*) = Fi(@) = F(ub) + Fi(uh) + 0 — ¥,k = 27)

k

+ Hwk —aF — ok

-
<l == 2ot ==
F2ES) — F(04) — Fb) + Fi () + o — i it 27)

o

By Young’s inequality, we have

sz+1 _

2Ssz—z* 2—27/1“11’“—,2* ?

+ (P = R = Pt + () + ot =t :

2 w ~ko %
+2Hu z

2

e

2 3yp

2
+ PG = A = P+ A+ 2 - ot

N 2
< -2 ik — 2

2

+[uF - (FF) = Fu(zF) = F(b) + R (b)) = @b = ||28 - @
= 1 == I = k-

2 4 . 2
k uk

4l ﬁk— fbk— Uk 1uk — lu” —
+— IF@") - Ru@*) - Feb) + A+ |

+2|uf = @F|]” + 292 || F(2F) — Fi(z%) — F(u¥) + By (ub)||” = |25 — a*||” .

Note that the function f — fj is §-smooth, since ||V, f — th”? <8, IVayf — Vaufi ”2 <.
Hvyyf - vyyfl”2 S 5; therefore,

e ey e L
2
e R et

+2 [[uf = aF|* + 24207 [|F — uF|* — ||2F — at||”
23w
2

4962 4
+@+7++Mwww_w
wo

S o ] Ea

|’1]k— *

2

Finally, using ||a + b||* > 2 l|al|* = 2|b]|*, we obtain the desired result (7).
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Theorem 7 Let {2*} the sequence generated by Algorithle( in the setting of Theorem E) with the
step-size y given by

1 1
=ming —,— . 19
y=min{ g5 (19)
Let each subproblem (10) be solved up to (relative) precision €,
1
= (20

2(2+ 92 4 L+ 4922)

Then, || 2% — Z*H2 < € after

K=0((142)1ogmZ—=21L
o €

Proof: The output «* produced by inner method satisfies

) iterations/communications. 2n

e
Combining this fact and Lemma ] yields

254 = 2P < (1 =) |25 = 2*|° = (1 = Byp — 49207 || 2% — @

4402 4
+<2+1++47262>5sz—ak

T
(; — 3y — 47262) sz — ﬂkHz .

The proof is completed by choosing -y according to (19).

| 2

| 2

@(1—w)sz—Z* -

|

Corollary 3 Let we solve the subproblem via Extragradient method with starting point z* and
1

T=0 ((1 +~L)log ~) (22)
é

iterations. Then we can estimate the total number local iterations at the server side by

0 _ % 2
O<(1+6+L) 1og{logHZZH>.
meoop e €

Proof: Firstly, one can note that after 7" iterations of Extragradient method from we can achieve
e precision. It follows readily from the convergence of Extragradient method [5] and the fact that the
objective function in (L0) is 1-strongly-convex-strongly-concave and (1 4 ~L)-smooth. Then we can
estimate the total number of local iterations at the server side, namely:
1 1 ?
K- T=0(—(1+~L)log=log
T e

1 L 1 02~
0 <+) 1ogjlogHZ72
o op) Cé e

2)
2
L 1 0 _ %
:(’)<<1+5+)log~1oguzz>.
B € €

Remark. If the server is located in the center of a graph with a diameter A, then an additional factor
A will appear in the total number of communications (21J).

HZO — ¥

O
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B.1.2 Convex-Concave case
Lemma 5 For one iteration of Algorithm[I} the following estimate holds:
2y (F(uk),uf —2) < |25 — 2||" = |5+ = 2| = (1 = 2926%) || 2% — ¥
+ (BYLQ + 649G +29) [[uF — || + 2 ||u — a*|| . (23)

Proof: The proof follows similar steps as that of Lemma 4, with the difference that z* therein is
replaced here with any z € Z. Specifically, recalling the first equality in (18], we have

|25 = 2] < |2 = 2| — 2 Fa (@), - 2) — 29(F(u) — Fyu(ub),ab - 2)

L L e Calt W PLE L
=W“wH—m&<)w—w—%<M> Fi(u"),u* —2)

+29(Fy (uF) — Fy (@%),uF — 2) + 29(Fy (@%), u* — a¥)

+ 29(F(u ) Fi(u )uk—u >—|—2<u —uk,ﬁk 2)

[t — aF|” — ||k - at]).

Small rearrangement gives
29 (F (), u — 2) < [|* — 2|~ |4 — 5]
+ 29(Fy () — Fy(i¥), 0 — 2) + 2y (Fy (a¥), o — i¥)

+ 2v(F (u ) Fy(ub),u® — aF) + 2(u® — ok ab — 2)

2

Hz —aF

+Hw
k+1 2
SHz—di—W — 2

+ 29[| Py (u*) — Fy(@F)]| - [|u® = 2] + 29[| Fu (@) - [Ju® — a¥))

+ 29[| F(u ) Fi(u k)ll =@t 4 2)ut = a) - et - 2|

Ak 2

+ |jw
Invoking the definition of w* :Huk + - (F(2F) — F1(2%) — F(uF) + Fy(u)), we get
29 (F (uF),uk — 2) < ||z’C — zH2 - ||zchrl - zH2
+ 29[ FL(u?) = P (@) - Ju® = 2l + 29[| P (@b - flu® - af)|
+29||F(u*) = Fi(uh)|] - [[u® = a*|| + 2)|u* —a¥| - IIﬁk Z|
+ [[u¥ + v (F (%) = Fi(2%) — F(u®) + Fi(u¥)) — @
<l =2 = I4 = )
+ 29[ P (u?) = F(@P)] - Ju® = 2l + 29[| P (@) - flu® -t
+ 29| F(u*) - Fl(uk)ll o 7 ] e o R ]|
+2Huk—u — R (%) - F(u*) + Fi(u H
— [I* - ak”.
Then we use smoothness of f — f1, f, f1 and obtain
2v(F(ub),uf — z) < ||zk—zH2— |2 —ZHQ
+29L|ju" — @) - Q@+ 29(G + LQ) - |[uF — "
+4y(G + LO)|| - Ju® — aF|| + 29 - [[u* — a" ||
2|t — 0 F 4298 [ — " — | - |
= [ =2l = [l = 2] - (- 20787 |l -

+ (BYLQ + 649G +29) [[uF — || + 2 ||u* — a*|| .

N
ko _ gk

k+1
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Here we additionally used the diameter 2 of Z and simple fact:
IF (@) = G < | Fu (@) = 1 Fa (=)l < [|Fu(a®) — Fu(=")| < L. (24)

Theorem 8 Let problem be solved by Extragradient with precision e:

— min EL (25)
= 5 (LQ+ G + 69)2

and number of iterations T':
Q2
T=0 ((1+7L)10g> :
e
Additionally, let us choose stepsize vy as follows

Then it holds that gap (=L, ) ~ € after
502
K=0 <6> iterations, 27)

K
where 215, define as follows: zf, = Zk o uk, Y. =% Zk 0 y

Proof: Summing over all k& from 0 to K

K
wz ) < [ el (290 3 o
k=0
K
+ (8yLQ + 67G + 202) Z |[u® —aF|| + 22 Hu -
k=0
Then, by 2% ¢ = 7 Z k=0 u® and ym,g 7 ZkK:O u’yC , Jensen’s inequality and convexity-concavity
of f:

k=0 k=0
1 X K
: k
< max ;f(uz,y ) — min — Z:f(xﬁuy)
Given the fact of linear independence of x’ and y
k
gap(zly,) < L Z — f' up)).
Using convexity and concavity of the function f :
1 X
< il k o\ _ ook
gap(zh,,,) < e 2 (fluh,y) = f(2',uy))
1 X
_ - AN ',k
7(x’r,rgl/z’l)}éZKk: (f(umﬂy) f( Uy y)+f( x) y) f(xvuy))

< ma %Z«V Pl ),y — ) + (Vo f (i ),k — )
k=

K
Z Juf — 2).
K=
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Then it gives with our choice of ~y

Hzo—zH2 (4vLQ + 37G + Q)
<
gap(z ) meaz}’( 297K + vK
Q2
327[( (4LQ+3G+ >\f+e
692

— + (4LQ + 3G + 209) /e + 2de.

K
e from is completed the proof.

S o — ) + KZ”“

k=0

’ 2

O

Remark. (27) also corresponds to the number of communication rounds. It is also easy to estimate

the total number of local iterations on server:

2
K><T(9<5g€2

€

2
o (1+
€

o ((L+5)Q21

QQ
(14+~L)log e)

LY &
1) ge

QQ
og e) .

B.2 Decentralized case

Before moving on to the proofs of the decentralized case, let us understand the AccGossip conver-
gence [21} 44]:

Lemma 6 Assume that {y,, }}_, are output ofAlgorlthmenh input {x, }M_,. Then it holds that

Z lym —9l* < (1= )™ (Z [ x2> (28)
m=1 m=1
_ M _
And T = ﬁ Zm=1 Tm = Z\/[ Zm 1Ym =Y.
From this lemma it holds that for any ¢
ly: —glI* < (Z [z — w|2> (29)
and
M
_ H _
ly — 3ll < (1= /p) (Z 2 — x||2> : (30)
m=1

B.2.1 Strongly-convex-strongly-concave case

Lemma 7 For one iteration of Algorithm 2, the following estimate holds:

ekt = 2 |1” < (U =) |[2h, — 2" [1° = (1 = By — 12926%) || 2k, — ik, ||
+ <2+ 129262 4 — L > @k, —ak |
_ B 2
6y |[F, — FCRIP +(67 + 2 |esre - rak)|
4 2< kJrkl Zwkyj;lagwkyj;l _ Z*> 4 ||2£€nt1 Ak+1||
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Proof: Using non-expansiveness of the Euclidean projection, we get

| k+1 *||

mk [ k+1]

[projz proj; [

<l ==

= ||z - 2 H F (R gkl SR ey gk k+1||
= ||k, — = || —|—2<zfn+k1 2h ek =) || EE — mk”
+2<Ak+1 251?757]%1 o +sz+1 Ak+1H
= |l _ ok ak - >+2< kL gk ok gk
e o - 2
= [z =2 |I" + 2z ank’ﬂ'%k +sz“ N
+2<2ﬁt1—2§tl’zv’2ﬁ—z +\|Zf3$;1 sl
= [lzh, = ="
+2<~7]21k+7'(ﬁ‘7{r€1k Fony(2,) = V2 4 By (i, ) = 2 iy, — 27)
I = kI = [k, — b
+ 2<Ak+1 _ Zlnc;rl7 fntl 2+ Héﬁ;l _ 25;21”2
= [lzh = ="II
t 2ty + 7+ Py, = P (2m,)) = 2y o, = 27)
2YEREY? = B ), = =) (|20 = a1 = [l2h, — |
+ (Y — 2L 2 - 2ty || 2t — 2
Substituting the expression for v¥, .» we have
|25t — 2| < |2k, = 2|+ 2qak,, - ok, ak, — z*)
= 2 (FEH? = B (k) ik, — 2%) 4 [|3HE =k, || = ||k, — b, ||
T
= [l = N
2Y(ERHV2 — By, (k) 0k, — =) + |20 = ak, |7 = |2k, — b, |
Fogak, —ak, ok, — ) 4 2(sktl — gkl gkl Hérkn—:l Ak+1H
?Cecozr()l’ing to the optimal condition for ¥, : (yFy,, (4F, )+ aF, — ok  ak —z) <0 (for all
it =2 < Il - (Fo (i), = 2°)
e N R B e e
Fogak, —ak, ok, — ) 4 2(sktl - gkl gkl ngkn-i-kl Ak+1H

= ||ank - <ka(ﬁ§nk)7ﬁﬁzk -z >
— 2y(F(ak, ) — F, (G, ), a8, — 2%)
2y(FE/2 — F(ak, ) — Fo, (@, ) + F, (4F, ), 0k, — 2%)

o EORE N E Ay
+ ik, — b, ik, — 2%) £ 2(EETT - AR SR ey ||gh gk
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Applying property of the solution z*: (yF(z*),z* — z) < 0 (for all z € Z). And then p-strong
convexity - strong concavity of f, we obtain

H k1 z*”2 < ||zfnk - z"‘”2 - 27<F(ﬁfnk) — F(z") T z*)

P s Uy
_2’}/<Fk+1/2_F(ﬁchnk)_F (Nfrzk)+ka(afnk)7alfnk_Z*>
+ HZkJrl umkH || - mkH
+2(ak, —ak, ar — =2 > 4 2R FRHL kL ey || k+1H

2

*

< llzhy = =*I1° =20 |y, — =
= 2y(Et? = F(ag,,) = Finy () + Fy (), @, — 27)

mg > Upny,
R = a1~ Nk, — )
+ 2<umk — f‘fnwﬁ:%k — 2"+ 2<27kr:;1 _ éfn—:17é’;;:1 )+ sz+1 AkHH

By Young’s inequality, we have

lhit =21 < llh, = 21— 2mllak, - ="
_ 2
R = Ph,) = P () + P i)
+*Hu - +HZ’“+1 it || —Hzmk—ﬂq’%kHQ
+*Hﬂmk bl + H
_|_2< k+1 Zk+1 2k+1 + ||~k+1 k+1||
meg P myg
NTE R VNN 1|2
= [z, — 2 T me = 2|
2

P
+ ﬁ |t/ = F(ak,) = P, (k) + P (i)

_ 2
- Hz"];fk - aﬁ%k‘ﬁ + % Hﬂfﬂk - afﬂkH
_|_2< k+1 Zk—',—l gk—i-l + sz—O—l k—&-l“
mg T my
: STER SV NTPN |2
< Hzmk -z - T -
8 - . N R
TRk, = F(h,) = Fo i) + F ()]
_ 2
+ 1 R~ pak,)
+ 677 ||F(zp,, ) - ka<zfnk> — F(ak,) + Fon, ()|
+69% || EY, — F(z H + 672 HF’““/2 F(ak,) ?
+2||ay, — a, H —H — b, ||
2, + 2857~ 257 3500 = ) 8 — 2
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Note that the function f — f,,, is 0 - smooth (since ||me—mem,cH2 < 9,
IVayf = Vay foni|* < 6, 1V f = Vg S| < 6), then

«||2 «||2 %2
ekt = =1 < 1, = =1 = 22 fak,, - =]
8v62 | o2 87l = _ 2
+TH fnk _ufnkH +; HF’r]fltl/Q_F(u']fnk)
67207 ok, — [P+ 692 | B, — GBI + 67 B - Feak, )|

2, — i, ||” 2k, ikl

bt kP 2 - B Py s k)

— 2| = (1= 124267 |2, — k||

< b ==l = =5

9 mi mp
+<2+127252+4 8“V5>|| =ik
TH
2
007 B, — I+ (00 + 52 ) Rl = et
(Rl AL SR ey ||kl k2

By inequality ||a + b]|* > 2 llal|* = 2|b]|*, we have

k+1 P
s = 2

< (1= |25, — (1= 3yp — 124%0%) ||k, — ik, ||
T ) | N |

+ 692 || B, — FGh )|+ <67+ )HF’””’" F(ab,)

+ 2<éfn-:1 k-‘rl k+1 *> + Hgﬁ;{;l _ éfn—le )

L’m

’ 2

O

Lemma 8 Let for problem (11)) we use Extragradient method with starting point zﬁlk and number of
iterations:

T:O((l—i—fyL)logé) . 3D
Then for an output u%, . it holds that
||a£€nk - ﬂfﬂk H2 <e Hzfnk B ﬂfﬂk ||2 :

Theorem 9 Let problem be solved by Extragradient with precision é:

1
€= YT (32)
252 4 oyo0”
2 (24129202 + 4 4 22
and number of iterations T from (31). Suppose that parameters Hy and H satisfy
. (v +2) Mo+
Hy=0 | —log ,
VP VR
) (1+72L2+ %) - MO?
H=0|—1 33
1 /P 0og v (33)
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Additionally, let us choose stepsize v as follows

. 1 1
’y:mln{m,m}. (34)

Then Algorithm I converges linearly to the solution z* and it holds that HZK — P~ after
I L A S
K=0|—log—— iterations. 35)
TH €
Proof: Combining results from Lemma [7]and 8] gives
* . 2
|24 == < =) 2, = 2" = (= 3y — 129707 |2, — ik, |

n <2+ 194252 4 = el ) ik, —a, ||
T

692 |Bl, — PG| + (67 + 50 e - P,

+ kL — SR B ) ¢ b1 - a1

With the choice e from and ~y from (34), we obtain

k+1 P 2
s — 2

*

< (1 =p) |z, — =
602 By - b+ (0924 52 B - Pt

+ 2k — BRI R — 2ty 4 ||t - sk

mk

’ 2

Passing from the local %! and zF, to z2¥*1 and z*, we have

[ == < 1= |24 = =)

+ 692 || FE — F(E )|+ (67 + )HF"“/Q F(a,’;k)H2
—|—2||Zk+1 k+1|| H sk+1 — ” + ||Zk+1 Ak+1||

Zm k Zm, k

+ 2||Zk+1 k+1|| . HZkJrl P ” =+ ||Zk+1 7k+1||

422k — 2|2 =2+ ||2E, - 2 (36)

Further we will work separately only with the last 4 lines, because the last 4 lines depend on the
number of iterations Hy and H1, then we can make them small by choosing the correct Hy and H; .

_ 2
Bin(k) = 60° [P, - b, + (0024 52) |t - et
+2||Ak+1 ~k+1|| H~k+1 *” + ||Zk+1 Ak?+1||
+ 2||Z£cn+kl —k+1|| H—k+1 *” + ||Zicnt1 o Zk+1||

+ 20|z, — 24| 12— =7 + ||z,’;k -2

< 672 HF’]’C“‘ —F(zfjlk)H + (67 + ) Hpk+1/2 F(ak ) ‘2

my,

+ 2” Ak+1 k+1|| QO + sz+l Ak—o—lH
+ 2”211%-&;1 k+1|| Q + sz+1 —k+1”
+ 2|k — 2+ |k, - 2|
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Next we use the definition of 2¥ and z**! and the fact from line 6 of Algorithm 2: M z’“r1

wal Af“ and get
1 M 2 1 M 2
Ere(k) <1297 | P, — 22 D RGH| +12 |23 ) - R
i=1 =1
16y M
+ (12,)/2 + ) Fk+1/2 ZF(uk)
H _
M 2
167\ || 1
2
+ (12 ) i ZFI ar, )
1Y ’
sk+1 sk+1 skt _ Ak+1
+2 |2kt —Mzzi Z
| M | M 2
+2|lproj( 1] = 57 D_projl |- @+ |proj £t — 7 > proj[£7]
=1 =1
M M 2
+2 proj[é,}f%] - MZPI‘OJ[ 11| - @ + ||proj[2 Z proj[2
=1 =1
M 2 1 M 2
2 k k 2 k k
S A2 Foy, = 47 2 Fi(z)|| +12y i ;F(z ) — Fz,)
M 2
167\ || - 1
2 k+1/2 k
+ (127 +u) Fkr/ M;Fz(uz)
M 2
167\ || 1 _
2 k k
1 X 1 & ’
sk41 sk+1 skt sk41
+2 e Mlzlzi Q-+ M;ZZ Zm
9 U 1 X 2
sk+1  sk+1 skl sk+1
+MZ|ka i H MZ Zmy T % ||
=1 i=1
9 X 1 X 2
~k ~k 2k sk
+MZ|ka_Zi|'Q+MZ ka_iH
=1 =1
1 & ’ 16+ 1 & ’
<122 ||[FF — =N " E(2F 1292 + —L ) ||[FFEY2 — ZNT F(uF
<1297 || Fy, W 2 ()| + 129"+ m M; (uz)
1Y 1Y ’
sk+1 sk+1 shtl _ shtl
+ 20 2o —M;zl + M;Zl B
M 2 16 2
2 k k 2 ~k
P SIRGH - RERI+ (12 + 22 47 zu i)
=1
92 U 1 X 1 X
sk+1 sk+1 skl skl
BT EASEE v D B AR v DI i |
i=1 j=1 j=1
1 M 1 M 1 M 2
sk+1 sh+1 skl sk+1
9] CHEE S IEANE DIEAEE
i=1 j=1 j=1




+
SIS
1=
%

\
S
1M
ISH
S
+
S
1M
<
\

N>
=
2

2

<1292 ||Fk —% Fi(zF) +<1272+127) Flr/2 ! > Fi(uf)
=1 i=1
M M 2
sk sk+1 ok ~k
+ 20 +1 M;ZJF Mz::zl thl
b s 2, 167 1 . 2
+ 124°L*— ZHz _kaH 12y p L MZHH% —umkH
i=1
9 U 1 & 2 M1 &
~ ~k+1 sk sk
SO Rl v D DL RS (D DL AR AN
=1 Jj=1 1=1 j=1
2 - k+1 1 2 k+1 i 2 a 1 2 k+1 k+1 ’
+MZ Z —MZ i +MZ MZ A
i=1 j=1 i=1 j=1
9 M 1 M 9 M 1 M
2| g 2B | 2 | 2l B A
i=1 j=1 i=1 j=1
9 M . 1 M ) 2 9 M 1 M . . 2
| T w28 T ar | a2 A

Small rearrangement gives

Fk+1/2 Z Fy(u

2

Err(k) < 1242

(i)
I

1 M
Fy, — i > R
i=1

M

M
1 1
Ak+1 sk41 Sk+1 skl sk 2k
+4Q M;zz +4 M;zl — Zmy || 29 zmk——z
2
1 M 1 M 2
+2 2fnk v Z A;“ + 1272L2M Z HprOJ[ *] — proj[zk, ]H
j=1 i=1
M M M 2
167 o 1 kL ko, 1 kE_ k
+(1272+)LZ ul——Zu]—&—— U — Uy,
H M i=1 M j=1 M j=1
o M|l M o M|y M 2
Skl s+l Skl sk41
ol s AT ey e AT A
=1 j=1 =1 Jj=1
9o M|l M 9o M|l XM 2
~k ~k sk sk
+M; MJZIZJ—Z,L Q+M; M;J—Zl
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M
_ 1 16y _
2 k k 2 k+1/2
Err(k) <12y ka MZFZ(’Zl) + <12 + ,LL) ka /
i=1
1 & 1Y ’
sk+1 sk+1 sk4+1  sk+1
1 M 1 M 2
ok ok ok ok
j:] j:l
2
1 & 1 &, 1,
2712 ~k 2 ~ ~
+129°L MZ 2h _MZ ! +MZ k_ gk
=1 j=1 j=1
32y 1 U 1 U i
2 2 k k
+<24fy +M>L L) R e
i=1 j=1
M 2
32y 1 -
2 2 k k
sk+1 sk+1 sk+1
+a7 237 2= % A R DI DB
i=1 J=1 i=1 j=1
2 M1 & 2 MULl1 & :
~k ~k sk sk
+MZ MZJ_ZZ Q+ 2> MZJ—ZZ
i=1 Jj=1 i=1 J=1
1 U ’ 16
2 || ok k 2 Yy mk+1/2
<1292\ FE -~ MZFM—) + (127 + u) FkH/
=1
1 Y 1 Y ’
sk+1 sk+1 sk+1  sk+1
+ 40 Zom —M;zz +4 M;Z’ .
1 U 1 U
+20||5, — 57 D |+ @+ 2 L) |8, - 2 > F
j=1 j=1
M 1 M 2
272 ok sk
+ 24~%L M; 2! _M; 2

M
32y 9 1 1
L] LR
=1 j=1
M 2
327 ;o L k_ =k

M 4 i M
Jj=1
1 M 2 M
~k ~k
— § r g Q4+ = §
M j=1 i=1
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Now we are ready to apply AccGossip convergence results ((28)), (29), (30)) to each of these terms:
1
Err(k) < 1292(1 — /p)?f0 - 2M(LQ + G)* + (1272 + 67) (1 —/p)?Ho . 2M(LQ + G)?
I

+20(1— p)" VMO + (2+2492L%) (1 — /p)*™ MQ? + 244212 (1 — /p)*T 2

2 2
<24 + 3u ) L*(1—p)*" a2 + (2472 + 3}7) L? (1 — /p)*" M@?

+20(1—p)" VMO +2(1 - /p)*™" MQ?
+20(1—p)" VMO +2(1 - /p)*™" MQ?

2
< (4872 - 3;) ML+ G)?- (1 — /)0 410V MQ? - (1 — /p)™
4y L2
+ <10 +9672L% + 67) MQ? - (1—/p)*".
w

Here we also use  and the same trick as (24). Then one can easy check that with our Hy and H;
from it holds Err(k) < Err ~ epy, then with we get

Zhtl _ px 2§ 1— 7 — 2*|I° + Err.
I (L—p) ||
Running the recursion, we obtain
% == < (=) e
’Y,U

which completes the proof.

O

Remark. In the previous theorem, we obtained convergence along the point Z%. This point is virtual
and is not computed by the algorithm. But in fact, all local points 2 are also very close to 2%

Remark. In this case (35) dose not correspond to the number of communication rounds. To compute
the number of rounds we need

20 % 2
K><(H0+H1):@<\}ﬁ <1+Z>logH€>.

It is also easy to estimate the total number of local iterations on server:

1 Hz —z* 2
KxT=0 (1+’yL)log —
T €

1 L 1 0 2~
=0 (—F)logﬂog”zz
Yo p é €

|2>

0 _ _p

:o<Q+5+L)%h%WZ/
Boop é £

B.2.2 Convex-Concave case

)

This case is proved similarly to Theorem 6 (convergence) and Theorem 7 (inexact consensus). We
just give the statement of the theorem:

Theorem 10 Let problem be solved by Extragradient with precision e:
e=0(min{S; L
B 8 (LOQ+ G+ 6Q)?
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and number of iterations T':

02
T=0 <(1 +7L)10g€> .
Suppose that parameters Hy and H; satisfy
L ((#+2) Mo ey
Hy=0 % log = ,
. (149222 + 22 - pre?
H =0 % log o~

Additionally, let us choose stepsize v as follows

7:476'

Then it holds that gap(zE ) ~ ¢ after

avg

2

K=0 (T) iterations,

K oK 1K kK _ 1Kk
where z;,, define as follows: x4%,, = 7 > k—0 Uz Yavg = ¢ 2oheo Uy-

C Numerical Results

The numerical experiments are run on a machine with 8 Intel Core(TM) 17-9700KF 3.60GHz CPU
cores with 64GB RAM. The methods are implemented in Python 3.7 using NumPy and SciPy.

In this section, we estimate the smoothness and strong convexity parameters for objectives used in
all the experiments, as well as the similarity parameter. We denote the vector with all entries equal
to one as 1 and the identity matrix as I (with the sizes determined by the context). Given a set of
data points X = (z1...2y5)" € RV*? and an associated set of labels y = (y1 ...yn) ' € RY, the
Robust Linear Regression problem reads

B

N
. 1 A
min  max g(w,r) = IN E (W' (@i +7) —y:)* + 5”“’”2 - 5“7"”2
i=1

lwll<Rw [Ir|<R-

Note that we need constraints on w to yield the bounds for smoothness and similarity parameters
(this will be described below in this section). Equivalently, g(w, r) can be expressed as

1 2 A 2 B2
glw,r) = N ||Xw +1rTw— yH + 5 lw]||” — 5 IIr)*,
and its gradient w.r.t. w and r writes as

1
Vwg(w,r) = ¥ (XTXw + X1 Tw—-XTy+17T(Xw — y)r) + 7w+ Aw,
1
V,g(w,r) = ww r+ NlT(Xw —y)w — Pr.
The Hessian of g(w, ) w.r.t. to w and r are
1
V2 9w, r) = N (XTX+(XT1r" +717X)) +rr" + A,
1
VZ2.g(w,r)=— (X"1w" +17(Xw—y)I) +r wl+rw',

N
Vgrg(wa T) = wa - BI
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We are now ready to estimate the spectrum of the Hessian taking into account the constraints on w
and r. For any v € R, we have

1
||V72Uwg(w,r)vH < N)\max(XTX) [lv]| + R2 vl + = ||XT1H R, |lv]+ = ||T1TXU|| + Al
: <J1vAmax<XTX> +R? + R X7+ A) loll = L9, [0
192 gta o] < - 2T+ 27w = g+ Tl + o]

IN

(N X7 R+ 1Ty + 2Rer) ol =: L8, |10l

V2 rg(@,y)ol| < [ww "ol + B o]l < (RS, + 8) - llvl| =: L, |[v]] -

Therefore, we can estimate the Lipschitz constant of Vg(w, r) as LY = max(L9, L9, LY.).

Let us discuss the bound on the similarity parameter. Given two datasets {X € RV*4 y e RV}
and {)Af € RNxd, Y€ RN}, we define

1 = 2 A
1) = = [[Fw+ 17w = g+ 5 ol - 2 .

To derive the similarity coefficient 699 between functions g and g, we separately estimate 6%,9, 59,
and 09,9,

59:9 ! ~—X"1
N

ww

1 1 =+ 1
= )\m X *XTX — TXTX 2 fXT
i (N N >+ HN

.

~ 1 1 ~
699 =2 HXH - =XM1
N N

.
699 = 0.

We have §9'9 = max{8%;9,69:9}.

Finally, we estimate the strong convexity parameter as ; = max (A, 8).
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