
Under review as a conference paper at ICLR 2021

Appendix

A MACAW AUXILIARY LOSS AND UPDATE EXPRESSIVENESS

Finn and Levine (2018) lay out conditions under which the MAML update procedure is universal, in
the sense that it can approximate any function f(x,y,x⇤) arbitrarily well (given enough capacity),
where x and y are the support set inputs and labels, respectively, and x⇤ is the test input. Universality
in this sense is an attractive property because it implies that the update is expressive enough to
approximate any update procedure; a method that does not possess the universality property might
be limited in its asymptotic post-adaptation performance because it cannot express (or closely
approximate) the true optimal update procedure. In order for the MAML update procedure to be
universal, several requirements of the network architecture, hyperparameters, and loss function must
be satisfied. Most of these are not method-specific in that they stipulate minimum network depth,
activation functions, and non-zero learning rate for any neural network. However, the condition placed
on the loss function require more careful treatment. The requirement is described in Definition 1.
Definition 1. A loss function is ‘universal’ if the gradient of the loss with respect to the prediction(s)

is an invertible function of the label(s) used to compute the loss.

We note that Definition 1 is a necessary but not sufficient condition for an update procedure to be
universal (see other conditions above and Finn and Levine (2018)). For the AWR loss function
(copied below from Equation 1 with minor changes), the labels are the ground truth action a and the
corresponding advantage R(s,a)� V�0

i
(s).

LAWR(s,a, ✓,�0
i) = � log ⇡✓(a|s) exp

✓
1

T

�
R(s,a)� V�0

i
(s)
�◆

(7)

For simplicity and without loss of generality (see Finn and Levine (2018), Sections 4 & 5), we will
consider the loss for only a single sample, rather than averaged over a batch.

In the remainder of this section, we first state in Theorem 1 that the standard AWR policy loss
function does not satisfy the condition for universality described in Definition 1. The proof is
by a simple counterexample. Next, we state in Theorem 2 that the MACAW auxiliary loss does
satisfy the universality condition, enabling a universal update procedure given the other generic
universality conditions are satisfied (note that the MACAW value function loss satisfies the condition
in Definition 1 because it uses L2 regression Finn and Levine (2018)).

A.1 NON-UNIVERSALITY OF STANDARD AWR POLICY LOSS FUNCTION

Intuitively, the AWR gradient does not satisfy the invertibility condition because it does not distinguish
between a small error in the predicted action that has a large corresponding advantage weight and a
large error in the predicted action (in the same direction) that has a small corresponding advantage
weight. The following theorem formalizes this statement.
Theorem 1. The AWR loss function LAWR

is not universal according to Definition 1.

The proof is by counterexample; we will show that there exist different sets of labels {a1, A1(s,a1)}
and {a2, A2(s,a1)} that produce the same gradient for some output of the model. First, rewriting
Equation 7 with A(s,a) =

�
R(s,a)� V�0

i
(s)
�
, we have

LAWR(s,a, ✓) = � log ⇡✓(a|s) exp
✓
A(s,a)

T

◆

Because our policy is parameterized as a Gaussian with fixed diagonal covariance �2I , we can again
rewrite this loss as

LAWR(s,a, âµ) =

log

1

(2⇡�2)
k
2

+
||a� âµ||2

2�2

!
exp

✓
A(s,a)

T

◆
(8)

where âµ is the mean of the Gaussian output by the policy and k = dim(a). For the purpose of the
simplicity of the counterexample, we assume the policy output âµ is 0. The gradient of this loss with
respect to the policy output is

râµLAWR(s,a,0) = � 1

�2
exp

✓
A(s,a)

T

◆
a

13

Under review as a conference paper at ICLR 2021

To demonstrate that the gradient operator applied to this loss function is not invertible, we pick two
distinct label values and show that they give the same gradient. We pick a1 = [1, ..., 1]T , A1(s,a1) =
T and a2 = [0.1, ..., 0.1]T , A2(s,a2) = log(10)T . Inserting these values into Equation A.1, this
gives gradients g1 = �e

�2 [1, ..., 1]T and g2 = �10e
�2 [0.1, ..., 0.1]T = �e

�2 [1, ..., 1]T = g1. Thus
the gradient of the standard AWR loss does not possess sufficient information to recover the labels
uniquely and using this loss for policy adaptation does not produce a universal policy update procedure.
Next, we show how the auxiliary loss used in MACAW alleviates this problem.

A.2 UNIVERSALITY OF THE MACAW POLICY ADAPTATION LOSS FUNCTION

In this section, we show that by adding an additional term to the AWR loss function, we acquire a
loss that satisfies the condition stated in Definition 1, which we state in Theorem 2. Intuitively, the
additional loss term allows the gradient to distinguish between the cases that were problematic for the
AWR loss (large action error and small advantage weight vs small action error and large advantage
weight).
Theorem 2. The MACAW policy loss function L⇡ is universal according to Definition 1.

The MACAW policy adaptation loss (given in Equation 3) is the sum of the AWR loss and an auxiliary
advantage regression loss (the following is adapted from Equation 8):

L⇡(s,a, âµ, Â) =

log

1

(2⇡�2)
k
2

+
||a� âµ||2

2�2

!
exp

✓
A(s,a)

T

◆
+ �(A(s,a)� Â)2

where Â is the predicted advantage output from the policy advantage head and � is the advantage
regression coefficient. The gradient of this loss with respect to the predicted advantage Â is

gADV = rÂL⇡(s,a, âµ, Â) = 2�(Â�A(s,a)) (9)

and the gradient of the loss with respect to âµ is

gAWR = râµL⇡(s,a, âµ, Â) =
1

�2
exp

✓
A(s,a)

T

◆
(âµ � a) (10)

We write the combined gradient as g =


gADV
gAWR

�
. In order to provide a universal update procedure, we

must be able to recover both the action label a and the advantage label A(s,a) from g. First, because
gADV is an invertible function of A(s,a), we can directly extract the advantage label by re-arranging
Equation 9:

A(s,a) =
gADV � 2�Â

�2�
Similarly, gAWR is an invertible function of a, so we can then extract the action label by re-arranging
Equation 10:

a =
gAWR � 1

�2 exp
⇣

A(s,a)
T

⌘
âµ

� 1
�2 exp

⇣
A(s,a)

T

⌘ (11)

Because we can compute A(s,a) from gADV, there are no unknowns in the RHS of Equation 11 and
we can compute a (here, �, �, and T are known constants); it is thus the additional information
provided by gADV that resolves the ambiguity that is problematic for the standard AWR policy loss
gradient. We have now shown that both the action label and advantage label used in the MACAW
policy adaptation loss are recoverable from its gradient, implying that the update procedure is
universal under the conditions given by Finn and Levine (2018), which concludes the proof.

B WEIGHT TRANSFORM LAYERS

Here, we describe in detail the ‘weight transformation’ layer that augments the expressiveness of
the MAML update in MACAW. First, we start with the observation in past work (Finn et al., 2017b)
that adding a ‘bias transformation’ to each layer improves the expressiveness of the MAML update.

14

Under review as a conference paper at ICLR 2021

To understand the bias transform, we compare with a typical fully-connected layer, which has the
forward pass

y = � (Wx+ b)

where x is the previous layer’s activations, b is the bias vector, W is the weight matrix, and y is this
layer’s activations. For a bias transformation layer, the forward pass is

y = �
�
Wx+W bz

�

where z and W b are learnable parameters of the bias transformation. During adaptation, either only
the vector z or both the vector z and the bias matrix W b are adapted. The vector W bz has the same
dimensionality as the bias in the previous equation. This formulation does not increase the expressive
power of the forward pass of the layer, but it does allow for a more expressive update of the ‘bias
vector’ W bz (in the case of dim(z) = dim(b) and W b = I , we recover the standard fully-connected
layer).

For a weight transformation layer (used in MACAW), we extend the idea of computing the bias from a
latent vector to the weight matrix itself. We now present the forward pass for a weight transformation
layer layer with d input and d output dimensions and latent dimension c. First, we compute w =
Wwtz, where Wwt 2 R(d2+d)⇥c. The first d2 components of w are reshaped into the d⇥ d weight
matrix of the layer W ⇤, and the last d components are used as the bias vector b⇤. The forward pass is
then the same as a regular fully-connected layer, but using the computed matrix and bias W ⇤ and
b⇤ instead of a fixed matrix and bias vector; that is y = �(W ⇤x + b⇤). During adaptation, both
the latent vector z and the transform matrix Wwt are adapted. We note that adapting z enables the
post-adaptation weight matrix used in the forward pass, W ⇤0

, to differ from the pre-adaptation weight
matrix W ⇤ by a matrix of rank up to the dimension of z, whereas gradient descent with normal layers
makes rank-1 updates to weight matrices. We hypothesize it is this added expressivity that makes the
weight transform layer effective. A comparison of MACAW with and without weight transformation
layers can be found in Figures 4-center and 6.

C ADDITIONAL EXPERIMENTS AND ABLATIONS

C.1 WEIGHT TRANSFORM ABLATION STUDY

In addition to the results shown in Figure 4 (center), we include an ablation of the weight transform
here for all tasks. Figure 5 shows these results. We find that across environments, the weight transform
plays a significant role in increasing training speed, stability, and even final performance. On the
relatively simple cheetah direction benchmark, it does not affect the quality of the final meta-trained
agent, but it does improve the speed and stability of training. On the other three (more difficult) tasks,
we see a much more noticeable affect in terms of both training stability as well as final performance.

Additionally, we investigate the effect of the weight transform in a few-shot image classification
setting. We use the 20-way 1-shot Omniglot digit classification setup (Lake et al., 2015), specifically
the train/val split used by (Vinyals et al., 2016) as implemented by Deleu et al. (2019). We compare
three MLP models, all with 4 hidden layers:

1. An MLP with weight transform layers of 128 hidden units and a latent layer dimension of
32 (4,866,048 parameters; Weight Transform in Figure 6).

2. An MLP without weight transform layers, with 128 hidden units (152,596 parameters;
No WT-Equal Width in Figure 6)

3. An MLP without weight transform layers, with 1150 hidden units (4,896,720 parameters;
No WT-Equal Params in Figure 6)

We find that the model with weight transform layers shows the best combination of fast convergence
and good asymptotic performance compared with baselines with regular fully-connected layers. No

WT-Equal Width has the same number of hidden units as the weight transform model (128), which
means the model has fewer parameters in total (because the weight transform layers include a larger
weight matrix). The No WT-Equal Params baseline uses wider hidden layers to equalize the number

15

Under review as a conference paper at ICLR 2021

Figure 5: Ablating the weight transformation in MACAW on the MuJoCo benchmark environments.
All networks have the same number of hidden units. Although MACAW is able to learn with regular
fully-connected layers, the weight transformation significantly improves performance on all tasks
that require adaptation to unseen tasks.

of parameters in the entire model with the Weight Transform model. Somewhat surprisingly, the
smaller baseline model (Equal Width) outperforms the larger baseline model (Equal Params).

When using MAML-style meta-learners, it is important to consider that adding parameters to the
model affects the expressiveness of both the forward computation of the model and the updates
computable with a finite number of steps of gradient descent.

Figure 6: Faster convergence provided by the
weight transform layer (orange) on Omniglot 20-
way 1-shot image classification (Lake et al., 2015).

Generally, increasing the number of parameters
in the model should improve the model’s ability
to fit the training set (because the inner loop of
MAML is more expressive), which we observe
here. Increasing the expressiveness of the in-
ner loop of MAML can also speed convergence,
which we also observe in Figure 6. However,
by simply adding neurons to a typical MLP, the
post-adaptation model tends to overfit the train-
ing set more, as we see in Figure 6. On the
other hand, adding parameters through weight
transformation layers increases expressiveness

of the adaptation step by enabling weight

updates with rank greater than 1 without

changing the expressiveness of the forward

computation of the model.

C.2 ONLINE FINE-TUNING FOR
OUT-OF-DISTRIBUTION TEST TASKS

In some cases, it may be necessary or desirable to perform online fine-tuning after the initial offline
adaptation step. This is the fully offline meta-RL problem with online fine-tuning described in Section
3, where an algorithm is given a small amount of initial adaptation data from the test task, just as in
the fully offline setting, and then is able to interact with the environment to collect additional training
data and perform on-policy updates. This ability to continually improve with additional training after
the initial offline adaptation step is what makes a consistent meta-reinforcement learner advantageous.

This hybrid setting (offline training with additional online fine-tuning) is known to be extremely
challenging in traditional reinforcement learning. These difficulties are clearly documented by recent
work (Nair et al., 2020). In short, this setting is challenging in traditional RL because while offline
pre-training might produce a policy that performs well, online fine-tuning often leads to a significant
drop in initial performance, which can take a very long time to recover from (see Nair et al. (2020)).

16

Under review as a conference paper at ICLR 2021

Additional
Env. Steps

Offline PEARL+FT MACAW
Reward Improvement Reward Improvement

0 -553.4 (21.2) – -323.1 (42.9) –
20k -565.0 (4.7) -11.5 (3.5) -279.1 (16.8) 44.0 (14.5)

200k -533.6 (19.8) 19.8 (3.7) -272.0 (15.2) 51.1 (12.7)

Table 1: Absolute reward as well as improvement (in terms of reward) of Offline PEARL+FT and
MACAW after 0, 20k, and 200k additional environment steps are gathered and used for online fine
tuning. Standard errors of the mean over the 13 test tasks are reported in parentheses. Averages are
taken over 10 rollouts of each policy. We find that MACAW achieves both better out-of-distribution

performance before online training as well as faster improvement during online fine-tuning. Note
that Offline PEARL+FT experiences an initial drop in average performance on the test task after 20k
steps, compared with the performance of the policy conditioned only on the initial batch of offline
data. A similar effect has been reported in recent work in offline RL (Nair et al., 2020).

In many cases, online fine-tuning can take a very long time to recover the performance of the offline-
only policy, if it does so at all. In offline meta-RL, we have a similar challenge; an offline meta-RL
algorithm must not only meta-train for good performance on a single batch of offline test data, but it
must also learn a set of parameters that enables fine-tuning to make productive updates to its policy
and/or value function without completely destroying the meta-learned knowledge about the task
distribution.

In this section, we use a hybrid setting as described above to evaluate not only MACAW’s consistency
(its ability to continue to improve after an initial offline adaptation step), but its ability to continue
to improve even when the test task distribution differs from the train distribution. Because
significant distribution shift means that some train tasks are irrelevant, or even detrimental to test
performance, this setting is very difficult. In order to make a meaningful comparison, we compare
with an "Offline PEARL + fine-tuning" (Offline PEARL+FT) algorithm, which is also technically
consistent (because it essentially performs the SAC algorithm on the test task after the initial task
inference step). However, we hypothesize that MACAW will have an advantage over this Offline
PEARL+FT algorithm because while both algorithms are consistent, MACAW explicitly trains for
good fine-tunability with gradient descent, unlike task inference-based meta-RL algorithms.

The training procedure for Offline PEARL+FT is the same at the regular Offline PEARL training
procedure. However, at test time, after receiving an initial small batch of offline data for task inference,
we alternative between performing rollouts of the task-conditioned policy to collect additional data
from the test task and perform gradient descent on the PEARL policy and value function objectives
with this off-policy data. Similarly, for MACAW test time involves first using the small batch of
offline test task data to take an initial gradient step on the value and policy loss functions (Eqns 2
and 3), then alternating between rolling out the adapted policy and taking more steps of gradient
descent on the MACAW losses.

The specific experimental setup is as follows. We partition the individual tasks in the Cheetah-Vel
problem such that training tasks correspond to target velocities in the range [0,2] and test tasks
correspond to target velocities in the range [2,3]. After meta-training, for each test task, we provide
the algorithm with a small batch of offline data for adaptation just as in the fully offline setting.
However, we allow the algorithm to then collect and train on up to 200k additional interactions from
the environment. Both algorithms alternate between sampling a single trajectory (200 environment
interactions) and performing 100 steps of gradient descent on the aggregate buffer of data for the
test task, which contains both the initial offline batch of data as well as all online data collected so
far. We evaluate both algorithms on their performance after 20k and 200k additional interactions
with the environment. The results of this experiment are reported in Table 1. We observe that
MACAW achieves both higher absolute reward on the OOD test tasks as well as faster relative

improvement over the offline-only adapted policy compared to the Offline PEARL+FT baseline.

C.3 METAWORLD ML45 BENCHMARK

As an additional experiment, we test the training and generalization capabilities of MACAW on
a much broader distribution of tasks, and where test tasks differ significantly from training tasks
(e.g. picking up an object as opposed to opening a window or hammering a nail). Recently,

17

Under review as a conference paper at ICLR 2021

Figure 7: Average success rates of MACAW, PEARL, and MT + fine-tuning (with 20 fine-tuning steps) on the
5 test tasks the Meta-World ML45 suite of continuous control tasks. Dashed line shows final PEARL average
success rate after 10m training steps.

Yu et al. (2019) proposed the Meta-World (Yu et al., 2019) suite of continuous control benchmark
environments as a more realistic distribution of tasks for multi-task and meta-learning algorithms. This
benchmark includes 45 meta-training tasks and 5 meta-testing tasks. The results of this experiment
are summarized in Figure 7.

We find that all methods are able to make meaningful progress on the test tasks, with gradient-based
methods (MACAW and MT + fine tune) learning much more quickly than PEARL. MACAW does
achieve a quite high level of performance quite early on in training; however, it begins to overfit with
further training. In the regime where periodic online evaluations are available for the purpose of
early stopping, we could avoid this issue, in which case MACAW would slightly underperform the
multi-task learning baseline. A possible reason for some inconsistency between the performance
of each algorithm on Meta-World and the results reported in Figure 3 is the difficult scaling of the
rewards in the current version of the Meta-World benchmark. Rewards can vary by 5 orders of
magnitude, from negative values to values on the order of 100,000. This has been documented to
adversely impact training performance even in single-task RL and increase hyperparameter sensitivity
(see https://github.com/rlworkgroup/metaworld/issues/226). Because of the
problems stemming from the current reward functions in Meta-World, the maintainers of the bench-
mark are updating them for the next version of the benchmark, which has not been released as of
November 2020.

D EXPERIMENTAL SET-UP AND DATA COLLECTION

D.1 OVERVIEW OF PROBLEM SETTINGS

The problems of interest include:

1. Half-Cheetah Direction Train a simple cheetah to run in one of two direction: forward and
backward. Thus, there are no held-out test tasks for this problem, making it more ‘proof of
concept’ than benchmark.

2. Half-Cheetah Velocity Train a cheetah to run at a desired velocity, which fully parameter-
izes each task. For our main experiment, values of the task parameters are sampled from
a uniform interval of 40 velocities in the range [0, 3]. A subset of 5 target velocities is
sampled randomly for evaluation. For ablation experiments

3. Ant-2D Direction Train a simulated ant with 8 articulated joints to run in a random 2D
direction. For our experiments, we sample 50 random directions uniformly, holding out 5
for testing.

4. Walker-2D Params Train a simulated agent to move forward, where different tasks corre-
spond to different randomized dynamics parameters rather than reward functions. For our
experiments, we sample 50 random sets of dynamics parameters, holding out 5 for testing.

5. Meta-World ML45 Train a simulated Sawyer robot to complete 45 different robotics ma-
nipulation tasks (for training). 5 additional tasks are included for testing, making 50 tasks in
total. Tasks include opening a window, hammering a nail, pulling a lever, picking & placing

18

https://github.com/rlworkgroup/metaworld/issues/226

Under review as a conference paper at ICLR 2021

Parameter Standard Configuration Meta-World

Optimizer Adam –
Meta batch size 4-10 16
Batch size 256 –
Embedding batch size 100-256 750
KL penalty 0.1 –
Hidden layers 3 –
Neurons per hidden layer 300 512
Latent space size 5 8
Policy learning rate 3e-4 –
Value function learning rate 3e-4 –
Context embedding learning rate 3e-4 –
Q-Function learning rate 3e-4 –
Reward scale 5.0 –
Recurrent False –

Table 2: Hyperparameters used for the PEARL experiments. For the MuJoCo tasks, we generally
used the same parameters as reported in (Rakelly et al., 2019), with some minor modifications. The
different parameters used for the MetaWorld ML45 environment are reported above.

an object. See Yu et al. (2019) for more information. Our experiments use a continuous space
randomization for each task setup, unlike the experiments in (Yu et al., 2019), which sample
from a fixed number of task states. This creates a much more challenging environment, as
seen in the success rate curves above.

For the first 4 MuJoCo domains, each trajectory is 200 time steps (as in Rakelly et al. (2019)); for
Meta-World, trajectories are 150 time steps long.

D.2 DATA COLLECTION

We adapt each task to the offline setting by restricting the data sampling procedure to sample data
only from a fixed offline buffer of data. For each task, we train a separate policy from scratch, using
Soft Actor-Critic (Haarnoja et al., 2018) for all tasks except Cheetah-Velocity, for which we use
TD3 (Fujimoto et al., 2018) as it proved more stable across the various Cheetah-Velocity tasks. We
save complete replay buffers from the entire lifetime of training for each task, which includes 5M
steps for Meta-World, 2.5M steps for Cheetah-Velocity, 2.5M steps for Cheetah-Dir, 2M steps for
Ant-Direction, and 1M steps for Walker-Params. We use these buffers of trajectories, one per task for
each problem, to sample data in both the inner and outer loop of the algorithm during training. See
Figures 8 and 9 for the learning curves of the offline policies for each train and test task.

D.3 ABLATION EXPERIMENTS

For the data quality experiment, we compare the post-adaptation performance when MACAW is
trained with 3 different sampling regimes for the Cheetah-Vel problem setting. Bad, medium, and
good data quality mean that adaptation data (during both training and evaluation) is drawn from the
first, middle, and last 500 trajectories from the offline replay buffers. For the task quantity experiment,
we order the tasks by the target velocity in ascending order, giving equally spaced tasks with target
velocities g0 = 0.075, g2 = 0.15, ..., g39 = 3.0. For the 20 task experiment, we use gi with even i
for training and odd i for testing. For the 10 task experiment, we move every other train task to the
test set (e.g. tasks i = 2, 6, 10, ...). For the 5 task experiment, we move every other remaining train
task to the test set (e.g. tasks i = 4, 12, 20, ...), and for the 3 task experiment, we again move every
other task to the test set, so that the train set only contains tasks 0, 16, and 32. Task selection was
performed this way to ensure that even in sparse task environments, the train tasks provide coverage
of most of the task space.

E IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Peng et al. (2019) note several strategies used to increase the stability of their advantage-weighted
regression implementation. We normalize the advantage logits in the policy update step to have zero
mean and unit standard deviation, as in Peng et al. (2019). Advantage weight logits are also clipped

19

Under review as a conference paper at ICLR 2021

Figure 8: Learning curves for offline policies for the 4 different MuJoCo environments used in the
experimental evaluations. Each curve corresponds to a policy trained on a unique task. Various levels
of smoothing are applied for the purpose of easier visualization.

20

Under review as a conference paper at ICLR 2021

Figure 9: Learning curves and success rates for all tasks in the MetaWorld 45 benchmark. Each curve
corresponds to a policy trained on a unique task. Various levels of smoothing are applied for the
purpose of plotting.

Parameter Standard Configuration Meta-World

Optimizer Adam –
Value learning rate 1e-4* 1e-6
Policy learning rate 1e-4 –
Value fine-tuning learning rate 1e-4 1e-6
Policy fine-tuning learning rate 1e-3 –
Train outer loop batch size 256 –
Fine-tuning batch size 256 –
Number of hidden layers 3 –
Neurons per hidden layer 100 300
Task batch size 5 –
Max advantage clip 20 –

Table 3: Hyperparameters used for the multi-task learning + fine tuning baseline. *For the Walker
environment, the value learning rate was 1e-5 for stability.

21

Under review as a conference paper at ICLR 2021

Parameter Standard Configuration Meta-World

Optimizer Adam –
Auxiliary advantage loss coefficient 1e-2 1e-3
Outer value learning rate 1e-5 1e-6
Outer policy learning rate 1e-4 –
Inner policy learning rate 1e-3 (learned) 1e-2 (learned)
Inner value learning rate 1e-3 (learned) 1e-4 (learned)
Train outer loop batch size 256 –
Train adaptation batch size 256 256
Eval adaptation batch size 256 –
Number of adaptation steps 1 –
Learning rate for learnable learning rate 1e-3 –
Number of hidden layers 3 –
Neurons per hidden layer 100 300
Task batch size 5 10
Max advantage clip 20 –
AWR policy temperature 1 –

Table 4: Hyperparameters used for MACAW. The Standard Configuration is used for all experiments
and all environments except for Meta-World (due to the extreme difference in magnitude of rewards in
Meta-World, which has typical rewards 100-1000x larger than in the other tasks). For the Meta-World
configuration, only parameters that differ from the standard configuration are listed.

to avoid exploding gradients and numerical overflow. To train the value function, we use simple least
squares regression onto Monte Carlo returns, rather than TD(�). Finally, our policy is parameterized
by a single Gaussian with fixed variance of 0.04; our policy network thus predicts only the mean of
the Gaussian distribution.

In addition to using weight transformation layers instead of regular fully-connected layers, we also
learn learning rates for each layer of our network by gradient descent. To speed up training, we
compute our loss using a ‘task minibatch’ of 5 tasks at each step of optimization, rather than using
all of the training tasks. Finally, specific to the RL setting, we sample experiences in contiguous
chunks from the replay buffers during train-time adaptation and uniformly (non-contiguously) from
the replay buffers for outer-loop updates and test-time adaptation. For outer loop updates, we sample
data selectively towards the end of the replay buffers.

E.1 HYPERPARAMETERS

Tables 2, 3, and 4 describe the hyperparameters used for each algorithm in our empirical evaluations.
We performed some manual tuning of hyperparameters for all algorithms, but found that the per-
formance was not significantly affected for environments other than Meta-World, likely due to the
difficult reward scaling in the current release of Meta-World.

22

	Introduction
	Preliminaries
	The Offline Meta-RL Problem
	MACAW: Meta Actor-Critic with Advantage Weighting
	Inner-Loop MACAW Procedure
	Outer-Loop MACAW Procedure
	MACAW Architecture

	Experiments
	Related Work
	Conclusion
	MACAW Auxiliary Loss and Update Expressiveness
	Non-Universality of Standard AWR Policy Loss Function
	Universality of the MACAW Policy Adaptation Loss Function

	Weight Transform Layers
	Additional Experiments and Ablations
	Weight Transform Ablation Study
	Online Fine-Tuning for Out-of-Distribution Test Tasks
	Metaworld ML45 Benchmark

	Experimental Set-Up and Data Collection
	Overview of Problem Settings
	Data Collection
	Ablation Experiments

	Implementation Details and Hyperparameters
	Hyperparameters

