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Abstract

Do neural networks, trained on well-understood algorithmic tasks, reliably re-
discover known algorithms for solving those tasks? Several recent studies, on
tasks ranging from group arithmetic to in-context linear regression, have suggested
that the answer is yes. Using modular addition as a prototypical problem, we
show that algorithm discovery in neural networks is sometimes more complex.
Small changes to model hyperparameters and initializations can induce discovery
of qualitatively different algorithms from a fixed training set, and even parallel
implementations of multiple such algorithms. Some networks trained to perform
modular addition implement a familiar Clock algorithm (previously described by
Nanda et al. [1]); others implement a previously undescribed, less intuitive, but
comprehensible procedure we term the Pizza algorithm, or a variety of even more
complex procedures. Our results show that even simple learning problems can
admit a surprising diversity of solutions, motivating the development of new tools
for characterizing the behavior of neural networks across their algorithmic phase
space. 1

1 Introduction

Mechanistically understanding deep network models—reverse-engineering their learned algorithms
and representation schemes—remains a major challenge across problem domains. Several recent
studies [2, 3, 4, 5, 1] have exhibited specific examples of models apparently re-discovering inter-
pretable (and in some cases familiar) solutions to tasks like curve detection, sequence copying and
modular arithmetic. Are these models the exception or the rule? Under what conditions do neural
network models discover familiar algorithmic solutions to algorithmic tasks?

In this paper, we focus specifically on the problem of learning modular addition, training networks
to compute sums like 8 + 6 = 2 (mod 12). Modular arithmetic can be implemented with a simple
geometric solution, familiar to anyone who has learned to read a clock: every integer is represented
as an angle, input angles are added together, and the resulting angle evaluated to obtain a modular
sum (Figure 1, left). Nanda et al. [1] show that specific neural network architectures, when trained to
perform modular addition, implement this Clock algorithm. In this work, we show that the Clock
algorithm is only one part of a more complicated picture of algorithm learning in deep networks. In
particular, networks structurally similar to the ones trained by Nanda et al. preferentially implement a
qualitatively different approach to modular arithmetic, which we term the Pizza algorithm (Figure 1,
right), and sometimes even more complex solutions. Models exhibit sharp algorithmic phase
transitions [6] between the Clock and Pizza algorithms as their width and attention strength very, and
often implement multiple, imperfect copies of the Pizza algorithm in parallel.

*Equal contribution.
1Code is available at https://github.com/fjzzq2002/pizza.
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Figure 1: Illustration of the Clock and the Pizza Algorithm.

Our results highlight the complexity of mechanistic description in even models trained to perform
simple tasks. They point to characterization of algorithmic phase spaces, not just single algorithmic
solutions, as an important goal in algorithm-level interpretability.

Organization In Section 2, we review the Clock algorithm [1] and show empirical evidence of
deviation from it in models trained to perform modular addition. In Section 3, we show that these
deviations can be explained by an alternative Pizza algorithm. In Section 4, we define additional
metrics to distinguish between these algorithms, and detect phase transitions between these algorithms
(and others Non-circular algorithms) when architectures and hyperparameters are varied. We discuss
the relationship between these findings and other work on model interpretation in Section 5, and
conclude in Section 6.

2 Modular Arithmetic and the Clock Algorithm

Setup We train neural networks to perform modular addition a + b = c (mod p), where a, b, c =
0, 1, · · · , p − 1. We use p = 59 throughout the paper. In these networks, every integer t has an
associated embedding vector Et ∈ Rd. Networks take as input embeddings [Ea,Eb] ∈ R2d and
predict a categorical output c. Both embeddings and network parameters are learned. In preliminary
experiments, we train two different network architectures on the modular arithmetic task, which we
refer to as: Model A and Model B. Model A is a one-layer ReLU transformer [7] with constant
attention, while Model B is a standard one-layer ReLU transformer (see Appendix F.1 for details).
As attention is not involved in Model A, it can also be understood as a ReLU MLP (Appendix G).

2.1 Review of the Clock Algorithm

As in past work, we find that after training both Model A and Model B, embeddings (Ea,Eb in
Figure 1) usually describe a circle [8] in the plane spanned by the first two principal components of
the embedding matrix. Formally, Ea ≈ [cos(wka), sin(wka)] where wk = 2πk/p, k is an integer in
[1, p− 1]. Nanda et al. [1] discovered a circuit that uses these circular embeddings to implement an
interpretable algorithm for modular arithmetic, which we call the Clock algorithm.

Algorithm Learned Embeddings Gradient Symmetry Required Non-linearity
Clock Circle No Multiplication
Pizza Circle Yes Absolute value

Non-circular Line, Lissajous-like curves, etc. N/A N/A

Table 1: Different neural algorithms for modular addition
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"If a meeting starts at 10, and lasts for 3 hours, then it will end at 1." This familiar fact is a description
of a modular sum, 10+3 = 1 (mod 12), and the movement of a clock describes a simple algorithm for
modular arithmetic: the numbers 1 through 12 are arranged on a circle in 360◦/12 = 30◦ increments,
angles of 10× 30◦ and 3× 30◦ are added together, then this angle is evaluated to determine that it
corresponds to 1× 30◦.

Remarkably, Nanda et al. [1] find that neural networks like our Model B implement this Clock
algorithm, visualized in Figure 1 (left): they represent tokens a and b as 2D vectors, and adding their
polar angles using trigonometric identities. Concretely, the Clock algorithm consists of three steps: In
step 1, tokens a and b are embedded as Ea = [cos(wka), sin(wka)] and Eb = [cos(wkb), sin(wkb)],
respectively, where wk = 2πk/p (an everyday clock has p = 12 and k = 1). Then the polar angles
of Ea and Eb are added (in step 2) and extracted (in step 3) via trigonometric identities. For each
candidate output c, we denote the logit Qabc; the predicted output is c∗ = argmaxc Qabc.

Crucial to this algorithm is the fact that the attention mechanism can be leveraged to perform
multiplication. What happens in model variants when the attention mechanism is absent, as in Model
A? We find two pieces of evidence of deviation from the Clock algorithm in Model A.

2.2 First Evidence for Clock Violation: Gradient Symmetricity

Since the Clock algorithm has logits:

QClock
abc = (Ea,xEb,x −Ea,yEb,y)Ec,x + (Ea,xEb,y +Ea,yEb,x)Ec,y, (1)

(see Figure 1) the gradients of Qabc generically lack permutation symmetry in argument order:
∇EaQabc 6= ∇Eb

Qabc. Thus, if learned models exhibit permutation symmetry (∇EaQabc =
∇Eb

Qabc), they must be implementing some other algorithm.

We compute the 6 largest principal components of the input embedding vectors. We then compute the
gradients of output logits (unnormalized log-probabilities from the model) with respect to the input
embeddings. We then project them onto these 6 principal components (since the angles relevant to the
Clock and Pizza algorithms are encoded in the first few principal components). These projections are
shown in Figure 2. While Model B demonstrates asymmetry in general, Model A exhibits gradient
symmetry.

Figure 2: Gradients on first six principal components of input embeddings. (a, b, c) in the title stands
for taking gradients on the output logit c for input (a, b). x and y axes represent the gradients for
embeddings of the first and the second token. The dashed line y = x signals a symmetric gradient.

2.3 Second Evidence for Clock Violation: Logit Patterns

Inspecting models’ outputs, in addition to inputs, reveals further differences. For each input pair
(a, b), we compute the output logit assigned to the correct label a + b. We visualize these correct
logits from Models A and B in Figure 3. Notice that the rows are indexed by a− b and the columns
by a + b. From Figure 3, we can see that the correct logits of Model A have a clear dependency
on a − b in that within each row, the correct logits are roughly the same, while this pattern is not
observed in Model B. This suggests that Models A and B are implementing different algorithms.
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Figure 3: Correct Logits of Model A & Model B. The correct logits of Model A (left) have a clear
dependence on a− b, while those of Model B (right) do not.

3 An Alternative Solution: the Pizza Algorithm

How does Model A perform modular arithmetic? Whatever solution it implements must exhibit
gradient symmetricity in Figure 2 and the output patterns in Figure 3. In this section, we describe a
new algorithm for modular arithmetic, which we call the Pizza algorithm, and then provide evidence
that this is the procedure implemented by Model A.

3.1 The Pizza Algorithm

Unlike the Clock algorithm, the Pizza algorithm operates inside the circle formed by embeddings
(just as pepperoni are spread all over a pizza), instead of operating on the circumference of the circle.
The basic idea is illustrated in Figure 1: given a fixed label c, for all (a, b) with a+ b = c (mod p),
the points Eab = (Ea +Eb)/2 lie on a line though the origin of a 2D plane, and the points closer to
this line than to the lines corresponding to any other c form two out of 2p mirrored “pizza slices”,
as shown at the right of the figure. Thus, to perform modular arithmetic, a network can determine
which slice pair the average of the two embedding vectors lies in. Concretely, the Pizza algorithm
also consists of three steps. Step 1 is the same as in the Clock algorithm: the tokens a and b are
embedded at Ea = (cos(wka), sin(wka)) and Eb = (cos(wkb), sin(wkb)), respectively. Step 2 and
Step 3 are different from the Clock algorithm. In Step 2.1, Ea and Eb are averaged to produce an
embedding Eab. In Step 2.2 and Step 3, the polar angle of Eab is (implicitly) computed by computing
the logit Qabc for any possible outputs c. While one possibility of doing so is to take the absolute
value of the dot product of Eab with (cos(wkc/2), sin(wkc/2)), it is not commonly observed in
neural networks (and will result in a different logit pattern). Instead, Step 2.2 transforms Eab into a
vector encoding | cos(wk(a− b)/2)|(cos(wk(a+ b)), sin(wk(a+ b))), which is then dotted with the
output embedding Uc = (cos(wkc), sin(wkc)). Finally, the prediction is c∗ = argmaxcQabc. See
Appendix A and Appendix L for a more detailed analysis of a neural circuit that computes Hab in a
real network.

The key difference between the two algorithms lies in what non-linear operations are required: Clock
requires multiplication of inputs in Step 2, while Pizza requires only absolute value computation,
which is easily implemented by the ReLU layers. If neural networks lack inductive biases toward
implementing multiplication, they may be more likely to implement Pizza rather than Clock, as we
will verify in Section 4.

3.2 First Evidence for Pizza: Logit Patterns

Both the Clock and Pizza algorithms compute logits Qabc in Step 3, but they have different forms,
shown in Figure 1. Specifically, Qabc(Pizza) has an extra multiplicative factor |cos(wk(a− b)/2)|
compared to Qabc(Clock). As a result, given c = a + b, Qabc(Pizza) is dependent on a − b, but
Qabc(Clock) is not. The intuition for the dependence is that a sample is more likely to be classified
correctly if Eab is longer. The norm of this vector depends on a− b. As we observe in Figure 3, the
logits in Model A indeed exhibit a strong dependence on a− b.
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3.3 Second Evidence for Pizza: Clearer Logit Patterns via Circle Isolation

To better understand the behavior of this algorithm, we replace the embedding matrix E with a series
of rank-2 approximations: using only the first and second principal components, or only the third
and fourth, etc. For each such matrix, embeddings lie in a a two-dimensional subspace. For both
Model A and Model B, we find that embeddings form a circle in this subspace (Figure 4 and Figure 5,
bottom). We call this procedure circle isolation. Even after this drastic modification to the trained
models’ parameters, both Model A and Model B continue to behave in interpretable ways: a subset
of predictions remain highly accurate, with this subset determined by the periodicity of the k of the
isolated circle. As predicted by the Pizza and Clock algorithms described in Figure 1, Model A’s
accuracy drops to zero at specific values of a − b, while Model B’s accuracy is invariant in a − b.
Applying circle isolation to Model A on the two principal components (one circle) yields a model
with 32.8% overall accuracy, while retaining the first six principal components (three circles) yields
an overall accuracy of 91.4%. See Appendix D for more discussion. By contrast, Model B achieves
100% when embeddings are truncated to the first six principal components. Circle isolation thus
reveals an error correction mechanism achieved via ensembling: when an algorithm (clock or pizza)
exhibits systematic errors on subset of inputs, models can implement multiple algorithm variants in
parallel to obtain more robust predictions.

Figure 4: Correct logits of Model A (Pizza) after circle isolation. The rightmost pizza is accompanying
the third pizza (discussed in Section 3.4 and Appendix D). Top: The logit pattern depends on a− b.
Bottom: Embeddings for each circle.

Using these isolated embeddings, we may additionally calculate the isolated logits directly with
formulas in Figure 1 and compare with the actual logits from Model A. Results are displayed in Table
2. We find that Qabc(Pizza) explains substantially more variance than Qabc(Clock).

Why do we only analyze correct logits? The logits from the Pizza algorithm are given by
Qabc(Pizza) = |cos(wk(a − b)/2)| cos(wk(a + b − c)). By contrast, the Clock algorithm has
logits Qabc(Clock) = cos(wk(a + b − c)). In a word, Qabc(Pizza) has an extra multiplica-
tive factor | cos(wk(a − b)/2)| compared to Qabc(Clock). By constraining c = a + b (thus
cos(wk(a+ b− c)) = 1), the factor |cos(wk(a− b)/2)| can be identified.

(Unexpected) dependence of logits Qabc(Clock) on a + b: Although our analysis above expects
logits Qabc(Clock) not to depend on a− b, they do not predict its dependence on a+ b. In Figure 5,
we surprisingly find that Qabc(Clock) is sensitive to this sum. Our conjecture is that Step 1 and Step
2 of the Clock are implemented (almost) noiselessly, such that same-label samples collapse to the
same point after Step 2. However, Step 3 (classification) is imperfect after circle isolation, resulting
in fluctuations of logits. Inputs with common sums a+ b produce the same logits.
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Figure 5: Correct logits of Model B (Clock) after circle isolation. Top: The logit pattern depends on
a+ b. Bottom: Embeddings for each circle.

Circle wk Qabc(clock) FVE Qabc(pizza) FVE
#1 2π/59 · 17 75.41% 99.18%
#2 2π/59 · 3 75.62% 99.18%
#3 2π/59 · 44 75.38% 99.28%

Table 2: After isolating circles in the input embedding, fraction of variance explained (FVE) of all
Model A’s output logits (59× 59× 59 of them) by various formulas. Both model output logits and
formula results’ are normalized to mean 0 variance 1 before taking FVE.wk’s are calculated according
to the visualization. For example, distance between 0 and 1 in Circle #1 is 17, so wk = 2π/59 · 17.

3.4 Third Evidence for Pizza: Accompanied & Accompanying Pizza

The Achilles’ heel of the Pizza algorithm is antipodal pairs. If two inputs (a, b) happen to lie
antipodally, then their middle point will lie at the origin, where the correct “pizza slice” is difficult to
identify. For example in Figure 1 right, antipodal pairs are (1,7), (2,8), (3,9) etc., whose middle points
all collapse to the origin, but their class labels are different. Models cannot distinguish between,
and thus correctly classify, these pairs. Even for odd p’s where there are no strict antipodal pairs,
approximately antipodal pairs are also more likely to be classified incorrectly than non-antipodal
pairs.

Intriguingly, neural networks find a clever way to compensate for this failure mode. we find that
pizzas usually come with “accompanying pizzas”. An accompanied pizza and its accompanying
pizza complement each other in the sense that near-antipodal pairs in the accompanied pizza become
adjacent or close (i.e, very non-antipodal) in the accompanying pizza. If we denote the difference
between adjacent numbers on the circle as δ and δ1, δ2 for accompanied and accompanying pizzas,
respectively, then δ1 = 2δ2 (mod p). In the experiment, we found that pizzas #1/#2/#3 in Figure 4
all have accompanying pizzas, which we call pizzas #4/#5/#6 (see Appendix D for details). However,
these accompanying pizzas do not play a significant role in final model predictions 2. We conjecture
that training dynamics are as follows: (1) At initialization, pizzas #1/#2/#3 correspond to three
different “lottery tickets” [9]. (2) In early stages of training, to compensate the weaknesses (antipodal
pairs) of pizzas #1/#2/#3, pizzas #4/#5/#6 are formed. (3) As training goes on (in the presence of
weight decay), the neural network gets pruned. As a result, pizzas #4/#5/#6 are not significantly
involved in prediction, although they continue to be visible in the embedding space.

2Accompanied pizzas #1/#2/#3 can achieve 99.7% accuracy, but accompanying pizzas #4/#5/#6 can only
achieve 16.7% accuracy.
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4 The Algorithmic Phase Space

In Section 3, we have demonstrated a typical Clock (Model A) and a typical Pizza (Model B). In this
section, we study how architectures and hyperparametes govern the selection of these two algorithmic
“phases”. In Section 4.1, we propose quantitative metrics that can distinguish between Pizza and Clock.
In Section 4.2, we observe how these metrics behave with different architectures and hyperparameters,
demonstrating sharp phase transitions. The results in this section focus Clock and Pizza models, but
other algorithmic solutions to modular addition are also discovered, and explored in more detail in
Appendix B.

4.1 Metrics

We wish to study the distribution of Pizza and Clock algorithms statistically, which will require us to
distinguish between two algorithms automatically. In order to do so, we formalize our observations
in Section 2.2 and 2.3, arriving at two metrics: gradient symmetricity and distance irrelevance.

4.1.1 Gradient Symmetricity

To measure the symmetricity of the gradients, we select some input-output group (a, b, c), compute
the gradient vectors for the output logit at position c with respect to the input embeddings, and then
compute the cosine similarity. Taking the average over many pairs yields the gradient symmetricity.
Definition 4.1 (Gradient Symmetricity). For a fixed set S ⊆ Z3

p of input-output pairs3, define
gradient-symmetricity of a network M with embedding layer E as

sg ≡
1

|S|
∑

(a,b,c)∈S

sim
(
∂Qabc
∂Ea

,
∂Qabc
∂Eb

)
,

where sim(a, b) = a·b
|a||b| is the cosine-similarity, Qabc is the logit for class c given input a and b. It is

clear that sg ∈ [−1, 1].

As we discussed in Section 2.2, the Pizza algorithm has symmetric gradients while the Clock algorithm
has asymmetric ones. Model A and Model B in Section 3 have gradient symmetricity 99.37% and
33.36%, respectively (Figure 2).

4.1.2 Distance Irrelevance

To measure the dependence of correct logits on differences between two inputs, which reflect the
distances of the inputs on the circles, we measure how much of the variance in the correct logit matrix
depends on it. We do so by comparing the average standard deviation of correct logits from inputs
with the same differences and the standard deviation from all inputs.
Definition 4.2 (Distance Irrelevance). For some network M with correct logit matrix L (Li,j =
Qij,i+j), define its distance irrelevance as

q ≡
1
p

∑
d∈Zp

std (Li,i+d | i ∈ Zp)
std
(
Li,j | i, j ∈ Z2

p

) ,

where std computes the standard deviation of a set. It is clear that q ∈ [0, 1].

Model A and Model B in Section 3 give distance irrelevance 0.17 and 0.85, respectively (Figure 3).
A typical distance irrelevance from the Pizza algorithm ranges from 0 to 0.4 while a typical distance
irrelevance from Clock algorithm ranges from 0.4 to 1.

4.1.3 Which Metric is More Decisive?

When the two metrics have conflicting results, which one is more decisive? We consider distance
irrelevance as the decisive factor of the Pizza algorithm, as the output logits being dependent on
the distance is highly suggestive of Pizza. On the other hand, gradient symmetricity can be used
to rule out the Clock algorithm, as it requires multiplying (transformed) inputs which will result in
asymmetric gradients. Figure 6 confirmed that at low distance irrelevance (suggesting pizza) the
gradient symmetricity is almost always close to 1 (suggesting non-clock).

3To speed-up the calculations, in our experiments S is taken as a random subset of Z3
p of size 100.
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Figure 6: Distance irrelevance vs gradient symmetricity over all the main experiments.

4.2 Identifying algorithmic phase transitions

How do models “choose” whether to implement the Clock or Pizza algorithm? We investigate this
question by interpolating between Model A (transformer without attention) and Model B (transformer
with attention). To do so, we introduce a new hyperparameter α we call the attention rate.

For a model with attention rate α, we modify the attention matrix M for each attention head to be
M ′ = Mα + J(1 − α). In other words, we modify this matrix to consist of a linear interpolation
between the all-one matrix and the original attention (post-softmax), with the rate α controlling how
much of the attention is kept. The transformer with and without attention corresponds to the case
where α = 1 (attention kept) and α = 0 (constant attention matrix). With this parameter, we can
control the balance of attention versus linear layers in transformers.

We performed the following set of experiments on transformers (see Appendix F.1 for architecture
and training details). (1) One-layer transformers with width 128 and attention rate uniformly sampled
in [0, 1] (Figure 7). (2) One-layer transformers with width log-uniformly sampled in [32, 512] and
attention rate uniformly sampled in [0, 1] (Figure 7). (3) Transformers with 2 to 4 layers, width 128
and attention rate uniformly sampled in [0, 1] (Figure 11).

The Pizza and the Clock algorithms are the dominating algorithms with circular embeddings.
For circular models, most observed models either have low gradient symmetricity (corresponding to
the Clock algorithm) or low distance irrelevance (corresponding to the Pizza algorithm).

Two-dimensional phase change observed for attention rate and layer width. For the fixed-
width experiment, we observed a clear phase transition from the Pizza algorithm to the Clock
algorithm (characterized by gradient symmetricity and distance irrelevance). We also observe an
almost linear phase boundary with regards to both attention rate and layer width. In other words, the
attention rate transition point increases as the model gets wider.

Dominance of linear layers determines whether the Pizza or the Clock algorithm is preferred.
For one-layer transformers, we study the transition point against the attention rate and the width:

• The Clock algorithm dominates when the attention rate is higher than the phase change
point, and the Pizza algorithm dominates when the attention rate is lower than the point.
Our explanation is: At a high attention rate, the attention mechanism is more prominent in
the network, giving rise to the clock algorithm. At a low attention rate, the linear layers are
more prominent, giving rise to the pizza algorithm.

• The phase change point gets higher when the model width increases. Our explanation is:
When the model gets wider, the linear layers become more capable while the attention
mechanism receive less benefit (attentions remain scalars while outputs from linear layers
become wider vectors). The linear layer therefore gets more prominence with a wider model.

Possibly hybrid algorithms between the Clock and the Pizza algorithms. The continuous phase
change suggests the existence of networks that lie between the Clock and the Pizza algorithms. This is
achievable by having some principal components acting as the Clock and some principal components
acting as the Pizza.
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Figure 7: Training results from 1-layer transformers. Each point in the plots represents a training
run reaching circular embeddings and 100% validation accuracy. See Appendix C for additional
plots. Top: Model width fixed to be 128. Bottom: Model width varies. The phase transition lines
are calculated by logistic regression (classify the runs by whether gradient symmetricity > 98% and
whether distance irrelevance < 0.6).

Existence of non-circular algorithms. Although our presentation focuses on circular algorithms
(i.e., whose embeddings are circular), we find non-circular algorithms (i.e., whose embeddings do not
form a circle when projected onto any plane) to be present in neural networks. See Appendix B for
preliminary findings. We find that deeper networks are more likely to form non-circular algorithms.
We also observe the appearance of non-circular networks at low attention rates. Nevertheless, the
Pizza algorithm continues to be observed (low distance irrelevance, high gradient symmetricity).

5 Related Work

Mechanistic interpretability aims to mechanically understand neural networks by reverse engi-
neering them [2, 3, 5, 4, 10, 11, 1, 12, 13, 14]. One can either look for patterns in weights and
activations by studying single-neuron behavior (superposition [11], monosemantic neurons [15]), or
study meaningful modules or circuits grouped by neurons [4, 14]. Mechanistic interpretability is
closely related to training dynamics [8, 13, 1].

Learning mathematical tasks: Mathematical tasks provide useful benchmarks for neural network
interpretability, since the tasks themselves are well understood. The setup could be learning from
images [16, 17], with trainable embeddings [18], or with number as inputs [19, 5]. Beyond arithmetic
relations, machine learning has been applied to learn other mathematical structures, including
geometry [20], knot theory [21] and group theory [22].

Algorithmic phase transitions: Phase transitions are present in classical algorithms [23] and in deep
learning [6, 24, 25]. Usually the phase transition means that the algorithmic performance sharply
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changes when a parameter is varied (e.g., amount of data, network capacity etc). However, the phase
transition studied in this paper is representational: both clock and pizza give perfect accuracy, but
arrive at answers via different interal computations. These model-internal phase transitions are harder
to study, but closer to corresponding phenomena in physical systems [24].

Algorithm learning in neural networks: Emergent abilities in deep neural networks, especially
large language models, have recently attracted significant attention [26]. An ability is “emergent”
if the performance on a subtask suddenly increases with growing model sizes, though such claims
depend on the choice of metric [27]. It has been hypothesized that the emergence of specific capability
in a model corresponds to the emergence of a modular circuit responsible for that capability, and
that emergence of some model behaviors thus results from a sequence of quantized circuit discovery
steps [5].

6 Conclusions

We have offered a closer look at recent findings that familiar algorithms arise in neural networks
trained on specific algorithmic tasks. In modular arithmetic, we have shown that such algorithmic
discoveries are not inevitable: in addition to the Clock algorithm reverse-engineered by [1], we find
other algorithms (including a Pizza algorithm, and more complicated procedures) to be prevalent in
trained models. These different algorithmic phases can be distinguished using a variety of new and
existing interpretability techniques, including logit visualization, isolation of principle components
in embedding space, and gradient-based measures of model symmetry. These techniques make it
possible to automatically classify trained networks according to the algorithms they implement,
and reveal algorithmic phase transitions in the space of model hyperparameters. Here we found
specifically that the emergence of a Pizza or Clock algorithm depends on the relative strength of
linear layers and attention outputs. We additionally showed that these algorithms are not implemented
in isolation; instead, networks sometimes ensemble multiple copies of an algorithm in parallel.
These results offer exciting new challenges for mechanistic interpretability: (1) How to find, classify,
and interpret unfamiliar algorithms in a systematic way? (2) How to disentangle multiple, parallel
algorithm implementations in the presence of ensembling?

Limitations We have focused on a single learning problem: modular addition. Even in this
restricted domain, qualitatively different model behaviors emerge across architectures and seeds.
Significant additional work is needed to scale these techniques to the even more complex models
used in real-world tasks.

Broader Impact We believe interpretability techniques can play a crucial role in creating and
improving safe AI systems. However, they may also be used to build more accurate systems, with the
attendant risks inherent in all dual-use technologies. It is therefore necessary to exercise caution and
responsible decision-making when deploying such techniques.
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Supplementary material

A Mathematical Analysis and An Example of Pizza Algorithm

In the pizza algorithm, we have Eab = cos(wk(a− b)/2) · (cos(wk(a+ b)/2), sin(wk(a+ b)/2)),
as cosx+cos y = cos((x− y)/2)(2 cos((x+ y)/2)) and sinx+sin y = cos((x− y)/2)(2 sin((x+
y)/2)).

To get |cos(wk(a − b)/2)|(cos(wk(a + b)), sin(wk(a + b))), we generalize this to |cos(wk(a −
b)/2)| cos(wk(a+ b− u)) (the two given cases correspond to u = 0 and u = π/2/wk).

|(cos(wku/2), sin(wku/2)) · Eab| = |cos(wk(a− b)/2) cos(wk(a+ b− u)/2)|
|(− sin(wku/2), cos(wku/2)) · Eab| = |cos(wk(a− b)/2) sin(wk(a+ b− u)/2)|

thus their difference will be equal to

|cos(wk(a− b)/2)|(|cos(wk(a+ b− u)/2)| − |sin(wk(a+ b− u)/2)|).

Now notice |cos(t)| − |sin(t)| ≈ cos(2t) for any t ∈ R (Figure 8), so the difference is approximately
|cos(wk(a− b)/2)| cos(wk(a+ b− u)).

Figure 8: |cos(t)| − |sin(t)| is approximately cos(2t) for any t ∈ R

Plugging in u = 0 and u = π/2/wk as mentioned, we get the following particular implementation of
the pizza algorithm.

Algorithm: Pizza, Example

Step 1 On given input a and b, circularly embed them to two vectors on the circumference
(cos(wka), sin(wka)) and (cos(wkb), sin(wkb)).

Step 2 Compute:

α = |cos(wka) + cos(wkb)|/2− |sin(wka) + sin(wkb)|/2
≈ |cos(wk(a− b)/2)| cos(wk(a+ b))

β = |cos(wka) + cos(wkb) + sin(wka) + sin(wkb)|/(2
√
2)

− |cos(wka) + cos(wkb)− sin(wka)− sin(wkb)|/(2
√
2)

= |cos(wka− π/4) + cos(wkb− π/4)|/2− |sin(wka− π/4) + sin(wkb− π/4)|/2
≈ |cos(wk(a− b)/2)| cos(wk(a+ b)− π/2) = |cos(wk(a− b)/2)| sin(wk(a+ b))

Step 3 Output of this pizza is computed as a dot product.

Q′abc = α cos(wkc) + β sin(wkc) ≈ |cos(wk(a− b)/2)| cos(wk(a+ b− c))

Similar circuits are observed in the wild, but instead of the above two-term approximation, a more
complicated one is observed. See Appendix L for details.

The extra |cos(wk(a − b)/2)| term is not a coincidence. We can generalize our derivation as the
following.
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Lemma A.1. A symmetric function f(x, y) that is a linear combination of cosx, sinx, cos y, sin y4

can always be written as cos((x− y)/2)g(x+ y) for some function g.

Proof. Notice cosx + cos y = cos((x − y)/2)(2 cos((x + y)/2)) and sinx + sin y = cos((x −
y)/2)(2 sin((x + y)/2)), so α(cosx + cos y) + β(sinx + sin y) = cos((x − y)/2)(2α cos((x +
y)/2) + 2β sin((x+ y)/2)).

This is why we consider the output pattern with the |cos(wk(a− b)/2)| terms rather than the actual
computation circuits as the determinant feature of the pizza algorithm.

B Non-Circular algorithms

One thing that further complicates our experiment is the existence of non-circular embeddings. While
only circular algorithms are reported in the previous works [8, 1], many non-circular embeddings
are found in our experiments, e.g., 1D lines or 3D Lissajous-like curves, as shown in Figure 9. We
leave the detailed analysis of these non-circular algorithms for future study. Since circular algorithms
are our primary focus of study, we propose the following metric circularity to filter out non-circular
algorithms. The metric reaches maximum 1 when the principal components aligns with cosine waves.

Figure 9: Visualization of the principal components of input embeddings for two trained non-circular
models. Top: A line-like first principal component. Notice the re-arranged x axis (token id). Bottom:
First three principal components forming a three-dimensional non-circular pattern. Each point
represents the embedding of a token.

Definition B.1 (Circularity). For some network, suppose the l-th principal component of its input
embeddings is vl,0, vl,1, · · · , vl,p−1, define its circularity based on first four components as

c =
1

4

4∑
l=1

 max
k∈[1,2,··· ,p−1]

 2

p
∑p−1
j=0 v

2
l,j

∣∣∣∣∣∣
p−1∑
j=0

vl,je
2πi·jk/p

∣∣∣∣∣∣
2



where i is the imaginary unit. c ∈ [0, 1] by Fourier analysis. c = 1 means first four components are
Fourier waves.

Both Model A and Model B in Section 3 have a circularity around 99.8% and we consider models
with circularity ≥ 99.5% circular.

C More Results from the Main Experiments

Here we provide Figure 7 with non-circular networks unfiltered (Figure 10). We can see more noise
emerging in the plot. We also provide the training results from multi-layer transformers (Figure 11).

4The actual neural networks could be more complicated - even if our neural network is locally linear and
symmetric, locally they could be asymmetric (e.g. |x|+ |y| could locally be x− y). Nevertheless, the pattern is
observed in our trained networks.
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Figure 10: Training results from 1-layer transformers. Each point in the plots represents a training
run reaching 100% validation accuracy. Among all the trained 1-layer transformers, 34.31% are
circular. Top: Model width fixed to be 128. Bottom: Model width varies.

D Pizzas Come in Pairs

Cautious readers might notice that the pizza algorithm is imperfect - for near antipodal points, the
sum vector will have a very small norm and the result will be noise-sensitive. While the problem
is partially elevated by the use of multiple circles instead of one, we also noticed another pattern
emerged: accompanying pizzas.

The idea is the following: suppose the difference between adjacent points is 2k mod p, then the
antipodal points have difference ±k. Therefore, if we arrange a new circle with a difference k for
adjacent points, we will get a pizza that works best for formerly antipodal points.

Algorithm: Accompanying Pizza

Step 1 Take wk as of the accompanied pizza. On given input a and b, circularly embed them to two
vectors on the circumference (cos(2wka), sin(2wka)) and (cos(2wkb), sin(2wkb)).

Step 2 Compute the midpoint:

s =
1

2
(cos(2wka) + cos(2wkb), sin(2wka) + sin(2wkb))

Step 3 Output of this pizza is computed as a dot product.

Ac = −(cos(wkc), sin(wkc)) · s

This is exactly what we observed in Model A (Table 3, Figure 13). With the six circles (pizzas and
accompanying pizzas) included in the embedding, Model A also gets 100% accuracy.
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Figure 11: Training results from transformers with 2, 3 and 4 layers. Among all the trained
transformers with 2, 3 and 4 layers, 9.95%, 11.55% and 6.08% are circular, respectively.

Figure 12: An Illustration on the Accompanying Pizza Algorithm
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Circle wk Ac FVE
#4 (accompanying #1) 2π/59 · 17 97.56%
#5 (accompanying #2) 2π/59 · 3 97.23%
#6 (accompanying #3) 2π/59 · 44 97.69%

Table 3: After isolating accompanying circles in the input embedding, fraction of variance explained
(FVE) of all Model A’s output logits by various formulas. Both model output logits and formula
results’ are normalized to mean 0 variance 1 before taking FVE. Accompanying and accompanied
pizza have the same wk.

Figure 13: Correct logits of Model A (Pizza) after circle isolation. Only accompanying pizzas are
displayed. Notice the complementing logit pattern (Figure 4).

E Results in Other Linear Architectures

While this is not the primary focus of our paper, we also ran experiments on the following four
different linear model setups (see Section F.2 for setup details).

• For all the models, we first encode input tokens (a, b) with a trainable embedding layer WE :
x1 = WE,a, x2 = WE,b (positional embedding removed for simplicity). L1, L2, L3 are
trainable linear layers. The outmost layers (commonly referred as unembed layers) have no
biases and the other layers have biases included for generality.

• Model α: calculate output logits as L2(ReLU(L1(x1 + x2))).

• Model β: calculate output logits as L3(ReLU(L2(ReLU(L1(x1 + x2))))).

• Model γ: calculate output logits as L3(ReLU(L2(ReLU(L1(x1) + L1(x2))))).

• Model δ: calculate output logits as L2(ReLU(L1([x1;x2])))

([x1;x2] stands for the concatenation of x1 and x2)

The results are shown in Figure 14. Rather surprisingly, Model α, Model β and Model δ gave radically
different results. Model β and Model γ are very similar, and in general they are more pizza-like
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Figure 14: Training results from linear models. Each point in the first-row plots represents a training
run. The second row are histograms for distance irrelevancy of each model type.

than Model α, with lower distance irrelevancy and higher circularity. This could be explained by the
addition of an extra linear layer.

However, Model δ gave very different results from Model α although they are both one-layer linear
models. It is more likely to be non-circular and have very high distance irrelevancy in general. In
other words, concatenating instead of adding embeddings yields radically different behaviors in
one-layer linear model. This result, again, alarmed us the significance of induction biases in neural
networks.

We also want to note that using different embeddings on two tokens of Model α doesn’t resolve the
discrepancy. The following model

• Model α′: calculate output logits as L2(ReLU(L1(x1 + x2))) where x1 = WA
E,a, x2 =

WB
E,b on input (a, b) and WA

E ,W
B
E are different embedding layers.

gives roughly the same result as of Model α (Figure 14, lower right corner).

Figure 15 shows the correct logits after circle isolation (Section 3.3) of a circular model from Model
β implementing the pizza algorithm. Figure 16 shows the correct logits after circle isolation (Section
3.3) of a circular model from Model δ. We can see the pattern is similar but different from the one of
clock algorithm (Figure 5). We leave the study of such models to future work.

F Architecture and Training Details

F.1 Transformers

Here we describe our setup for the main experiments. See Appendix E and Appendix I for experiments
on different setups.

Architecture We train bidirectional transformers (attention unmasked) to perform modular addition
mod p where p = 59. To calculate (a+ b) mod p, the input is provided to the model as a sequence
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Figure 15: Correct logits from Model β after circle isolation.

Figure 16: Correct logits from Model δ after circle isolation.

of two tokens [a, b]. The output logit at the last token is considered as the output of the model. For
a transformer with “width” d, the input embedding and the residue stream will be d-dimensional,
4 attention heads of bd/4c dimensions will be employed, and the MLP will be of 4d hidden units.
By default d = 128 is chosen. ReLU is used as the activation function and layer normalization isn’t
applied. The post-softmax attention matrix is interpolated between an all-one matrix and original as
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specified by the attention rate (Section 4.2). We want to point out that the setup of constant-attention
transformers is also considered in the previous work [28].

Data Among all possible data points (p2 = 3481 of them), we randomly select 80% as training
samples and 20% as validation samples. This choice (small p and high training data fraction) helps
accelerating the training.

Training We used AdamW optimizer [29] with learning rate γ = 0.001 and weight decay factor
β = 2. We do not use minibatches and the shuffled training data is provided as a whole batch in every
epoch. For each run, we start the training from scratch and train for 20, 000 epoches. We removed
the runs that did not reach 100% validation accuracy at the end of the training (majority of the runs
reached 100%).

F.2 Linear Models

Here we describe our setup for the linear model experiments (Appendix E).

Architecture We train several types of linear models to perform modular addition mod p where
p = 59. The input embedding, residue stream and hidden layer are all d = 256 dimensional. ReLU
is used as the activation function. The actual structures of network types are specified in Appendix E.

Data & Training Same as in the previous section (Section F.1).

F.3 Computing Resources

A total of 226 GPU days of NVidia V100 is spent on this project, although we expect a replication
would take significantly fewer resources.

G Mathematical Description of Constant-Attention transformer

In this section, we examine the structure of constant-attention transformers loosely following the
notation of [10].

Denote the weight of embedding layer as WE , the weight of positional embedding as Wpos, the
weight of the value and output matrix of the j-th head of the t-th layer as W t,j

V and W t,j
O , the weights

and biases of the input linear map of MLP in the t-th layer as W t
in and btin, the corresponding weights

and biases of the output linear map as W t
out and btout, and the weight of the unembedding layer as WU .

Notice that the query and the key matrices are irrelevant as the attention matrix is replaced with an
all-one matrix. Denote xj as the value of residue stream vector after the first j layers and denote ci as
the character in the i-th position. We use subscripts like xt to denote taking a specific element of
vector.

We can formalize the logit calculation as the following:

• Embedding: x0i =WE,ci +Wpos,i.
• For each layer t from 1 to nlayer:

– Constant Attention: wti = xt−1i +
∑
jW

t,j
O W t,j

V

∑
k x

t−1
k .

– MLP: xt = wt + btout +W t
outReLU(btin +W t

inw
t).

• Output: O =WUx
nlayer .

In the particular case where the input length is 2, the number of layer is 1, and we focus on the logit
of the last position, we may restate as the following (denote z as x1 and y as w1):

• Embedding: x1 =WE,c1 +Wpos,1, x2 =WE,c2 +Wpos,2.

• Constant Attention: y = x2 +
∑
jW

j
OW

j
V (x1 + x2).

• MLP: z = y + btout +W t
outReLU(btin +W t

iny).
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• Output: o =WUz.

If we remove the skip connections, the network after embedding could be seen as

o = LU

Lout

ReLU

Lin

∑
j

LjO

(
LjV (x1 + x2)

)
where LjV , L

j
O, Lin, Lout, LU are a series of linear layers corresponding to the matrices.

H Pizza with Attention

Extrapolating from Figure 7, we trained transformers with width 1024 and attention rate 1 (normal
attention). After several tries, we are able to observe a trained circular model with distance irrelevance
0.156 and gradient symmetricity 0.995, which fits our definition of Pizza (Figure 17).

Figure 17: Correct logits of the trained model in Section H after circle isolation (Section 3.3).

I Results on Slightly Different Setups

We considered the following variations of our setups (Appendix F.1, Section 4), for which the
existence of pizzas and clocks as well as the phase changes are still observed.

GeLU instead of ReLU We conducted the same 1-layer transformer experiment with activation
function GeLU instead of ReLU. Very similar results are observed (Figure 18).

Encode Two Tokens Differently We conducted the 1-layer transformer experiments but with
different embedding for the two tokens. Again very similar results are observed (Figure 19). We
also discovered that the two tokens’ embeddings are often aligned to implement the Pizza and Clock
algorithm (Figure 20).

Adding Equal Sign We conducted the 1-layer transformer experiment with an equal sign added.
Very similar results are observed (Figure 21).

J Pizza Occurs Early in the Clock Training

We plotted intermediate states during the training of a model with attention (attention rate 1). Pizza-
like pattern was observed early in the training, but the pattern gradually disappeared during the run
(Figure 22).
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Figure 18: Training results from 1-layer transformers with GeLU instead of ReLU as the activation
function. Each point in the plots represents a training run that reached 100% validation accuracy.

Figure 19: Training results from 1-layer transformers where the two tokens use different embeddings
(feed [a, b + p] to the model on input (a, b); 2p tokens are handled in the embedding layer). Each
point in the plots represents a training run that reached 100% validation accuracy. We did not use
circularity to filter the result because it is no longer well-defined.
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Figure 20: Correct logits after circle isolation from a trained model where two tokens use different
embeddings. The blue points represent the embeddings for the first token and the green points
represent the embeddings for the second token. The model is implementing the Pizza algorithm.
The correct logit pattern is shifted comparing to the previous patterns because the embeddings of
two tokens do not line up exactly. For example, the third circle has near-maximum correct logit for
a = 6, b = 3 (the two points lining up on the top) and (a− b)/18 ≡ 10 (mod 59). This is the reason
that the correct logit pattern appears to be shifted 10 units down.

Figure 21: Training results from 1-layer transformers where an equal sign is added (feed [a, b,=]
to the model on input (a, b) where = is a special token; p+ 1 tokens are handled in the embedding
layer; context length of the model becomes 3). Each point in the plots represents a training run that
reached 100% validation accuracy. We did not use circularity to filter the result because it is no longer
well-defined.

K Accompanying Pizza Occurs Early in the Pizza Training

We plotted intermediate states during the training of a model without attention (attention rate 0). We
observed the early emergence of a pattern similar to accompanying pizza in training runs (Figure
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Figure 22: For a 1-layer transformer with attention, correct logits after principal component (possibly
non-circle) isolations at various states during the training. The pizza-like pattern gradually desolved.

23) and removing that circle brings accuracy down from 99.7% to 97.9%. They are less helpful later
in the network (removing accompanying pizzas in trained Model A only brings accuracy down to
99.7%).
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Figure 23: Immediate state after 600 epochs of training for a 1-layer transformer with constant
attention.

L A Closer Look at a Linear Pizza Model

In this section, we provide a full picture of the linear model shown in Figure 15 by investigating the
actual weights in the model.

L.1 Model Structure

As described in Appendix E, on input (a, b), the output logits of the model is computed as

L3(ReLU(L2(ReLU(L1(Embed[a] + Embed[b]))))).

Denote the weight of embedding layer as WE , the weight of the unembedding layer (L3) as WU , and
the weights and biases of L1 and L2 as W1, b1 and W2, b2, respectively, then the output logits on
input (a, b) can be written as

WUReLU(b2 +W2ReLU(b1 +W1(WE [a] +WE [b]))).

L.2 General Picture

We first perform principal component visualizations on the embedding and unembedding matrices.
From Figure 24, we can see that the embedding and unembedding matrices formed matching circles
(circles with the same gap δ between adjacent entries).

We now give the general overview of the circuit. Each pair of matching circles forms an instance of
Pizza and they operate independently (with rather limited interference). Specifically for each pair,

• The embedding matrix first places the inputs a, b on the circumference: W ′E [a] ≈
(cos(wka), sin(wka)) and W ′E [b] ≈ (cos(wkb), sin(wkb)) (wk = 2πk/p for some inte-
ger k ∈ [1, p− 1] as in Section 2.1; W ′E stands for the two currently considered principal
components of WE ; rotation and scaling omitted for brevity).
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• The embeddings are added to get

(cos(wka) + cos(wkb), sin(wka) + sin(wkb))

= cos(wk(a− b)/2) · (cos(wk(a+ b)/2), sin(wk(a+ b)/2))

• It is then passed through the first linear layer L1. Each result entry pre-ReLU will thus be a
linear combination of the two dimensions of the aforementioned vectors, i.e. cos(wk(a−
b)/2) · (α cos(wk(a + b)/2) + β sin(wk(a + b)/2)) for some α, β, which will become
|cos(wk(a− b)/2)||α cos(wk(a+ b)/2) + β sin(wk(a+ b)/2))| after ReLU.

• These values are then passed through the second linear layer L2. Empirically the ReLU is
not observed to be effective as the majority of values is positive. The output entries are then
simply linear combinations of aforementioned outputs of L1.

• The unembedding matrix is finally applied. In the principal components we are considering,
W ′U [c] ≈ (cos(wkc), sin(wkc)). (W ′U stands for the two currently considered principal
components of WU ; rotation and scaling omitted for brevity) and these two principal
components correspond to a linear combination of the output entries of L2, which then
correspond to a linear combination of the outputs of L1 (thanks to the non-functional ReLU).

• Similar to the formula | sin(t)| − | cos(t)| ≈ cos(2t) discussed in Appendix A, these linear
combinations provide good approximations for |cos(wk(a − b)/2)| cos(wk(a + b)) and
|cos(wk(a− b)/2)| sin(wk(a+ b)). Finally we arrive at

|cos(wk(a− b)/2)|(cos(wkc) cos(wk(a+ b)) + sin(wkc) sin(wk(a+ b)))

=|cos(wk(a− b)/2)| cos(wk(a+ b− c))

.

Figure 24: Visualization of the principal components of the embeddings and unembedding matrices.

L.3 Aligning Weight Matrices

We first verify that the ReLU from the second layer is not functional. After removing it, the accuracy
of the model remains 100% and the cross-entropy loss actually decreased from 6.20 × 10−7 to
5.89× 10−7.

Therefore, the model output can be approximately written as

WU (b2+W2ReLU(b1+W1(WE [a]+WE [b]))) =WUb2+WUW2ReLU(b1+W1(WE [a]+WE [b])).

We now “align” the weight matrices W1 and W2 by mapping through the directions of the principal
components of the embeddings and unembeddings. That is, we calculate how these matrices act on
and onto the principal directions (consider W1v for every principal direction v in WE and vTW2 for
every principal direction v in WU ). We call the other dimension of aligned W1 and W2 output and
source dimensions, respectively (Figure 25).

In the aligned weight matrices, we can see a clear domino-like pattern: in most output or source
dimensions, only two principal components have significant non-zero values, and they correspond to
a pair of matching circle, or a pizza. In this way, every immediate dimension serves for exactly one
pizza, so the pizzas do not interfere with each other.
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Figure 25: Visualization of the aligned W1 and W2.

L.4 Approximation

Everything becomes much clearer after realigning the matrices. For a pizza and its two corresponding
principal embedding / unembedding dimensions, W ′E [a]+W

′
E [b] ≈ cos(wk(a− b)/2) · (cos(wk(a+

b)/2), sin(wk(a+ b)/2)) will be mapped by realigned W1 into its corresponding columns (which
are different for every pizza), added with b1 and apply ReLU. The result will then be mapped by the
realigned W2, added with realigned b2, and finally multipled by (cos(wkc), sin(wkc)).

For the first two principal dimensions, realigned W1 has 44 corresponding columns (with coefficients
of absolute value > 0.1). Let the embedded input be (x, y) =W ′E [a] +W ′E [b] ≈ cos(wk(a− b)/2) ·
(cos(wk(a+ b)/2), sin(wk(a+ b)/2)), the intermediate columns are

ReLU([0.530x−1.135y+0.253,−0.164x−1.100y+0.205, 1.210x−0.370y+0.198,−0.478x−
1.072y + 0.215,−1.017x + 0.799y + 0.249, 0.342x − 0.048y + 0.085, 1.149x − 0.598y +
0.212,−0.443x+1.336y+0.159,−1.580x−0.000y+0.131,−1.463x+0.410y+0.178, 1.038x+
0.905y + 0.190, 0.568x + 1.188y + 0.128, 0.235x − 1.337y + 0.164,−1.180x + 1.052y +
0.139,−0.173x+0.918y+0.148,−0.200x+1.060y+0.173,−1.342x+0.390y+0.256, 0.105x−
1.246y + 0.209, 0.115x + 1.293y + 0.197, 0.252x + 1.247y + 0.140,−0.493x + 1.252y +
0.213, 1.120x+ 0.262y + 0.239, 0.668x+ 1.096y + 0.205,−0.487x− 1.302y + 0.145, 1.134x−
0.862y + 0.273, 1.143x + 0.435y + 0.171,−1.285x − 0.644y + 0.142,−1.454x − 0.285y +
0.218,−0.924x+1.068y+0.145,−0.401x+0.167y+0.106,−0.411x−1.389y+0.249, 1.422x−
0.117y + 0.227,−0.859x − 0.778y + 0.121,−0.528x − 0.216y + 0.097,−0.884x − 0.724y +
0.171, 1.193x+0.724y+0.131, 1.086x+0.667y+0.218, 0.402x+1.240y+0.213, 1.069x−0.903y+
0.120, 0.506x− 1.042y + 0.153, 1.404x− 0.064y + 0.152, 0.696x− 1.249y + 0.199,−0.752x−
0.880y + 0.106,−0.956x− 0.581y + 0.223]).

For the first principal unembedding dimension, it will be taken dot product with

[1.326, 0.179, 0.142,−0.458, 1.101,−0.083, 0.621, 1.255,−0.709, 0.123,−1.346,−0.571, 1.016,
1.337, 0.732, 0.839, 0.129, 0.804, 0.377, 0.078, 1.322,−1.021,−0.799,−0.339, 1.117,−1.162,
−1.423,−1.157, 1.363, 0.156,−0.165,−0.451,−1.101,−0.572,−1.180,−1.386,−1.346,−0.226,
1.091, 1.159,−0.524, 1.441,−0.949,−1.248].
Call this function f(x, y). When we plug in x = cos(t), y = sin(t), we get a function that well-
approximated 8 cos(2t + 2) (Figure 26). Therefore, let t = wk(a + b)/2, the dot product will be
approximately 8|cos(wk(a − b)/2)| cos(wk(a + b) + 2), or |cos(wk(a − b)/2)| cos(wk(a + b)) if
we ignore the phase and scaling. This completes the picture we described above.
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Figure 26: f(cos(t), sin(t)) well-approximates 8 cos(2t+ 2).
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