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Abstract

Federated Learning (FL) is a distributed machine learning paradigm that allows1

multiple clients to train a global model collaboratively without sharing their local2

training data. Due to its distributed nature, many studies have shown that it is3

vulnerable to backdoor attacks. However, existing studies usually used a predeter-4

mined, fixed backdoor trigger or optimized it based solely on the local data and5

model without considering the global training dynamics. This leads to sub-optimal6

and less durable attack effectiveness, i.e., their attack success rate is low when7

the attack budget is limited and decreases quickly if the attacker can no longer8

perform attacks anymore. To address these limitations, we propose A3FL, a new9

backdoor attack which adversarially adapts the backdoor trigger to make it less10

likely to be removed by the global training dynamics. Our key intuition is that11

the difference between the global model and the local model in FL makes the12

local-optimized trigger much less effective when transferred to the global model.13

We solve this by optimizing the trigger to even survive the worst-case scenario14

where the global model was trained to directly unlearn the trigger. Extensive15

experiments on benchmark datasets are conducted for twelve existing defenses to16

comprehensively evaluate the effectiveness of our A3FL.17

1 Introduction18

Recent years have witnessed the rapid development of Federated Learning (FL) [1, 2, 3], an advanced19

distributed learning paradigm. With the assistance of a cloud server, multiple clients such as20

smartphones or IoT devices train a global model collaboratively based on their private training data21

through multiple communication rounds. In each communication round, the cloud server selects22

a part of the clients and sends the current global model to them. Each selected client first uses the23

received global model to initialize its local model, then trains it based on its local dataset, and finally24

sends the trained local model back to the cloud server. The cloud server aggregates local models from25

selected clients to update the current global model. FL has been widely used in many safety- and26

privacy-critical applications [4, 5, 6, 7].27

Numerous studies [8, 9, 10, 11, 12, 13, 14] have shown that the distributed nature of FL provides28

a surface to backdoor attacks, where an attacker can compromise some clients and utilize them to29

inject a backdoor into the global model such that the model’s behaviors are the attacker desired. In30

particular, the backdoored global model behaves normally on clean testing inputs but predicts any31

testing inputs stamped with an attacker-chosen backdoor trigger as a specific target class.32

Depending on whether the backdoor trigger is optimized, we can categorize existing attacks into33

fixed-trigger attacks [12, 11, 13, 8] and trigger-optimization attacks [10, 9]. In a fixed-trigger attack,34

an attacker pre-selects a fixed backdoor trigger and thus does not utilize any information from FL35

training process. Consequently, the selected trigger is usually sub-optimal, which makes the attack less36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



0 20 40 60 80 100
Communication round

20

40

60

80

100

AS
R 

(%
)

Local ASR Global ASR CerP A3FL (Ours)

Figure 1: A3FL and CerP [9] can
achieve 100% ASR on the local model.
However, only A3FL in the mean time
obtains a high global ASR.

effective and stealthy as shown in experiments. In a trigger-37

optimization attack, an attacker optimizes the backdoor38

trigger to enhance the attack. Fang et al. [10] proposed to39

maximize the difference between latent representations of40

clean and trigger-stamped samples. Lyu et al. [9] proposed41

to optimize the trigger and local model jointly with ℓ242

regularization on local model weights to bypass defenses.43

The major limitations of existing trigger-optimization at-44

tacks are twofold. First, they only leverage local models45

of compromised clients to optimize the backdoor trigger,46

which ignores the global training dynamics. Second, they47

strictly regulate the difference between the local and global48

model weights to bypass defenses, which in turn limits the49

backdoor effectiveness. As a result, the locally optimized50

trigger becomes much less effective when transferred to51

the global model as visualized in Figure 1. More details52

for this experiment can be found in Appendix A.1.53

Our contribution: In this paper, we propose Adversarially Adaptive Backdoor Attacks to Federated54

Learning (A3FL). Recall that existing works can only achieve sub-optimal attack performance due to55

ignorance of global training dynamics. A3FL addresses this problem by adversarially adapting to the56

dynamic global model. We propose adversarial adaptation loss, in which we apply an adversarial57

training-like method to optimize the backdoor trigger so that the injected backdoor can remain58

effective in the global model. In particular, we predict the worst-case movement of the global model59

by assuming that the server can access the backdoor trigger and train the global model to directly60

unlearn the trigger. We adaptively optimize the backdoor trigger to make it survive this worst-case61

adversarial global model, i.e., the backdoor cannot be easily unlearned even if the server is aware62

of the exact backdoor trigger. We empirically validate our intuition as well as the effectiveness and63

durability of the proposed attack.64

We further conduct extensive experiments on widely-used benchmark datasets, including CIFAR-65

10 [15] and TinyImageNet [16], to evaluate the effectiveness of A3FL. Our empirical results66

demonstrate that A3FL is consistently effective across different datasets and settings. We67

further compare A3FL with 4 state-of-the-art backdoor attacks [12, 11, 10, 9] under 12 de-68

fenses [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], and the results suggest that A3FL remarkably69

outperforms all baseline attacks by up to 10 times against all defenses. In addition, we find that A3FL70

is significantly more durable than all baselines. Finally, we conduct extensive ablation studies to71

evaluate the impact of hyperparameters on the performance of A3FL.72

To summarize, our contributions can be outlined as follows.73

• We propose A3FL, a novel backdoor attack to the FL paradigm based on adversarial74

adaptation, in which the attacker optimizes the backdoor trigger using an adversarial training-75

like technique to enhance its persistence within the global training dynamics.76

• We empirically demonstrate that A3FL remarkably improves the durability and attack77

effectiveness of the injected backdoor in comparison to previous backdoor attacks.78

• We comprehensively evaluate A3FL towards existing defenses and show that they are79

insufficient for mitigating A3FL, highlighting the need for new defenses.80

2 Related Work81

Federated learning: Federated Learning (FL) was first proposed in [1] to improve communication82

efficiency in decentralized learning. FedAvg [2] aggregated updates from each client and trains83

the global model with SGD. Following studies [27, 28, 29, 30, 31] further improved the federated84

paradigm by making it more adaptive, general, and efficient.85

Existing attacks and their limitations: In backdoor attacks to FL, an attacker aims to inject a86

backdoor into model updates of compromised clients such that the final global model aggregated87

by the server is backdoored. Existing backdoor attacks on FL can be classified into two categories:88

fixed-trigger attacks [12, 11, 8, 14, 13] and trigger-optimization attacks [10, 9].89
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Fixed-trigger attacks [8, 11, 14, 13, 12] pre-select a fixed backdoor trigger and poison the local90

training set with it. Since a fixed trigger may not be effective for backdoor injection, these attacks91

improved the backdoor effectiveness through other approaches including manually manipulating the92

poisoned updates. Particularly, scaling attack [8] scaled up the updates to dominate other clients to93

improve the attack effectiveness. DBA [11] split the trigger into several sub-triggers for poisoning,94

which makes DBA more stealthy from defenses. Neurotoxin [12] only attacked unimportant model95

parameters that are less frequently updated to prevent the backdoor from being erased shortly.96

Trigger-optimization attacks [10, 9] optimize the backdoor trigger to enhance the attack. F3BA [10]97

optimized the trigger pattern to maximize the difference between latent representations of clean98

and trigger-stamped samples. F3BA also projected gradients to unimportant model parameters like99

Neurotoxin [12] to improve stealthiness. CerP [9] jointly optimized the trigger and the model weights100

with ℓ2 regularization to minimize the local model bias. These attacks can achieve higher attack101

performance than fixed-trigger attacks. However, they have the following limitations. First, they only102

consider the static local model and ignore the dynamic global model in FL, thus the optimized trigger103

could be sub-optimal on the global model. Second, they apply strict regularization on the difference104

between the local model and the global model, which harms the backdoor effectiveness. Therefore,105

they commonly need a larger attack budget (e.g., compromising more clients) to take effect. We will106

empirically demonstrate these limitations in Section 4.107

Existing defenses: In this paper, we consider two categories of defenses in FL. The first category of108

defense mechanisms is deliberately designed to alleviate the risks of backdoor attacks [17, 19, 20,109

18, 32] on FL. These defense strategies work by restricting clients’ updates to prevent the attackers110

from effectively implanting a backdoor into the global model. For instance, the Norm Clipping [17]111

defense mechanism limits clients’ behavior by clipping large updates, while the CRFL [19] defense112

mechanism uses parameter smoothing to impose further constraints on clients’ updates.113

The second category of defenses [26, 25, 24, 23, 22, 21, 33] is proposed to improve the robustness114

of FL against varied threats. These defense mechanisms operate under the assumption that the115

behavior of different clients is comparable. Therefore, they exclude abnormal clients to obtain an116

update that is recognized by most clients to train the global model. For instance, the Median [22]117

defense mechanism updates the global model using the median values of all clients’ updates, while118

Krum [21] filters out the client with the smallest pairwise distance from other clients and trains the119

global model solely with the filtered client updates. These defense mechanisms can achieve superior120

robustness compared to those defense mechanisms that are specifically designed for backdoor attacks.121

Nevertheless, the drawback of this approach is evident: it often compromises the accuracy of the122

global model, as it tends to discard most of the information provided by clients, even if these updates123

are merely potentially harmful.124

There exist additional defenses in FL that are beyond the scope of this paper. While these defenses may125

offer potential benefits, they also come with certain limitations in practice. For instance, FLTrust [34]126

assumed the server holds a clean validation dataset, which deviates from the typical FL setting. Cao127

et al. [35] proposed sample-wise certified robustness which demands hundreds of times of retraining128

and is computationally expensive.129

3 Methodology130

To formulate the backdoor attack scenario, we first introduce the federated learning setup and threat131

model. Motivated by the observation of the local-global gap in existing works due to the ignorance of132

global dynamics, we propose to optimize the trigger via an adversarial adaptation loss.133

3.1 Federated Learning Setup and Threat Model134

We consider a standard federated learning setup where N clients aim to collaboratively train a global135

model f with the coordination of a server. Let Di be the private training dataset held by the client i,136

where i = 1, 2, . . . , N . The joint training dataset of the N clients can be denoted as D = ∪Ni=1Di.137

In the t-th communication round, the server first randomly selects M clients, where M ≤ N . For138

simplicity, we use St to denote the set of selected M clients. The server then distributes the current139

version of the global model θt to the selected clients. Each selected client i ∈ St first uses the global140

model to initialize its local model, then trains its local model on its local training dataset, and finally141
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uploads the local model update (i.e., the difference between the trained local model and the received142

global model) to the server. We use ∆i
t to denote the local model update of the client i in the t-th143

communication round. The server aggregates the received updates on model weights and updates the144

current global model weights as follows:145

θt+1 = θt +A({∆i
t|i ∈ St}) (1)

where A is an aggregation rule adopted by the server. For instance, a widely used aggregation rule146

FedAvg [2] takes an average over the local model updates uploaded by clients.147

Attacker’s goal: We consider an attacker aims to inject a backdoor into the global model. In148

particular, the attacker aims to make the injected backdoor effective and durable. The backdoor is149

effective if the backdoored global model predicts any testing inputs stamped with an attacker-chosen150

backdoor trigger as an attacker-chosen target class. The backdoor is durable if it remains in the151

global model even if the attacker-compromised clients stop uploading poisoned updates while the152

training of the global model continues. We note that a durable backdoor is essential for an attacker as153

the global model in a production federated learning system is periodically updated but it is impractical154

for the attacker to perform attacks in all time periods [12, 36]. Considering the durability of the155

backdoor enables us to understand the effectiveness of backdoor attacks under a strong constraint,156

i.e., the attacker can only attack the global model within a limited number of communication rounds.157

Attacker’s background knowledge and capability: Following threat models in previous studies [9,158

12, 10, 11, 14, 8], we consider an attacker that can compromise a certain number of clients. In159

particular, the attacker can access the training datasets of those compromised clients. Moreover, the160

attacker can access the global model received by those clients and manipulate their uploaded updates161

to the server. As a practical matter, we consider the attacker can only control those compromised162

clients for a limited number of communication rounds [12, 11, 8, 10, 9].163

3.2 Adversarially Adaptive Backdoor Attack (A3FL)164

Our key observation is that existing backdoor attacks are less effective because they either use a fixed165

trigger pattern or optimize the trigger pattern only based on the local model of compromised clients.166

However, the global model is dynamically updated and therefore differs from the static local models.167

This poses two significant challenges for existing backdoor attacks. Firstly, a backdoor that works168

effectively on the local model may not be similarly effective on the global model. Secondly, the169

injected backdoor is rapidly eliminated since the global model is continuously updated by the server,170

making it challenging for attackers to maintain the backdoor’s effectiveness over time.171

We aim to address these challenges by adversarially adapting the backdoor trigger to make it persistent172

in the global training dynamics. Our primary objective is to optimize the backdoor trigger in a way173

that allows it to survive even in the worst-case scenario where the global model is trained to directly174

unlearn the backdoor. To better motivate our method, we first discuss the limitations of existing175

state-of-the-art backdoor attacks on federated learning.176

Limitation of existing works: In recent state-of-the-art works [9, 10], the attacker optimizes the177

backdoor trigger to maximize its attack effectiveness and applies regularization techniques to bypass178

server-side defense mechanisms. Formally, given the trigger pattern δ and an arbitrary input x, the179

input stamped with the backdoor trigger can be denoted as x⊕δ, which is called the backdoored input.180

Suppose the target class is ỹ. Since the attacker has access to the training dataset of a compromised181

client i, the backdoor trigger δ can be optimized using the following objective:182

δ∗ = argmin
δ

E(x,y)∼Di

[
L(x⊕ δ, ỹ;θt)

]
(2)

where θt represents the global model weights in the t-th communication round, and L is the classifi-183

cation loss function such as cross-entropy loss. To conduct a backdoor attack locally, the attacker184

randomly samples a small set of inputs Db
i from the local training set Di, and poisons inputs in Db

i185

with trigger stamped. The attacker then injects a backdoor into the local model by optimizing the186

local model on the partially poisoned local training set with regularization to limit the gap between187

the local and global model, i.e., ||θ − θt||. While the regularization term helps bypass server-side188

defenses, it greatly limits the backdoor effectiveness, as it only considers the current global model θt189

and thus fails to adapt to future global updates.190
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As illustrated in Figure 1, we observe that such backdoor attack on federated learning (e.g., CerP [9])191

is highly effective on the local model, suggested by a high local attack success rate (ASR). However,192

due to the ignorance of global dynamics, they cannot achieve similar effectiveness when transferred193

to the global model, resulting in a low ASR on the global model. Our method A3FL aims to bridge194

the local-global gap in existing approaches to make the backdoor persistent when transferred to the195

global model thus achieving advanced attack performance. In particular, we introduce adversarial196

adaptation loss that makes the backdoor persistent to global training dynamics.197

Adversarial adaptation loss: To address the challenge introduced by the global model dynamics198

in federated learning, we propose the adversarial adaptation loss. As the attacker cannot directly199

control how the global model is updated as federated learning proceeds, its backdoor performance200

can be significantly impacted when transferred to the global model, especially when only a small201

number of clients are compromised by the attacker or defense strategies are deployed. For instance,202

local model updates from benign clients can re-calibrate the global model to indirectly mitigate the203

influence of the backdoored updates from the compromised clients; a defense strategy can also be204

deployed by the server to mitigate the backdoor. To make the backdoor survive such challenging205

scenarios, our intuition is that, if an attacker could anticipate the future dynamics of the global model,206

the backdoor trigger would be better optimized to adapt to global dynamics.207

However, global model dynamics are hard to predict because 1) at each communication round, all208

selected clients contribute to the global model but the attacker cannot access the private training209

datasets from benign clients and thus cannot predict their local model updates, and 2) the attacker210

does not know how local model updates are aggregated to obtain the global model and is not aware211

of possible defense strategies adopted by the server. As directly predicting the exact global model212

dynamics is challenging, we instead require the attacker to foresee and survive the worst-case scenario213

where the global model is trained to directly unlearn the backdoor.214

Specifically, starting from current global model θt, we foresee an adversarially crafted global model215

θ′
t that can minimize the impact of the backdoor. We adopt an adversarial training-like method216

to obtain θ′
t: the attacker can use the generated backdoor trigger to simulate the unlearning of the217

backdoor in the global model. The trigger is then optimized to simultaneously backdoor the current218

global model θt and the adversarially adapted global model θ′
t. Formally, the adversarially adaptive219

backdoor attack (A3FL) can be formulated as the following optimization problem:220

δ∗ = argmin
δ

E(x,y)∼Di

[
L(x⊕ δ, ỹ;θt) + λL(x⊕ δ, ỹ;θ′

t)
]

s.t. θ′
t = argmin

θ
E(x,y)∼Di

[
L(x⊕ δ, y;θ)

] (3)

where θ is initialized with current global model weights θt; θ′
t is the optimized adversarial global221

model which aims to correctly classify the backdoored inputs as their ground-truth label to unlearn222

the backdoor. In trigger optimization, λ is a hyperparameter balancing the backdoor effect on the223

current global model θt and the adversarial one θ′
t, such that the local-global gap is bridged when the224

locally optimized trigger is transferred to the global model (after server-side aggregation/defenses).225

Note that attacking the adversarial model is a worst-case adaptation of global dynamics, as in practice226

the server cannot directly access and unlearn the backdoor trigger to obtain such an adversarial model.227

Algorithm of A3FL: We depict the workflow of A3FL compromising a client in Algorithm 1. At228

the t-th communication round, the client is selected by the server and receives the current global229

model θt. Lines 4-8 optimize the trigger based on the current and the adversarial global model using230

cross-entropy loss Lce. The adversarial global model is initialized by the global model weights in231

Line 1, and is updated in Line 10. Lines 12-14 train the local model on the poisoned dataset and232

upload local updates to the server.233

4 Experiments234

4.1 Experimental Setup235

Datasets: We evaluate A3FL on two widely-used benchmark datasets: CIFAR-10 [15] and TinyIm-236

ageNet [16]. The CIFAR-10 dataset consists of 50,000 training images and 10,000 testing images237

that are uniformly distributed across 10 classes, with each image having a size of 32×32 pixels. The238
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Algorithm 1: The workflow of A3FL compromising a client
Input: θt, Di, ỹ, K,Ktrigger, α1,α2,λ

1: θ′
t = θt

2: for j = 1 to K do
3: Sample a batch of training data B from Di

4: for k = 1 to Ktrigger do
5: // Optimize trigger pattern δ following Equation 3.
6: L = 1

|B|
∑

x∈B(Lce(x⊕ δ, ỹ;θt) + λLce(x⊕ δ, ỹ;θ′
t))

7: δ ← δ − α1∇δL
8: end for
9: // Optimize adversarial global model weights θ′

t following Equation 3.
10: θ′

t ← θ′
t − α2∇θ

1
|B|

∑
(x,y)∈B Lce(x⊕ δ, y;θ′

t)

11: end for
12: Poison local dataset with δ and update local model to obtain θi

t+1

13: ∆t+1
i = θi

t+1 − θt
14: Upload ∆t+1

i to the server

TinyImageNet dataset contains 100,000 training images and 20,000 testing images that are uniformly239

distributed across 200 classes, where each image has a size of 64×64 pixels.240

Federated learning setup: By default, we set the number of clients N = 100. At each communica-241

tion round, the server randomly selects M = 10 clients to contribute to the global model. The global242

model architecture is ResNet-18 [37]. We assume a non-i.i.d data distribution with a concentration243

parameter h of 0.9 following previous works [12, 10, 9]. We evaluate the impact of data heterogeneity244

by adjusting the value of h in Appendix B.6. Each selected client trains the local model for 2 epochs245

using SGD optimizer with a learning rate of 0.01. The FL training process continues for 2,000246

communication rounds.247

Attack setup: We assume that the attacker compromises P clients among all N clients. All248

compromised clients are only allowed to attack in limited communication rounds called attack249

window. By default, the attack window starts at the 1,900th communication round and ends at the250

2,000th communication round. We discuss the impact of the attack window in Appendix B.7. When251

a compromised client is selected by the server during the attack window, it will upload poisoned252

updates trying to inject the backdoor. We adjust the number of compromised clients P ∈ [1, 20] to253

comprehensively evaluate the performance of each attack. Each compromised client poisons 25% of254

the local training dataset and trains the local model on the partially poisoned dataset with the same255

parameter settings as benign clients unless otherwise mentioned. By default, the trigger is designed256

as a square at the upper left corner of the input images. We summarize the details of each attack in257

Appendix A.2. We also discuss different trigger designs of DBA [11] in Appendix B.9.258

A3FL setup: By default, compromised clients optimize the trigger for 40 epochs using Projected259

Gradient Descent (PGD) [38] with a step size of 0.01. The adversarial global model is optimized using260

SGD with a learning rate of 0.01. In practice, we set the balancing coefficient λ = λ0sim(θ′
t,θt),261

where sim(θ′
t,θt) denotes the cosine similarity between θ′

t and θt. We use similarity to automatically262

adjust the focus to the adversarial global model: if the adversarial global model is similar to the263

current global model, it will be assigned a higher weight; otherwise, the adversarial global model is264

assigned a lower weight. We use the similarity to control the strength of adversarial training, since the265

backdoor could be fully unlearned if the adversarial global model is aggressively optimized, which266

makes it difficult to optimize the first term in Equation 3. In adversarial scenarios, it is important to267

balance the strengths of both sides to achieve better performance, which has been well studied in268

previous works in adversarial generation [39]. When there are multiple compromised clients in St,269

the backdoor trigger is optimized on one randomly selected compromised client, and all compromised270

clients use this same trigger. We also discuss the parameter setting of A3FL in experiments.271

Compared attack baselines: We compare our A3FL to four representative or state-of-the-art272

backdoor attacks to FL: Neurotoxin [12], DBA [11], CerP [9], and F3BA [10]. We discuss these273
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Table 1: A3FL maintains the utility of the global model on CIFAR-10.
Defense FedAvg NC RLR Median DSight Bulyan Krum SFed CRFL DP FedDF FedRAD

ACC(%) 92.29 92.57 92.21 65.59 91.79 39.57 84.56 92.60 87.40 87.71 37.58 65.89
BAC(%) 92.44 92.61 92.26 65.53 91.79 39.92 84.41 92.70 87.35 87.60 40.09 65.61
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Figure 2: Comparing performances of different attacks on CIFAR-10.

baselines in Section 2 and also provide an in-detail introduction in Appendix A.2 including specific274

hyperparameter settings and trigger design of each baseline.275

Compared defense baselines: We evaluate A3FL under 12 state-of-the-art or representative276

federated learning defenses: FedAvg [2], Median [22], Norm Clipping [17], DP [17], Robust Learning277

Rate [18], Deepsight [20], Bulyan [23], FedDF [24], FedRAD [25], Krum [21], SparseFed [26], and278

CRFL [19]. We summarize the details of each defense in Appendix A.3.279

Evaluation metrics:: Following previous works [10, 12, 11, 8], we use accuracy & backdoor280

accuracy (ACC & BAC), attack success rate (ASR), and lifespan to comprehensively evaluate A3FL.281

• ACC & BAC: We define ACC as the accuracy of the benign global model on clean testing inputs282

without any attacks, and BAC as the accuracy of the backdoored global model on clean testing283

inputs when the attacker compromises a part of the clients to attack the global model. Given the284

dynamic nature of the global model, we report the mean value of ACC and BAC. BAC close to285

ACC means that the evaluated attack causes little or no impact on the global model utility.286

• ASR: We embed a backdoor trigger to each input in the testing set. ASR is the fraction of trigger-287

embedded testing inputs that are successfully misclassified as the target class ỹ by the global model.288

In particular, the global model is dynamic in FL, resulting in an unstable ASR. Therefore, we289

use the average value of ASR over the last 10 communication rounds in the attack windows to290

demonstrate the attack performances. A high ASR indicates that the attack is effective.291

• Lifespan: The lifespan of a backdoor is defined as the period during which the backdoor keeps292

effective. The lifespan of a backdoor starts at the end of the attack window and ends when the ASR293

decreases to less than a chosen threshold. Following previous works [12], we set the threshold294

as 50%. A long lifespan demonstrates that the backdoor is durable, which means the backdoor295

remains effective in the global model long after the attack ends. When we evaluate the lifespan of296

attacks, we extend the FL training process to 3,000 communication rounds.297
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4.2 Experimental Results298

A3FL preserves the utility of the global model: To verify whether A3FL impacts the utility of299

global models, we compared their ACCs to BACs. The experimental results on CIFAR-10 are shown300

in Table 1, where NC denotes Norm Clipping, DSight represents Deepsight, and SFed represents301

SparseFed. Observe that the maximum degradation in accuracy of the global model caused by A3FL302

is only 0.28%. Therefore, we can conclude that A3FL preserves the utility of the global model303

during the attack, indicating that our approach is stealthy and difficult to detect. Similar results were304

observed in the experiments on TinyImagenet, which can be found in Appendix B.1.305

A3FL achieves higher ASRs: The attack performances of A3FL and baselines on defenses designed306

for FL backdoors are presented in Figure 2. The experimental results demonstrate that A3FL achieves307

higher attack success rates (ASRs) than other baselines. For example, when the defense is Norm308

Clipping and only one client is compromised, A3FL achieves an ASR of 99.75%, while other309

baselines can only achieve a maximum ASR of 13.9%. Other attack baselines achieve a comparable310

ASR to A3FL only when the number of compromised clients significantly increases. For instance,311

when the defense is CRFL, F3BA cannot achieve a comparable ASR to A3FL until 10 clients are312

compromised. We have similar observations on other defenses and datasets, which can be found in313

Figure 8 and 9 in Appendix B.2.314

We note that CRFL assigns a certified radio to each sample and makes sure that samples inside the315

certified radio would have the same prediction. This is achieved by first clipping the updates ∆i
t316

and then adding Gaussian noise z ∼ N (0, σ2I) to ∆i
t. During the inference stage, CRFL adopts317

majority voting to achieve certified robustness. The strength of CRFL is controlled by the value of σ.318

We discuss the performance of CRFL under different values of σ in Appendix B.5.319

A3FL has a longer lifespan: We evaluate the
durability of attacks by comparing their lifes-
pans. Recall that the attack starts at the 1,900th
communication round and ends at the 2,000th
communication round. Figure 3 shows the attack
success rate against communication rounds when
the defense is Norm Clipping and 5 clients are
compromised. As we can observe, A3FL has a
significantly longer lifespan than other baseline
attacks. A3FL still has an ASR of more than 80%
at the end, indicating a lifespan of over 1,000
rounds. In contrast, the ASR of all other baseline
attacks drops below 50% quickly. We show more
results on other defenses in Appendix B.3 and a
similar phenomenon is observed. These experi-
mental results suggest that A3FL is more durable
than other baseline attacks, and challenge the
consensus that backdoors in FL quickly vanish
after the attack ends.
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Figure 3: A3FL has a longer lifespan. The verti-
cal dotted lines denote the end of the lifespans of
each attack when the ASR of the backdoor drops
below 50%. The dotted line at the 100th commu-
nication round denotes the end of all attacks.

4.3 Analysis and Ablation Study320

A3FL achieves higher ASR when transferred to the global model: As discussed in Section 3,321

A3FL achieves higher attack performance by optimizing the trigger and making the backdoor persis-322
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Figure 4: Compare local ASR to global ASR.
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Figure 5: The impact of trigger size on the attack
performance.
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Figure 6: The impact of λ on the attack perfor-
mance.

tent within the dynamic global model. To verify our intuition, we conducted empirical experiments in323

which we recorded the Attack Success Rate (ASR) on the local model (local ASR) and the ASR on324

the global model after aggregation (global ASR). For the experiments, we used FedAvg as the default325

defense and included five compromised clients among all clients.326

The results presented in Figure 4 demonstrate that A3FL can maintain a higher ASR when transferred327

to the global model. While all attacks can achieve high ASR (≈ 100%) locally, only A3FL can328

also achieve high ASR on the global model after the server aggregates clients’ updates, which is329

supported by the tiny gap between the solid line (global ASR) and the dotted line (local ASR). In330

contrast, other attacks cannot achieve similarly high ASR on the global model as on local models.331

For instance, F3BA immediately achieves a local ASR of 100% once the attack starts. But it can only332

achieve less than 20% ASR on the global model in the first few communication rounds. F3BA also333

takes a longer time to achieve 100% ASR on the global model compared to A3FL. This observation334

holds for other baseline attacks. We further provide a case study in Appendix B.8 to understand why335

A3FL outperforms baseline attacks. In the case study, we observe that 1) A3FL has better attack336

performance than other baseline attacks with comparable attack budget; 2) clients compromised by337

A3FL are similarly stealthy to other trigger-optimization attacks. Overall, our experimental results338

indicate that A3FL is a more effective and persistent attack compared to baseline attacks, which339

makes it particularly challenging to defend against.340

The impact of trigger size: We evaluate the performance of A3FL with a trigger size of 3×3, 5×5,341

8×8, 10×10 respectively (the default value is 5×5). Figure 5 shows the impact of trigger size on342

A3FL. In general, the attack success rate (ASR) improves as the trigger size grows larger. When the343

defense mechanism is Norm Clipping, we observe that the difference between the best and worst ASR344

is only 1.75%. We also observe a larger difference with stronger defenses like CRFL. Additionally,345

we find that when there are at least 5 compromised clients among all clients, the impact of trigger346

size on the attack success rate becomes unnoticeable. Therefore, we can conclude that smaller trigger347

sizes may limit the performance of A3FL only when the defense is strong enough and the number348

of compromised clients is small. Otherwise, varying trigger sizes will not significantly affect the349

performance of A3FL.350

The impact of λ: Recall that λ = λ0sim(θ′
t,θt). We varied the λ0 hyperparameter over a wide range351

of values to learn the impact of the balancing coefficient on attack performance and record results in352

Figure 6. Observe that different λ0 only slightly impact attack performances with fewer compromised353

clients. When there are more than 5 compromised clients, the impact of λ0 is unnoticeable. For354

instance, when the defense is Norm Clipping, the gap between the highest ASR and the lowest ASR is355

merely 0.5%. We can thus conclude that A3FL is insensitive to variations in hyperparameter λ0. We356

further provide an ablation study in Appendix B.4 for more analysis when the adversarial adaptation357

loss is disabled, i.e., λ0 = 0.358

5 Conclusion and Future Work359

In this paper, we propose A3FL, an effective and durable backdoor attack to Federated Learning.360

A3FL adopts adversarial adaption loss to make the injected backdoor persistent in global training361

dynamics. Our comprehensive experiments demonstrate that A3FL significantly outperforms existing362

backdoor attacks under different settings. Interesting future directions include: 1) how to build363

backdoor attacks towards other types of FL, such as vertical FL; 2) how to build better defenses to364

protect FL from A3FL.365
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Figure 7: Trigger patterns of evaluated attacks on FedAvg, with P = 2 compromised clients.

A Additional Experiment Details475

A.1 Experimental Setup in Figure 1476

The preliminary experiment in Figure 1 has the same experimental setup as described in Section 4.1. In477

particular, We use FedAvg [2] as the server-side aggregation rule. We set the number of compromised478

clients P = 1 in the preliminary experiment. We denote the attack success rate on the global model479

as global ASR. We further denote the ASR on the local model after local training as the local ASR.480

When the compromised client is selected by the server, we calculate and update the local ASR after481

the compromised client optimizes the backdoor trigger and trains its local model on the poisoned482

local training dataset.483

A.2 Details of Attacks484

A3FL: A3FL formulates the trigger optimization as a bi-level optimization problem. A3FL jointly485

optimizes the adversarial model fθ′
t

with the trigger pattern ∆. A3FL optimizes the adversarial486

model using SGD with a learning rate of 0.01, a momentum of 0.9, and a weight decay of 0.0005.487

A3FL updates the trigger pattern using PGD with a step size of 0.01. The trigger optimization is488

repeated for 40 epochs. We show the trigger pattern of A3FL in Figure 7a.489

F3BA [10]: F3BA directly manipulates a part of local model weights to inject the backdoor via sign490

flipping. F3BA further jointly optimizes the trigger pattern and the local model weights to maximize491

the difference between latent representations of clean and backdoored samples, thus achieving higher492

attack performance. The trigger of F3BA is a squared patch. We show the trigger pattern of F3BA in493

Figure 7b.494

CerP [9]: CerP jointly optimizes the trigger pattern and the local model weights to improve the495

backdoor effectiveness. Furthermore, CerP aims to improve the backdoor stealthiness by adopting496

L2-norm regularization to limit the difference between local model weights and global model weights.497

Therefore CerP can tune the local model to fit the backdoor-poisoned data without inducing large498

biases in the local model weights. The trigger of CerP is shown in Figure 7c.499

Neurotoxin [12]: Neurotoxin only updates unimportant model weights to avoid conflicts with other500

clean clients. The importance of model weights is determined by the magnitude of their gradients.501

Model weights with a higher gradient in previous rounds are considered to be more important502

(frequently updated by other clients). Following the settings in [12], we only update the last 95%503

important model weights. Neurotoxin uses a fixed trigger pattern, as shown in Figure 7d.504

DBA [11]: DBA is a distributed backdoor attack designed to utilize the distributed nature of FL.505

DBA splits the trigger into different clients. Each client uses a different trigger to attack the FL506

system during the training stage. In the inference stage, the attacker uses the joint trigger to activate507

the injected backdoor. The trigger in [11] was designed as several parallel white lines placed at the508

upper left corner of the input images. This trigger design is not compatible with our attack setting509

and we can hardly control the attack budget introduced by the trigger following [11]. Therefore in510

our implementation, we also use a squared patch as the trigger for DBA, as shown in Figure 7e. We511

randomly split the squared patch into four sub-triggers and these sub-triggers are iteratively used512

during the attack.513
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A.3 FL defenses514

Norm Clipping (NC) [17]: NC clips clients’ updates that are larger than a pre-defined threshold.515

NC can effectively limit clients’ behavior to prevent the global model from being overwhelmed by a516

few clients. By default, we set the threshold to 1.517

(weak) Differential Privacy (DP) [17]: DP adds Gaussian noise z ∼ N (0, σ2I) to clients’ updates518

to perturb carefully crafted malicious updates. Note that this defense is not designed for privacy, so519

the Gaussian noise is relatively smaller than that adopted in differential privacy. By default, we set520

σ = 0.002.521

Robust Learning Rate (RLR) [18]: RLR aims to maximize the agreement on updating direction522

across clients to mitigate potential attacks. It is inspired by that the behavior of a compromised client523

is commonly different from other benign clients. For instance, a compromised client may want to524

enlarge some model parameters while most benign clients are trying to reduce them. When clients525

disagree on the updating direction of a parameter, RLR flips the learning rate on the parameter to526

maximize the loss instead.527

CRFL [19]: CRFL adopts three techniques to mitigate backdoor attacks on FL. CRFL first clips528

clients’ updates as Norm Clipping does. In our experiments, we set the clipping threshold as 1. CRFL529

then adds Gaussian noise z ∼ N (0, σ2I) to clients’ updates as DP does. In our experiments, we set530

δ = 0.002 and we discuss the impact of σ on CRFL in Appendix B.5. Finally, CRFL creates several531

perturbed models by adding independently sampled Gaussian noise to the global model and adopts532

majority voting for prediction. In our experiments, CRFL creates 5 different perturbed models for533

prediction at each FL communication round.534

Median [22]: Median uses the coordinate-wise median value of updates from all clients to update the535

global model. Median can effectively exclude clients that upload overwhelming updates. However,536

the Median tends to heavily degrade the model utility.537

Deepsight [20]: Deepsight adopts three different distance matrices to measure the distances between538

each client. Deepsight then clusters clients according to different distance matrices and only accepts539

clients that are in the same cluster across different matrices. The first distance matrix is smaller540

when the updates in the last layer from clients are similar. The second distance matrix is the L2541

distance between the last layer’s weight across each client. The third distance matrix is the L2542

distance between the outputs of two local models given a batch of randomly generated input images.543

Deepsight adopts DBSCAN [40] to cluster selected clients. Finally, clusters including potentially544

malicious clients that have a larger distance from other clusters will be excluded. In our experiments,545

we set the batch size of randomly generated inputs to 256.546

Bulyan [23]: Bulyan first excludes potentially malicious clients from all selected clients and then547

uses the coordinate-wise median value of updates from remaining clients to update the global model.548

In the first step, 2f clients with the highest pairwise Euclidean distances are excluded. In the second549

step, Bulyan picks M − 4f clients from the remaining M − 2f clients that are closest to the median550

by coordinate. In our experiments, we set f = 2.551

FedDF [24]: FedDF uses the mean output of all client models as the supervisory signal to distill552

the next round global model. In particular, FedDF firstly aggregates all selected clients (the same as553

FedAvg) to obtain a teacher model. Then the server trains the global model to minimize the Kullback554

Leibler divergence between the logits of the global and teacher model on a set of unlabeled inputs.555

In our experiments, the learning rate for updating the global model is 0.002 and we train the global556

model for one epoch at each FL communication round.557

FedRAD [25]: FedRAD is an extension of FedDF, which assigns a weight to each client model558

based on their median scores. These scores indicate the frequency with which the prediction of the559

client model becomes the median value of predictions from all client models. FedRAD then utilizes560

weighted model aggregation to produce the next round global model. In our experiments, we also561

update the global model with a learning rate of 0.002 for one epoch at each FL communication round.562

Krum [21]: Krum selects clients that have the smallest L2 distances to other clients. Only the clients563

selected by Krum will be used to update the global model. Since Kurm drops most updates from564

clients, it can achieve strong robustness. However, Krum also affects the accuracy of the model.565
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Table 2: A3FL maintains the utility of global models on TinyImageNet.
Defense FedAvg NC RLR Median DSight Bulyan Krum SFed CRFL DP FedDF FedRAD

ACC(%) 55.45 55.31 55.34 17.12 53.71 11.19 42.87 57.39 53.58 53.38 25.31 23.12
BAC(%) 55.25 54.98 55.28 20.92 53.44 7.33 42.35 57.08 53.45 53.17 24.90 22.57
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Figure 8: Comparing performances of different attacks on CIFAR-10.

SparseFed [26]: SparseFed is proposed to mitigate model poisoning attacks in FL. SparseFed566

aggregates client updates normally but only updates the top-k highest magnitude elements. It is567

inspired by that attackers commonly move in distinct directions from the majority of clean clients.568

Therefore the top-k highest magnitude elements involve less poisoned updates from attackers. In our569

experiments, we update the top-95% highest magnitude elements.570

B Additional Experimental Results571

B.1 A3FL maintains the model utility572

We show the accuracy of the global model on TinyImagenet when the attacker presents (BAD) or573

not (ACC) in Table 2. In particular, we record the accuracy on clean tasks when no attackers are574

involved to obtain the accuracy (ACC). We further record the accuracy on clean tasks when there575

are 20 compromised clients among all clients to obtain the backdoor accuracy (BAC). We set the576

number of compromised clients P to 20 since more compromised clients are likely to result in a577

higher decrease in clean accuracy. Therefore if A3FL can maintain the model utility even with 20578

compromised clients, we can conclude that A3FL is highly stealthy. Note that we use the mean value579

of ACC and BAC in the attack window (between the 1,900th communication round and the 2,000th580

communication round) to verify the utility of global models since the server continuously updates the581

global model. Therefore, using the mean accuracy as the measurement standard can accurately reflect582

the impact of attacks on the model utility, and eliminate randomness.583

As shown in Table 2, the accuracy of the global model does not degrade much when attackers are584

presented. This indicates that A3FL preserves the accuracy of global models so it is stealthy enough585

to not be discovered. The differences between ACCs and BACs are within 0.5% in most cases. The586

highest drop in clean accuracy is observed when the defense mechanism is Bulyan. However, Bulyan587

significantly degrades the model’s accuracy to only 11.19%. The low accuracy indicates that the588

model is highly random, so even though A3FL causes the model’s accuracy to drop to 7.33%, we589

cannot solely conclude that A3FL will reduce the model utility. In general, A3FL does not influence590

the global model utility. We also observe a similar phenomenon on CIFAR-10, as shown in Table 1.591
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Figure 9: Comparing performances of different attacks on TinyImageNet.

B.2 A3FL achieves higher ASRs592

We compare the performance of attacks on CIFAR-10 against defenses that are not designed for593

backdoor attacks in Figure 8. Observe that A3FL achieves the highest ASR under most settings.594

When the defense is Median, A3FL is the only attack that can achieve high ASR (over 80%). We595

further show the attacker performance of A3FL on TinyImagenet in Figure 9 and we can observe a596

similar phenomenon.597

B.3 A3FL has a longer lifespan598

In Figure 10, we show that A3FL has a significantly longer lifespan than other baselines with different599

defenses applied. For instance, when the defense is RobustLR, A3FL can still achieve an ASR of600

62.37% at 1000 rounds after the attack ends. In contrast, the attack success rates of other attacks drop601

below 50% in less than 150 rounds. Note that when we use CRFL, we set the number of compromised602

clients P = 20 since when there are only 5 compromised clients, all attacks except A3FL failed to603

achieve high ASR (see Figure 2).604

16



19
00

20
00

22
00

24
00

26
00

28
00

30
00

Communication round

20

40

60

80

100

AS
R 

(%
)

DBA Neurotoxin CerP F3BA A3FL

(a) FedAvg, P=5

19
00

20
00

22
00

24
00

26
00

28
00

30
00

Communication round

20

40

60

80

100

AS
R 

(%
)

(b) RobustLR, P=5

19
00

20
00

22
00

24
00

26
00

28
00

30
00

Communication round

20

40

60

80

100

AS
R 

(%
)

(c) Deepsight, P=5

19
00

20
00

22
00

24
00

26
00

28
00

30
00

Communication round

20

40

60

80

100

AS
R 

(%
)

(d) CRFL, P=20

Figure 10: A3FL has a longer lifespan.
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Figure 11: Attack performances against CRFL
with different σ.
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Figure 12: Attack performances under different
Dirichlet concentration parameters.

B.4 Ablation study on component importance605

We study the effectiveness of A3FL with or without the adversarial adaptation loss to test the606

effectiveness of components under FedAvg with P = 20 compromised clients among all clients. As607

shown in Table 3, the adversarial adaptation loss can effectively improve the durability of A3FL.608

Observe that A3FL can achieve an ASR of 97.66% at 500 communication rounds after the attack and609

86.65% at 1,000 communication rounds after the attack. In comparison, A3FL without the adversarial610

adaptation loss exhibits ASRs that are 4.31% and 15.64% lower than A3FL at these two points.611

Table 3: Effect of different components in A3FL.
ASR(%) ↓ Rounds after attack→ 0 500 1000

A3FL without adversarial adaptation 100.0 93.35 69.01
A3FL 100.0 97.66 84.65

B.5 Impact of σ on CRFL Effectiveness612

Figure 11 shows the ACC and ASR when applying CRFL with different σ. Observe that as the σ613

increases, CRFL can achieve better robustness, indicated by lower ASR. However, the ACC of the614

global model also drops from 90.25% to 67.33% rapidly, as σ increases from 0.001 to 0.01, which615
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Figure 13: Attack performances when the attack starts at the first communication round.
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Figure 14: ASRs against Krum.

is unacceptable. Furthermore, when there are more compromised clients, A3FL can still achieve616

high ASR even with a large σ = 0.01. We can thus conclude that CRFL can not sufficiently mitigate617

A3FL with different σ.618

B.6 Impact of Data Heterogeneity619

We adjust the Dirichlet concentration parameter h = 0.09, 0.9, 9 to study whether data heterogeneity620

influences the performance of A3FL. As shown in Figure 12, A3FL can achieve high ASR regardless621

of different h. When the defense is Norm Clipping and h = 0.09, A3FL achieves lower ASR. This622

can be explained by that a smaller h indicates a more non-i.i.d data distribution. Therefore, the623

local training set held by the attacker is far from the global data distribution, which increases the624

difficulty of injecting the backdoor. However, the attack success rate is still high (over 60%) and625

quickly increases as the number of compromised clients increases.626

B.7 The impact of attack window627

We evaluate A3FL against baseline attacks when the attack window starts at the first communication628

round and ends at the 100th communication round. As shown in Figure 13, A3FL can still remarkably629

outperform other baseline attacks. For instance, when the defense mechanism is Norm Clipping and630

there are 5 compromised clients, the gaps of ASR between A3FL and other baseline attacks are at631

least 62.4%, which is even larger than the gap under default settings. However, we also observe that632

when the attack starts from the first communication round and there are only a few compromised633

clients (1 or 2), ASRs of all attacks decrease in comparison to ASRs under default settings. This can634

be explained by that at the beginning of the training process, the global model changes a lot so the635

backdoor is easily erased when there are only a few compromised clients.636

B.8 Case study on Krum637

We perform a case study on Krum to gain insight into why A3FL outperforms other baselines.638

In Figure 14 we record the ASRs and put a "·" notation on the line if Krum selects an attacker-639

compromised client at that round. Recall that Krum selects one client at each round and only uses the640

selected client updates to update the global model. Therefore, the chance that a compromised client is641

selected by the server increases if the backdoor is more stealthy. We have the following observations:642

1) fixed-trigger attacks are more frequently selected by the server, while trigger-optimization attacks643

are selected twice only; 2) fixed-trigger attacks achieve lower ASR even if selected by the server.644

However, observe that once selected, A3FL quickly achieve 100% ASR, which is because A3FL can645

maintain higher ASR when transferred to the global model as stated above. A3FL is also durable after646
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Figure 15: Attack performances of DBA using original trigger design. (a) DBA-bar denotes DBA
attack with the original trigger design proposed in [11], in which the trigger consists of four white
bars. While DBA denotes the DBA attack with the trigger designed as a red square. (b) Trigger size
refers to the length of each white bar. (c) Trigger gap {Gapx, Gapy} refers to the distance between
each bar. (d) Trigger location {Shiftx, Shifty} represents the distance from the trigger to the edge of
the image.

being selected, leading to a higher ASR at the end of the attack. In comparison, F3BA is selected647

on the 26th round and achieves ≈ 80% ASR. But the ASR quickly drops after that. CerP is also648

selected twice, but it cannot achieve as high ASR as A3FL and F3BA do, which is caused by the649

strict regularization on the local model bias. In addition, the ASR of CerP also drops quickly when650

the compromised clients are not selected by the server.651

B.9 The impact of DBA trigger pattern652

In our experiments, we set the trigger pattern of DBA to be a red square at the upper left corner.653

However, in [11], the trigger is designed as four white lines. We, therefore, discuss the performance654

of DBA when using the original trigger design. The original trigger design of DBA is determined by655

three hyperparameters: trigger size (TS), trigger gap (TG), and trigger location (TL). In particular,656

the trigger gap consists of a horizontal gap (Gapx) and a vertical gap (Gapy). The trigger location657

consists of a horizontal shift (Shiftx) and a vertical shift (Shifty). We explain these hyperparameters in658

Figure 15b,15c, and 15d respectively. Following the default settings in [11], we set {TS,TG,TL} =659

{4, (6, 6), (0, 0)}.660

We compare the attack performance of DBA and DBA-bar (DBA with original trigger design) in661

Figure 15a. Observe that with the original trigger design, DBA-bar achieves an even lower ASR. This662

phenomenon supports that the default trigger design in our experiments does not degrade the attack663

performance of DBA. In contrast, DBA can even achieve a higher ASR without the original trigger664

design.665
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