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Abstract: A key limitation of learned robot control policies is their inability to
generalize outside their training data. Recent works on vision-language-action mod-
els (VLAs) have shown that the use of large, internet pre-trained vision-language
models as the backbone of learned robot policies can substantially improve their
robustness and generalization ability. Yet, one of the most exciting capabilities of
large vision-language models in other domains is their ability to reason iteratively
through complex problems. Can that same capability be brought into robotics
to allow policies to improve performance by reasoning about a given task before
acting? Naive use of “chain-of-thought” (CoT) style prompting is significantly less
effective with standard VLAs because of the relatively simple training examples
that are available to them. Additionally, the purely-semantic reasoning about sub-
tasks common to regular CoT is insufficient for robot policies that need to ground
their reasoning in sensory observations and the robot state. To this end, we intro-
duce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train
VLASs to perform multiple steps of reasoning about plans, sub-tasks, motions, and
visually grounded features like object bounding boxes and end effector positions,
before predicting the robot action. We design a scalable pipeline for generating
synthetic training data for ECoT on large robot datasets. We demonstrate that ECoT
increases the absolute success rate of OpenVLA, the current strongest open-source
VLA policy, by 28% across challenging generalization tasks without any additional
robot training data. Additionally, ECoT makes it easier for humans to interpret
a policy’s failures and correct its behavior interactively using natural language.
Finally, we show that our model learns to transfer ECoT reasonings to unseen
embodiments and tasks.

Keywords: Vision-Language-Action Models, Embodied Chain-of-Thought Rea-
soning

1 Introduction

Robotic policies trained end-to-end for outputting raw low-level actions in response to observations
provide a powerful and appealing learning-based approach to robotic control, obviating the need
for complex sensing and control stacks [1, 2, 3]. However, this kind of “reactive” control is not
necessarily the best choice in settings that demand broad generalization, such as novel scenes or
interactions with unfamiliar objects. In such situations, a person might need to think more carefully:
if they were asked to put fruit on one plate and vegetables on another, they might first try to figure
out which objects are fruits and which are vegetables, rather than simply performing a learned skill
from “muscle memory.” Likewise, we would like our robotic policies to both perform well-practiced
end-to-end control and to “reason through” novel situations before grounding their commands into
actions. Such reasoning might include identifying and locating task-relevant objects, producing a
plan to accomplish a task, and translating sub-tasks and observations into movements.

Vision-language-action models (VLAs) — pre-trained vision-language models (VLMs) fine-tuned
to produce robot actions — have gained popularity as an approach for leveraging the diversity of
Internet data captured within large foundation models [4] in a simple and scalable policy learning
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recipe. Despite achieving state-of-the-art performance across a wide range of tasks and robot
embodiments [5, 6, 7], VLASs typically learn a direct mapping from observations to actions without any
intermediate reasoning. However, there have been many recent works exploring how language models
(which serve as the backbone of VLAs) can be prompted to textually “think step-by-step” about a
given task. Such chain-of-thought reasoning (CoT) [8] significantly improves their performance on
complex reasoning tasks and is now de-facto a standard practice in language modeling [9].
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tual reasoning before predicting the next robot the absolute success rate of state-of-the-art OpenVLA
action (see , right). In contrast to existing policies [7] by 28% in challenging generalization tasks.
CoT reasoning approaches for LLMs, they interleave semantic-level reasoning about sub-tasks with
“embodied” reasoning tasks that require the policy to pay attention to its multi-modal inputs, from
predicting bounding boxes of objects in the scene to reasoning about low-level movement primitives
that need to be executed based on the current robot state. To enable the relatively weak LLM back-
bones of open-source VLAS to perform such reasoning effectively, we design a scalable pipeline for
synthetically generating embodied CoT training data for large robot datasets. Concretely, we use
powerful pre-trained foundation models to generate the reasoning supervision for our policies.

Our experiments show that by training state-of-the-art VLAs to reason before predicting actions,
we can substantially boost their ability to perform challenging generalization tasks. Our approach
increases the absolute success rate of OpenVLA [7], the current best-performing open-source VLA,
by 28% across a suite of robot manipulation tasks that involve generalization to new objects, scenes,
viewpoints, and instructions without any extra robot training data. Beyond raw performance improve-
ments, we find that embodied CoT makes policy failures more interpretable and allows humans to
easily correct its behavior by modifying faulty reasoning chains via natural language feedback.

2 Related Work

Scaling robot learning. A long-standing goal of robot learning is to train policies that can gen-
eralize to a wide range of unstructured real-world environments. Towards this goal, recent works
have explored training “generalist robot policies” [10, 11, 12, 13, 14, 15, 16, 17] on diverse robot
datasets [18, 19, 10, 20, 21, 22, 23, 24, 13, 14, 25, 15, 26, 6]. As a result of their diverse robot



training datasets, many of these policies can be prompted in natural language to solve various manip-
ulation tasks, and some generalist policies can even control multiple robot embodiments [16, 27, 6].
Importantly, these works demonstrate that training robot policies on large and diverse datasets is a
promising approach towards improving policy robustness and generalization ability.

Vision-language models for robot generalization. In a push towards generalization far beyond what
is observed in robot datasets, the recent development of strong, open-source vision-language models
that learn visuo-linguistic representations [28, 29], generate images from text [30], or generate text
in response to images and prompts [31, 32, 33, 34, 35] have resulted in a large number of works
that explore the integration of such models into robot learning pipelines, e.g., to generate goals [36],
to provide reward signals [37, 38, 39], or to learn visual state representations [40, 41, 42]. Since
collection of the aforementioned large-scale robot datasets is challenging, using models pre-trained
on Internet-scale data is an appealing alternate path towards robust robot policies that can act in a
variety of unstructured real-world environments. Most relevant to our work are recent approaches
for integrating pre-trained vision-language models into learned robot policies. While some works
use strong structural priors in their policies to enable this integration [43, 44, 45], vision-language-
action models (VLAs) have recently been proposed as a simple yet scalable alternative [5, 6, 7],
achieving state-of-the-art performance for generalist robot policies [7] and showing impressive levels
of generalization to new objects and scenes. However, existing VLAs do not sufficiently leverage
some of the most appealing properties of the underlying language and vision-language models,
specifically their ability to reason through the steps required to solve a given task.

Reasoning for language and control. Such step-by-step reasoning is a key ingredient for the
ability of large language models (LLMs) to solve a wide range of complex tasks. Prompting LLMs
(directly [46] or with in-context examples [8]) to “think step-by-step” about the problem before
formulating an answer can significantly improve their performance, with such chain-of-thought
reasoning techniques becoming standard practice in language modeling and (vision-)language model
training [9, 47]. A number of works have explored similar techniques in the context of high-level
task planning for robotics [48, 49, 50, 51, 52, 53, 54, 55, 56]. These approaches use pre-trained or
fine-tuned LLMs to decompose tasks into high-level sub-tasks, but rely on pre-trained low-level
policies to execute them. However, we argue that (1) careful reasoning can be beneficial for both high-
level sub-task reasoning and during low-level control and (2) all such levels of reasoning should be
strongly grounded in visual observations of the scene and the agent’s state. Thus, in contrast to these
prior works and language-only CoT, our approach trains a VLA policy to autoregressively generate
CoTs (for high- and low-level reasoning) and actions given input instructions and observations,
ensuring that both are firmly grounded in the agent’s environment. We empirically confirm that such
a formulation is critical to effectively leveraging (V)LM reasoning capabilities for control.

3 Preliminaries: Vision-Language-Action Models
Our work leverages VLAs as the backbone for OpenVLA .
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Figure 2: The OpenVLA model. Reproduced with
permission from Kim et al. [7].

In this work, we use the recently released OpenVLA model [7] (see ), since it achieves state-
of-the-art performance and is fully open-source. The model builds on the Prismatic VLM [35] and
consists of a fused visual encoder that combines pre-trained SigLIP [57] and/or DinoV2 [58] features
and a Llama 2 7B [59] LLM backbone. During training, input images are encoded into visual token
embeddings using the pre-trained vision encoders, the task instruction is mapped to task tokens using
Llama 2’s text tokenizer, and the model is trained to map these inputs to the target action tokens with
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Figure 3: Steps of our embodied chain-of-thought reasoning. We interleave several intermediate reasoning steps
into the mapping from inputs to robot actions. Green: “standard” linguistic chain-of-thought steps that break a
given instruction into the required sub-tasks. Purple: Embodied chain-of-thought steps that require grounding
the policy’s reasoning in the scene and robot state. Our experiments show that these grounded reasoning steps
are key to improving policy performance with chain-of-thought reasoning.

the standard autoregressive next token prediction objective. We likewise use this objective, but also

insert reasoning text tokens in the training sequences such that the policy learns to produce the ECoT
reasoning followed by the action in response to the observation and instruction. Next, we will discuss
how we can improve upon this conventional VLA training recipe by enabling the VLA to reason
through the task at hand before deciding which action to take.

4 Embodied Chain-of-Thought Reasoning for Visuomotor Policies

We now discuss our approach for training VLAs to perform embodied chain-of-thought reasoning
about plans, sub-tasks, motions, and visual features before predicting the next robot action (see

). Unlike many proprietary large language models, the relatively small LLM backbones used in
current VLASs struggle to perform involved reasoning when simply prompted to think step-by-step [8].
Instead, we propose to explicitly train VLA models to perform embodied CoT reasoning. Concretely,
we label data from existing robot datasets post-hoc with reasoning chains filled with features extracted
from various pre-trained models and use the resulting dataset of observation-reasoning-action tuples
for training. In practice, we ensure that all elements of the generated reasoning data can be represented
as strings, such that we can use the Llama 2 text tokenizer to translate them into reasoning tokens.
Then, we train the VLA to autoregressively predict these tokens, directly followed by action tokens.

While this approach is conceptually simple, its implementation requires answering multiple key
questions: (1) Which reasoning steps are suitable for guiding policies in solving embodied robot
manipulation tasks ( )? (2) How can we generate training data for these reasoning steps at scale
on existing robot datasets ( )? Another practical consideration arises after training, while
using ECoT policies for robot control: carefully reasoning through each action can significantly slow
down policy inference. We discuss solutions to these problems in the following sections.

4.1 Designing Embodied Chain-of-Thought Reasoning Steps

Our goals when designing the steps of our embodied chain-of-thought reasoning chains are twofold:
encourage the model to (A) reason through the required high-level steps of the task at hand and
determine which step needs to be executed next, and (B) increasingly ground this reasoning in
lower-level features of the scene and robot state before predicting the robot action.

We visualize the ECoT reasoning steps that we train the VLA to perform for an example task in

. From left to right, the model is trained to first rephrase the task instruction (TASK) and
predict a high-level plan of steps for achieving the instructed task (PLAN). Next, it reasons through
which of the sub-tasks should be executed at the present step (SUBTASK), a task which requires
understanding the current state of the scene and robot. Then, the model predicts an even lower-level
language command like “move left” or “move up” (MOVE) that is closely related to the low-level
actions the robot needs to execute. Finally, we ask the model to predict precise, spatially grounded
features that describe the scene and thus force the model to pay close attention to all elements of the
input image— specifically, the pixel position of the robot end effector (GRIPPER) and the names and
bounding box pixel coordinates of all objects in the scene (OBJECTS).

While we believe that our choice of reasoning tasks and their order is well-aligned with our intuition
for a sensible step-by-step solution to the task, we by no means exhaustively explored all possible
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Figure 4: Our pipeline for generating ECoT data at scale for a given robot dataset. We use a Prismatic VLM [35]
to create a scene description (1), and Grounding Dino [29] to detect bounding boxes for all objects (2). We
then compute templated motion primitives from low-level robot states (3) and the robot gripper position using
OWLV2 [60] and SAM [61] (4). Finally, we use Gemini [62] to create synthetic reasoning chains (5).
reasoning tasks. Testing alternative tasks and task orderings, and finding ways to automatically
determine sensible reasoning chains are important directions for future work.

4.2 Generating Embodied Chain-of-Thought Data at Scale

While human annotations are the gold standard, it is impractical to get them for large robot learning
datasets [6], which consist of millions of transitions. Thus, we instead propose to leverage pre-trained
vision and/or language foundation models to automatically generate ECoT training data, akin to
synthetic data generation in NLP [63]. We give an overview of our data generation pipeline in Fig. 4.

For a given image-instruction pair, we first prompt a Prismatic-7B VLM [35] to describe the scene.
We then concatenate the instruction and this description and input them into grounding DINO [29],
an open-vocabulary object detector, to detect all relevant objects and their bounding boxes with the
corresponding language snippet labels from the input text. See App. A for examples and details.

Next, we generate the per-step motion primitives in MOVE (e.g., “move left”). Following Belkhale
et al. [64], we use robot proprioception to determine the movement for the next 4 time steps (assuming
a fixed camera), and translate this into one of 729 templated movement primitives (see App. B). We
use OWLv2 [60] and SAM [61] to detect 2D end effector positions in the training images (GRIPPER)
paired with 3D positions extracted from the robot state to fit a robust estimate of the projection matrix
using RANSAC [65]. We then use the 2D projections of the robot end-effector position for our
training. This is repeated for each trajectory, eliminating the need to assume fixed camera parameters.

To generate the final reasoning chain, we feed each episode’s task instruction, scene description, and
per-step movement primitives into Gemini 1.0 [62] and prompt it to produce both a high-level plan of
sub-tasks in accordance with the task instruction and observed movement primitives and the current
sub-task for each step. We also ask it to briefly explain the primitive movement and chosen sub-task
in each step, which we include in the ECoT training data. We run our data generation pipeline on the
complete Bridge v2 dataset [13], with more than 2.5M transitions, over the course of 7 days.

4.3 Efficient Chain-of-Thought Inference for Robot Policies

Inference speed is a key challenge for ECoT policies. They needs to predict around 350 reasoning
tokens per timestep, compared to OpenVLA’s 7 action tokens. We explore a simple solution for
speeding up inference: as our policy learns next token prediction, it can continue arbitrary input
reasoning prefixes; we thus can keep parts of the reasoning chain like the high-level plan or the
current sub-task fixed for multiple steps. Encoding previously predicted tokens is much faster for
Transformer-based policies than generating them. We compare two such strategies: (1) synchronous
execution, where we predict the high-level reasoning every N steps, and (2) asynchronous execution,
in which one ECoT policy instance continually updates the high-level reasoning chains, while a
second policy instance uses the most recent reasoning chain to predict low-level reasoning steps and
actions. We report the performance and inference speed for all approaches in Section 5.5. Note that
these speed-ups are orthogonal to widely used approaches for improving throughput of LLMs. We
explore one such approach — compiling with TensorRT-LLM [66] —in App. F.



Table 1: Comparison of success rates for OpenVLA, RT-2-X, and ECoT across two scenes (one with
in-distribution camera view and one with out-of-distribution). Mean =+ one StdErr. On aggregate, our ECoT
policy achieves the highest success rate, improving absolute success rate by 45%, 22%, 19%, and 18% over
Octo, OpenVLA, RT-2-X, and naive CoT respectively in the in-distribution view setting and 48%, 34%, 16%,
and 16% in the out-of-distribution view setting.

Type ook Algorithm (ID View) Algorithm (OOD View)
oo Qpndit RE2X NawecoT 0T ‘ oo et RE2X Navecor (0T
Put mushroom in pot 29% 88% 949 1% 100% 35% 59% 76% 76% 65%
. Put spoon on towel 0% 90% 80% 60% 80% 20% 80% 80% 60% 80%
Put carrot on plate 0% 80% 90% 90% 100% 0% 90% 90% 100% 90%
Wipe [plate / pan] with towel 13% 50% 38% 38% 50% 0% 50% 0% 13% 63%
Put mushroom in
Spatial | [left/ right / middle] container 0% 2% 17% 2% 33% 0% 17% 2% 3% 67%
Relations | Put purple object in ) )
et o eale] container 0% 28% 17% 50% 56% 0% 220 1% 55% 39%
Put [right / left] object on middle object 0% 13% 0% 50% 63% 0% 25% 25% 50% 63%
Pick up [screwdriver / hammer / 30% 20% 80% 50% 50% 30% 20% 80% 50% 50%
00D measuring tape / detergent / watermelon]
Objects | Movemushroomto 0% 10% 70% 20% 100% 10% 0% 9% 40% %%
[measuring tape / detergent]
Put mushroom in tall cup 0% 80% 0% 0% 30% 10% 20% 0% 20% 30%
Place watermelon on towel 20% 30% 60% 60% 70% 50% 10% %% 30% 40%
Pick up any object that is not . . .
00D | Tyl o e e el 50% 3% 58% 50% 29 17% 17% 7% 259 7%
Instructions | Put the edible object in the bow! 13% 25% 13% 25% 88% 0% 13% 25% 25% 100%
e e e fOr eating 25% 38% 38% 38% 75% 13% 0% 25% 38% 75%

Aggregate ‘ 21% +33% 44% +39% 47+4.0% 48+4.0% 66% +3.8% ‘ 16% +£2.9% 30% +3.6% 48 +4.0% 48% +£4.0% 64+39%
.
5 Experiments

In this section, we investigate the effectiveness of ECoT for robot control across a range of challenging
manipulation tasks. We answer the following questions: (1) Does embodied chain-of-thought

reasoning improve the performance of VLA policies ( )? (2) Does embodied chain-of-
thought reasoning make it easier to interpret and correct policy failures ( and 5.4)? (3) How
can we optimize the runtime efficiency of policies with embodied CoT reasoning ( )?

5.1 Experimental Setup

Robot setup and training data. We evaluate on a 6-DoF WidowX robot arm, a commonly-used setup
for evaluating learned robot policies [16, 7]. Given a single 3" person camera and natural language
instruction, the policy predicts end-effector velocity actions to control the robot. Bridge v2 [13]
provides a diverse dataset of 60k teleoperated demonstrations. We apply our pipeline for synthetic
generation of chain-of-thought data ( ) on this dataset to obtain our training dataset.

Evaluation tasks. We design a suite of challenging evaluation tasks that focus on testing the policies’
generalization ability along multiple axes: processing spatial relations, interacting with unseen
objects, and performing unseen instructions. All policies are evaluated on the same real-world setups
to control for camera angle, lighting, and background. We perform 314 total trials per approach.

Comparisons. We compare our policy (ECoT) to state-of-the-art VLA policies, namely Open-
VLA [7], the same model our approach is built upon, but trained without chain-of-thought reasoning,
and RT-2-X [6], a 55B parameter closed VLA policy. To ensure fair comparison, we train the
OpenVLA policy on the same dataset we use for training our approach (the Bridge V2 data [13]),
denoted as OpenVLA (Bridge). For RT-2-X we cannot control the data distribution in the same way
since the model is closed, but it was trained on Bridge V2 data and additional datasets from the Open
X-Embodiment dataset [6]. Thus, it was trained on more data than our approach. We also compare
against Octo [16], which is also trained on that dataset, but was not fine-tuned from a VLM (i.e., it is
not a VLA). Finally, we compare to Naive CoT, a version of our model that only uses non-embodied
CoT reasoning about sub-tasks akin to conventional CoT reasoning in language modeling (see ).
This comparison will test the importance of using embodied reasoning for VLA policies.

5.2 Embodied Chain-of-Thought Reasoning Improves Policy Generalization

We report performance of all approaches on our evaluation set in . We see that while OpenVLA
(Bridge) achieves high performance on in-distribution tasks, it struggles on the hard generalization
cases we test. RT-2-X performs better than vanilla OpenVLA (Bridge), potentially due to the larger
robot pre-training dataset (note again that OpenVLA and our approach are only trained on the Bridge
dataset) and the fact that it co-trains the policy with Internet-scale vision-language data and robot
data, while all other approaches only use robot data during fine-tuning.

Importantly, we find that our ECoT policy substantially outperforms OpenVLA (Bridge) across all
generalization evaluations but one. This is notable, since both policies have the exact same VLM base
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Figure 5: Qualitative ECoT predictions from our model for two successful trajectories (left, middle) and
one failure (right). Irrelevant bounding boxes are greyed out for readability. Left: high-level reasoning and
low-level object segmentations are correct, leading to a successful rollout. Middle: the command is correctly
rephrased to refer to specific objects (i.e., “the leftmost object” is identified as the pink toy). Right: the hammer
is incorrectly identified as a screwdriver, causing the robot to take inappropriate actions.

model and use the same robot data for fine-tuning. The only difference is in the use of CoT reasoning
by our approach. Curiously, our ECoT model even surpasses the performance of RT-2-X in the tested
tasks, even though RT-2-X is trained on 10 additional robot datasets and uses a neural network that is
7x larger (55B vs. 7B). Finally, the results in Table | show that including embodied reasoning about
visual inputs and the low-level robot state significantly boosts performance over the “Naive CoT”
ablation of our approach, which only reasons about high-level linguistic features like sub-task plans.

We visualize qualitative examples of our model’s reasoning in Fig. 5. The left two examples show
that the model successfully breaks down the task into a sequence of sub-tasks and then crucially
grounds those sub-tasks in the scene by predicting the relevant bounding boxes and gripper position
of the robot, before deciding on the next move and concrete low-level robot action. We visualize
more chain-of-thought examples from our evaluation tasks in Fig. 8.

5.3 Diagnosing Policy Failures Through Inspecting Reasoning Chains

In addition to improving performance, such embodied chain-of-thought reasoning provides a tool
for operators to better understand the decisions the policy takes. By inspecting and visualizing the
model’s reasoning steps, we can discover potential mistakes in the reasoning chain that led to policy
failure downstream. For instance, in Fig. 5 (right), the ECoT policy failed to solve the task pick up
the screwdriver. Inspecting the reasoning chain, we can see that the hammer is incorrectly identified
as a screwdriver, causing the robot to reach for that instead. Note that inspecting reasoning chains is
not “bullet-proof™ for interpreting end-to-end policy failures: the model could predict a particular
plan and then still deviate from it when choosing the final action. However, in practice we find that
reasoning chains often correlate strongly with the executed actions. We provide more examples for
diagnosing policy failures via its reasoning chains in Fig. 8.

5.4 Chain-of-Thought Reasoning Enables Interactive Policy Correction

Training a policy to reason through a task step-by-step provides a powerful mechanism for humans
to interact with the policy and correct its behavior: instead of needing teleoperation equipment to
provide direct robot action feedback like in DAgger [67], users can simply modify its reasoning
chains via natural language feedback to correct the policy’s behavior. Prior work used carefully
designed architectures explicitly trained to support such correction via language [68, 69], but we test
whether similar capabilities emerge naturally by training VLA policies to perform ECoT reasoning.

We rerun evaluations of our ECoT policy on some of the most challenging tasks from Table | (put
mushroom in cup, pick up out-of-distribution object, and pick up non-yellow object), in which
our policy without human intervention achieved an average success rate of only 32%. We allow a
human operator to interrupt policy execution once over the course of the episode and provide natural
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Figure 6: Embodied chain-of-thought training enables interactive human policy correction in natural language.
Left: given a human intervention in natural language, we use ChatGPT to correct our model’s reasoning chains.
Right: our embodied chain-of-thought policy can benefit from a human language intervention most, increasing
success rate by 48% on our most challenging evaluation tasks.

language feedback (e.g. “no, the screwdriver is in the back right corner”, “release the mushroom
now!”, or “the cup is tall”) (see ). Then, we use ChatGPT to adapt our model’s reasoning chain
based on the language feedback, prompting it to produce a corrected reasoning chain (see

for the exact prompt used). Finally, we feed this corrected chain back into our policy and continue

execution, holding the corrected reasoning chain fixed for 5 steps.

CEINNT3

The results in (right) show that our ECoT policy can make effective use of the human language
intervention, increasing its success rate by 48%. In contrast, we evaluate the vanilla OpenVLA policy
and RT-2-X in the same way, providing each with a single human language correction per rollout,
but find that neither of them can benefit from the human intervention to the same degree (for both
we also use ChatGPT to incorporate the intervention into the original task instruction to allow for
fair comparison). This is because standard VLAs that directly map from images and instructions to
actions do not expose any part of their internal decision-making process. Not only does this make
“debugging” incorrect behaviors difficult, it also only permits changing the prompt for interventions.

5.5 Efficient Chain-of-Thought Inference

We compare approaches for accelerating ECoT policy inference (see Table 2: Performance of ac-
) to naively running the full generation every step of execution ~celerated CoT inference ap-
in . We also report the speed-up that is achieved by both pro- Sézzflﬁgsarggeigereﬁg:
posed approaches from vs. naive execution. Both approaches approach, averaged across
achieve inference speed improvements while at least matching perfor- 3 tasks (25 trials total).
mance, with asynchronous execution achieving the largest speed-up at
the cost of doubling the compute required at inference time (since two .
policy instances are running in parallel). We use the 5-step freeze ap- 21%’:; g;gj +24%
proach for the main results presented in Table |, since it provides the best ~ Async ~ 65% +40%
performance-speed tradeoff. We used a small task subset (put mushroom

in pot, move mushroom to detergent/measuring tape, and put the left/right object on the middle).

Success  Speed-Up

6 Discussion and Limitations

In this work, we demonstrate that training VLA policies to perform chain-of-thought reasoning
can substantially increase their performance without the need to collect additional robot training
data. Instead of simply applying the CoT recipe from language modeling, our experiments underline
the importance of adding reasoning steps that are strongly grounded in the task, scene, and robot
state. While our results are encouraging, our approach has several limitations. First, our model does
not adapt the structure of its reasoning chains to the task at hand; it always performs all steps of
reasoning in the fixed order we chose. A more effective strategy may involve executing only a subset
of reasoning steps based on the robot and scene state, and future work can explore directly optimizing
the model to pick the best reasoning steps. Additionally, scaling the ECoT training to a larger subset
of the OXE dataset [6] will improve transfer of ECoT capabilities to more robots.
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A Grounding DINO Detections and Prismatic Descriptions

We provide example scene descriptions provided by Prismatic VLM and bounding boxes provided by
Grounding DINO in Fig. 7. We filter the predictions based on the provided confidence score, only
keeping detections with a box- and text-confidence larger than 0.3 and 0.2 respectively to use for the

OBJECT features.

with o silver pot 0.36

stuffed o white stuffed an

5 5 A wooden table holds a blue bottle, a grey A green pickle is on the counter, is
A robot is holding a carrot above a green plate, . . h .
red pepper, and - anlma_l, , and a on the _stove burner, and a white mushroom is
D ERIET ’ ’ blue towel, with a box and a black arm behind in a white bowl. The stove burner is below the
G them G pot, and the pickle is near the counter Y]

A silver pot is in the sink, a white plate is on the
, and a white mushroom is on the plate.

The sink is to the left of the , and the pot

is in the sink G

Arobot is putting a on a cutting board,
which is on the counter. There is a green
cutting board, a red pepper, s
and a black pot nearby. The counter is white
with silver knobs and a sink. 4

The scene has a table with a blue chair, a
yellow cloth on the table, and a black device.
The cloth is to be moved from the left side of
the table to the center. /]

Figure 7: Examples of captions of observations from the Bridge dataset as generated by our Prismatic
VLM, as well as associated bounding boxes generated by Grounding DINO.
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“Put the purple object in the middle container”

TASK: Move the purple object to the silver
container.

PLAN: Move to the purple object, grasp the
purple object, move to the silver container,
release the purple object

SUBTASK: We have grasped the purple object, so
we need to move it to the silver container. >
Move to the silver container.

MOVE: The silver container is to the left of the
robot, so we need to move left to reach it. >
Move left.

“Put the mushroom in the white cup”

a white cup

TASK: Put the mushroom in the white cup.

PLAN: Move to the mushroom, pick it up, move to
the white cup, put the mushroom in the white cup
SUBTAS he mushroom is picked up, and the
white cup is the next object to interact with. >
Move to the white cup.

MOVE: The white cup is to the left and slightly
above the arm, so the arm needs to move in that
direction. > Move left up.

“Move the mushroom to the detergent”

TASK: Move the mushroom to the detergent.
PLAN: Grasp the mushroom, move the mushroom
to the detergent, release the mushroom.
SUBTASK: The mushroom is the object that
needs to be moved to the detergent. > Grasp the
mushroom.

MOVE: The gripper is not fully closed yet. > close
gripper

“Move the watermelon to the towel”

TASK: The watermelon needs to be placed on the
towel.

PLAN: 1. Move to the watermelon. 2. Pick up the
watermelon. 3. Move to the towel. 4. Place the
watermelon on the towel.

SUBTASK: The watermelon has been picked up,
and the arm is now close to the towel. > Move to
the towel.

MOVE: The towel is to the left of the watermelon,
so the arm needs to move left to reach it. > Move
left up.

“Move the mushroom to the measuring tape”

TASK: Move the mushroom to the measuring
tape.

PLAN: Move to the mushroom, grasp the
mushroom, lift the mushroom, move to the
measuring tape, place the mushroom on the
measuring tape.

SUBTASK: The mushroom should be lifted so that
it can be moved. > Lift the mushroom.

MOVE: Stop. -> Stop.

“Pick up the watermelon”

TASK: Pick up the watermelon.

PLAN: Move to the watermelon, pick up the
watermelon, move to the target location, drop the
watermelon.

SUBTASK: The watermelon is on the table, and
the robot needs to move to pick it up. > Move to
the watermelon.

MOVE: The watermelon is to the left of the robot,
so the robot needs to move left to get to it. >
Move left.

“Pick up any object that is not a sponge”

the fellow duck

TASK: Pick up any object that is not a sponge.
PLAI pproach the , pick up the
, move the yellow duck away from the

sponge.

SUBTASK: The is the closest object
that is not a sponge and it needs to be picked up.
- Approach the 4
MOVE: The is below the robotic arm
and it needs to be approached. > Move down.

“Put the mushroom in the white cup”

a white cup

TASK: Put the mushroom in the white cup.

PLAN: Move to the mushroom, pick up the
mushroom, move to the cup, put the mushroom in
the cup.

SUBTASK: The mushroom is picked up and the
cup is not directly below the arm, so the next step
is to move to the cup. > Move to the cup.

MOVE: The cup is above the arm, so the arm
needs to move up to reach it. > Move up.

“Put the leftmost object on the middle object”

TASK: Put the

on the blue towel
- Move to the . Grasp the
. Move to the blue towel. Release the

PLAN:

SUBTASK: The is the leftmost object
and the robot is currently not at the A
- Move to the
MOVE: The

robot. > Stop.

is now right below the

Figure 8: More qualitative examples of successful and failed chain-of-thought reasonings.
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[ Put the mushroom in the metal pot ] [ Put the carrot on the plate ] [ Put the spoon on the towel ] [ Pick up the towel and wipe the [plate / pan] ]

Put the mushroom in the Put the purple object in the Put the [rightmost/leftmost] object on the
[leftmost/middle/rightmost] container [leftmost/middie/rightmost] container middle object.

Move the mushroom to the [measuring Pick up the [hammer/watermelon/measuring ) '
[ tape/detergent] Putthe watermelon on the towel tape/detergent/screwdriver] Put the mushroom in the white cup

[ Pick up any object that is not [yellow/a duck/a] [ Put the object used for [drinking / eating] on
the |

] [ Put the edible object in the bow! ]

sponge/a towel] towel

Figure 9: Example starting scenes and associated prompt for all task types.
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B List of Movement Primitives

To classify a movement, we take the difference between the current state of the robot and its position
four steps ahead. Based on the axes where the difference exceeds a threshold of 0.03, we assign it a
label of the following form:

move [forward/backward] [left/right] [up/down], tilt [up/down], rotate
[clockwise/counterclockwise], [close/open] gripper

Whenever the movement in a certain axis is below the threshold, we omit its block for simplicity. For
instance, if the robot is just moving left, the label is move left. If no movement is detected, the
label is stop.

While technically it results in 36 = 729 possible labels, only 54 are used in more than 0.1% of cases:

1. stop (26.9%)

2. close gripper (10.8%)

3. open gripper (7.2%)

4. move down (6.8%)

5. move left (6.6%)

6. move right (6.1%)

7. move up (5.7%)

8. move forward (3.0%)

9. move backward (2.4%)

10. move up, open gripper (2.1%)

11. move forward right (1.1%)

12. move up, close gripper (1.0%)

13. move backward left (1.0%)

14. move forward left (0.9%)

15. move left down (0.8%)

16. move down, close gripper (0.8%)

17. move right down (0.8%)

18. move left up (0.8%)

19. move right up (0.8%)

20. move right, rotate clockwise (0.8%)

21. move left, rotate counterclockwise (0.8%)
22. move backward right (0.8%)

23. rotate counterclockwise (0.7%)

24. move down, open gripper (0.7%)

25. rotate clockwise (0.7%)

26. move forward down (0.7%)

27. move up, rotate clockwise (0.5%)

28. move up, rotate counterclockwise (0.5%)

29. move backward up (0.5%)

30. move left, rotate clockwise (0.3%)

31. move backward down (0.3%)

32. move right, open gripper (0.3%)

33. move forward up (0.3%)

34. move left, open gripper (0.3%)

35. move right, rotate counterclockwise (0.3%)
36. move backward, open gripper (0.2%)

37. move down, rotate clockwise (0.2%)

38. move down, rotate counterclockwise (0.2%)
39. move forward, rotate counterclockwise (0.2%)
40. move forward, rotate clockwise (0.2%)

41. move forward, open gripper (0.2%)

42. move right, close gripper (0.2%)

43. move backward, rotate clockwise (0.2%)

44. move backward, rotate counterclockwise (0.2%)
45. move left, close gripper (0.2%)

46. move backward right, rotate clockwise (0.1%)
47. move backward left, rotate counterclockwise (0.1%)
48. move right up, open gripper (0.1%)

49. move right up, close gripper (0.1%)

50. move backward, close gripper (0.1%)

51. rotate clockwise, close gripper (0.1%)

52. rotate counterclockwise, close gripper (0.1%)
53. move left up, open gripper (0.1%)

54. move forward right, rotate clockwise (0.1%)
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C Prompts
We now provide all the prompts used for data generation and policy language conditioning.

For using generating scene descriptions with Prismatic (step 1 in ), we use the prompt: “Briefly
describe the things in this scene and their spatial relations to each other.” We prepend “The robot task
is: [TASK].” if the given demonstration trajectory contains a corresponding task instruction (where
we ensure that said instruction contains at least one space character to remove noisy instructions).

We provide the prompt for Gemini data labeling (step 5 in ) in . We re-run generation if
Gemini fails to produce reasonings of the correct format.

The prompts used for our language-conditioned policies are provided in , along with example
starting scenes for the associated tasks. For the OpenVLA-based policies, said prompts are inserted
into the template provided by the original authors [7]: “A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions.
USER: What action should the robot take to [PROMPT]? ASSISTANT:”. The agent then generates
reasoning text (if trained to do so) and an action.

We provide the prompt used for human interventions with ChatGPT in

D Clutter Evaluations

We provide additional evaluations of how our policy compares against OpenVLA in settings with
significant clutter (9 or more objects per scene). We evaluate two rollouts for eight tasks in the
four categories used in : in-distribution (put mushroom on cloth, put corn in pot), spatial
relations (put mushroom in [leftmost / rightmost] container, put mushroom in [leftmost / rightmost
container]), out-of-distribution objects (move mushroom to measuring tape, place watermelon on
pan), and out-of-distribution instructions (put edible object on towel, put animal in pot). Note that
some tasks are not from the original tasks in , which we chose to make them more amenable
to evaluation in cluttered scenes. We show example starting arrangements for each task in

We find that our ECoT policy achieves 75% success rate while OpenVLA only achieves 25%,
indicating that reasoning may aid in robustifying against clutter. Qualitatively, we note that many
failure cases are exacerbated for OpenVLA in the presence of clutter, while our ECoT policy still
enjoys the same benefits noted in the default task suite. Namely, OpenVLA often gets distracted
by commonly-represented clutter objects (like the mushroom) while failing to reason about object
semantics, which our approach deals with well (e.g., successfully identifying toy foods and stuffed
animals when queried to pick the edible objects and animals respectively, even though such wordings
are rare or non-existent in our training data).

E Task Objects

We provide visualizations of example representative starting setups for all tasks in . The tasks
involve the following objects:

. Put mushroom in metal pot: mushroom, shallow metal pot, light blue towel, spoon
. Put carrot on plate: carrot, eggplant, shallow metal pot, green plate
. Put spoon on towel: spoon, light blue towel, mushroom, shallow metal pot

. Wipe [plate / pan]: plate, pan, dark blue towel, yellow towel

[ O

. Put the [purple object / mushroom] in the [leftmost / middle / rightmost] container: purple
beet, mushroom, tan plastic bowl, metal bowl, white plastic bowl

6. Put [rightmost / leftmost] on middle: mushroom, spoon, pink bear, green frog, light blue
towel

7. Move mushroom to [measuring tape / detergent]: measuring tape, detergent, mushroom,
light blue towel

8. Put the watermelon on the towel: watermelon, mushroom, spoon, light blue towel

9. Pick up the [hammer / watermelon / measuring tape / detergent / screwdriver|: hammer,
watermelon, measuring tape, detergent, screwdriver
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10. Put mushroom in white cup: tall white cup, mushroom

11. Pick up any object that is not [yellow / a duck / a sponge / a towel]: yellow duck, yellow
towel, sponge, purple beet

12. Put the object for [drinking / eating] on the towel: dark blue towel, spoon, cup, mushroom

13. Put the edible object in the bowl: tomato, pink bear, carrot, yellow duck, banana, green frog,
corn, monkey

We frequently use the mushroom and light blue towel as distractors, as they are well-represented in
our training data, and so non-reasoning policies often erroneously pick them up or place things on
them when instructed otherwise, especially when dealing with the less common or out-of-distribution
objects (measuring tape, detergent, watermelon, hammer, screwdriver, white cup).

F Additional Analysis and Experiments

Can we improve inference speeds by compiling the language model backbone? As our model
shares an architecture with OpenVLA [7], which likewise is fine-tuned from a Prismatic VLM [35],
the policy itself has a vision and language model backbone. The latter is where much of the inference
time is spent: it is a fine-tuned Llama 2 [59] model that has to generate ~ 300 chain-of-thought
reasoning language and action tokens in response to 256 soft prompt image embedding tokens.
However, since it does use this popular language model architecture, our policy can benefit from the
numerous recent developments in improving LLM inference speeds.

We show this by compiling our ECoT VLA’s language model backbone with TensorRT-LLM [66].
Using FP8 quantization [70], we were able to lower the inference time of generating a full reasoning
chain followed by actions from ~ 5 seconds to ~ 1 second (or ~ 0.8 seconds with freezing, from
~ 2 seconds). We note that further optimizations (both with TensorRT-LLM or with other techniques,
like speculative decoding [71]) are possible and that the policy can be made smoother with techniques
like action chunking [2], but we leave these approaches to future works.

Can we improve speed and interpretability of the ECoT reasoning? We test two modifications
to the structure of our reasoning chains. First, we move the bounding box generations earlier in the
chain, right after the plan. This way, we can keep the bounding boxes fixed in our N-step inference
(see . Since the bounding box generation represents a significant fraction of the predicted
tokens, this change can speed up ECoT inference by 30 — 50% in our experiments. Secondly, we
train the model to autoregressively predict the next four future gripper positions, in addition to the
current one. Not only does this gives operators a rough visualization of what the ECoT policy expects
its motion to be in the future, but it serves as an (albeit imperfect) proxy indicating how our policy
would behave. This will be important for the following experiments on other robot embodiments, for
which we do not have the ability to run real world rollouts.

We evaluate this policy (and all subsequent ones) on a large subset of tasks on the out-of-distribution
view station, totaling 106 trials per policy. We find that, while this frozen bounding box policy does
perform worse than our base ECoT model, it nonetheless outperforms all baselines (Octo, OpenVLA
(Bridge), and RT-2-X), as shown in . Thus, due to its relative higher speed and ability to
visualize rollouts, we adopt this structure for all subsequent experiments.

Does co-training with vision-language data help? During VLA fine-tuning, both ECoT and
OpenVLA lose the base VLM’s ability to respond conversationally to natural language questions.
This can be remedied by co-training the VLAs with vision-language training data in addition to
robot action data. Prior work found that such co-training can improve VLA capabilities [5]. We test
performance of an ECoT model co-trained with robot data and the vision-language training dataset
of the base Prismatic VLM [35] at a 3:1 ratio. Qualitatively, we find that the co-trained model indeed
retains its ability to answer questions in chat format in addition to robot control. We compare the
performance of this model with our base ECoT model across a large subset of the robot control
tasks in (in-distribution view), totaling 106 trials per model. The results in suggest
that co-training does not lead to measurable performance improvements on our evaluation tasks.
Anecdotally, we find that the co-trained model can more reliably recognize celebrities and improve
performance on tasks like “bring coke can to Taylor Swift” (4/4 successes vs. 0/4 for our base ECoT).
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Table 3: Success rate of ECoT trained with various design choices, as evaluated on a large subset of trials on
the harder out-of-distribution view setting. While our base policy performs the best on aggregate (69%), the
other approaches achieve higher performance on certain tasks. All policies in this table outperform OpenVLA
(Bridge), RT-2-X, and Octo’s performances on the same trial subset (29%, 46%, and 14% aggregate success
rates respectively).

Base Frozen Bbox Co-trained Fine-tuned
Task

ECoT ECoT ECoT ECoT

Put mushroom in pot 57% 86% 86% 86%
Put spoon on towel 80% 60% 40% 80%
Put carrot on plate 83% 67% 100% 100%
Wipe [plate / pan] with towel 75% 50% 25% 25%
Put mushroom in
[left / right / middle] container 8% 35% 11% 44%
Put purple object in
[left / right / middle] container 4% 67% 44% 67%
Put [right / left] object on middle object 63% 75% 75% 75%
Pick up [screwdriver / hammer / 50% 60% 30% 70%
measuring tape / detergent / watermelon]
Move m}lshroom to 90% 90% 100% 60%
[measuring tape / detergent]
Put mushroom in tall cup 20% 20% 20% 40%
Place watermelon on towel 60% 0% 20% 40%
Pick up any object that is not
[yellow / a duck / a sponge / a towel] 67% 8% 42% 17%
Put the edible object in the bowl 100% 75% 50% 38%
Pqt the object used for [eating / 75% 38% 50% 25%
drinking] on towel

Aggregate 69% 60% 56% 54%

Does ECoT capability transfer to other robots? We test whether fine-tuning a generalist VLA
policy with ECoT data can transfer ECoT reasoning between robot embodiments. Concretely, we use
the official checkpoint of the OpenVLA-7B model [7], which was trained on a mix of 27 robot datasets.
We continue training the released checkpoint on this mix, but replace the original BridgeData V2
dataset with our generated ECoT dataset. As a result, approximately 13% of the training data is ECoT
data. We make two key findings. First, fine-tuning a pre-trained VLA to perform ECoT reasoning
is substantially faster than training an ECoT VLA from the base VLM. We observe that within 20k
training steps the fine-tuned model nearly matches the performance of our original ECoT model
trained for 80k steps ( ). Qualitatively, we even observe comparable performance after only
2500 steps. This represents a 4x and 30x reduction in required compute respectively.

Secondly, we find that the fine-tuned model can perform ECoT reasoning on other robot embodiments
than it has been trained for, simply by prompting it with the beginning of a ECoT sequence (“TASK:”)
( ). It recognizes robot grippers, objects and their positions, and predicting future gripper
movements, despite the large differences in robot appearance, scene layout and camera setup. This
result is surprising, since we only provided ECoT training data for a single robot embodiment: the
WidowX robot in the BridgeData V2 dataset. We hypothesize that the VLM pre-training enables the
model to generalize the concepts of robot end-effector position and movement, and object idendity
and positions between robots and scenes. We also tried rolling out the fine-tuned ECoT model in
the SIMPLER real-to-sim environments of [72] on the Google Robot tasks, while prompting for
ECoT prediction as described above. However, we found that the ECoT model suffered from the
real-to-sim domain gap of the SIMPLER environments, producing more faulty reasoning chains than
on real Google robot images, and thus not improving overall performance compared to an OpenVLA
baseline without ECoT.
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G Extended Qualitative Analysis of Reasoning Behaviors

Along with , we provide further qualitative examples of successful and failed ECoT reasonings
in . We find that most failures are due to some kind of semantic scene misunderstanding, the
most common form being incorrect bounding box labels (as shown in the rightmost example in ).
However, even when bounding boxes are somewhat correct (see top middle example in where
the watermelon is labeled as a red object and the spoon has no label), the model still erroneously
believes the watermelon has been grasped, when it actually grasped the spoon. We also note that
our model can often handle noisy labels: the bottom right example in labels the green and
yellow frog as a “yellow duck,” however the reasoning referring to it still aligns with the specified
task. Finally, we note that failures from incorrect plans or subtasks (but correct scene understanding)
are typically uncommon, especially because the plans are re-generated after freezing and are often
corrected in the process.

H Extended Discussions of Design Choices and Alternatives

We now discuss some the advantages and disadvantages of various alternative design choices and
optimizations.

H.1 Inference Optimizations

Performing ECoT inference is significantly slower than "standard" VLA counterparts. Specifically,
OpenVLA and RT-2-X achieve control frequencies of 3 and 2 Hz respectively, while our freezing
approach achieves 0.5. However, we note that this slower inference speed is nonetheless empirically
sufficient for outperforming these standard VLAs (see ). Additionally, there are standard
inference speed optimizations that can still be implemented in conjunction with the ones we tried.
Most prominently, as mentioned in , TensorRT-LLM [66] claims to enable inference
speeds of over 1000 tokens per second for Llama 2, which acts as the language model backbone of
our ECoT policy. Given that our ECoT reasoning chains are typically around 250 tokens, this should
enable control frequencies on par with non-reasoning VLAs. However, as our primary contribution is
to show how reasoning aids in robot control policies, we leave such optimizations to future works.

H.2 Alternative Reasoning Steps and Orders

As shown in , our approach can be applied for other reasoning step features or orderings
while staying more performant than our baselines (see ). Such alternative reasoning steps
can give benefits like better interpretability for easier debugging, as demonstrated with our future
gripper position feature in . Some other features include open vocabulary 3D bounding boxes,
which could be extracted by systems like FM-OV3D [73] (albeit requiring depth estimates, which our
training data is not annotated with, but can be extracted using other foundation models). Likewise,
PaliGemma [74] can be used for open-vocabulary semantic segmentation (instead of our current
2D bounding boxes), which also has the benefit of providing such segmentation maps in tokenized
textual formats. As more foundation models are released for different semantic tasks, we expect that
the type of reasoning steps our model can learn via distillation to only increase.

H.3 External Modules

We choose to train our model to perform all reasoning steps end-to-end. However, in principle, some
of these reasoning steps can be performed by external modules, which may improve generalization.
However, this would require additional compute to load the additional models and introduce more
system-building complexity. Likewise, we find that current open-source VLMs are unable to generate
the bulk of the reasoning. While proprietary LLMs like ChatGPT may be able to do so, they are
naturally not trained to automatically generate reasonings of the expected format, and thus would
require in-context examples or long prompt instructions on formatting (like with ), slowing
inference speeds. Furthermore, API calls would need to be made for each new image, incurring costs.

Another possibility would be to use external modules to give feedback on generated reasoning chains.
In practice, this is difficult to do zero-shot with off-the-shelf pre-trained models; most works using
VLMs as feedback for learning or inference typically need to fine-tune them for their specific use
case [75, 76].
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Annotate the training trajectory with reasoning
## Specification of the experimental setup

You’re an expert reinforcement learning researcher. You’ve trained an optimal policy for controlling a robotic arm. The
robot successfully completed a task specified by the instruction: "unfold the cloth from top right to bottom left". For
that purpose, the robotic arm executed a sequence of actions. Consecutive states that were visited can be characterized by
the following features:

¢¢¢python
trajectory_features = {
0: "stop"
1: "stop"
2: "move,forward left"
3: "move,forward down"
4: "move,forward down"

36: "stop"

Each entry in that dictionary corresponds to a single step on the trajectory and describes the move that is about to be
executed.

## Scene description

The robot is operating in the following environment. A black and red toy stove with a yellow banana in a silver pot, a blue
toy brush, and a purple towel on the counter, surrounded by white tiled walls and a grey sink.

## Your objective

I want you to annotate the given trajectory with reasoning. That is, for each step, I need to know not only which action
should be chosen, but importantly what reasoning justifies that action choice. I want you to be descriptive and include all
the relevant information available. The reasoning should include the task to complete, the remaining high-level steps, the
high-level movements that should be executed and why they are required, the premises that allow inferring the direction of
each move, including the locations of relevant objects, possible obstacles or difficulties to avoid, and any other relevant
justification.

### Begin by describing the task

Start by giving an overview of the task. Make it more comprehensive than the simple instruction. Include the activity,
the objects the robotic arm interacts with, and their relative locations in the environment. Then, describe the high-level
movements that were most likely executed, based on the task that was completed and the primitive movements that were
executed. Then, for each high-level movement write the interval of steps that movement consists of. Also, for each
high-level movement write a justification for why it should be executed. Write an answer for this part using markdown and
natural language. Be descriptive and highlight all the relevant details, but ensure that your description is consistent
with the trajectory that was executed, specified by the features listed above in the ‘trajectory_features‘ dictionary.

### List the reasonings for each step

Finally, for each step describe the reasoning that allows to determine the correct action. For each step describe the
remaining part of the objective, the current progress, the objects that are still relevant for determining the plan,

and the plan for the next steps, based on the available features. Start the reasoning from a high level and gradually

add finer features. I need you to be descriptive and very precise. Ensure that the reasoning is consistent with the

task and the executed trajectory. Write the answer for this part as a Python-executable dictionary. For every step in

the initial trajectory there should be exactly one separate item of the form <step id>:<reasoning>. Do not group the
answers. The final dictionary should have exactly the same set of integer keys as the dictionary of features provided in
the ‘trajectory_features‘ dictionary above. The reasoning should be a single string that describes the reasoning in natural
language and includes all the required features.

Each reasoning string should have the following form:

- Describe the full task that remains to be completed (but only describe what remains), and place it inside a tag <task>.

- Describe the complete high-level plan for completing the remaining task (the list of remaining high-level steps), and place
it inside a tag <plan>.

- Describe the high-level step that should be executed now (chosen from the list of high-level steps), and place it inside a
tag <subtask>.

- Describe why the chosen high-level step should be executed now, which features of the current environment influence that
decision, and how it should be done. Place it within a tag <subtask_reason>.

- Describe the current primitive movement of the arm that needs to be executed, and place it inside a tag <move>.

- Describe why the chosen movement should be executed now and which features of the current environment influence that
decision. Place it inside a tag <move_reason>.

## Task summary
Here is a breakdown of what needs to be done:

- Describe the task.

- Describe the high-level movements that were executed, based on the completed task and the listed features.

- Describe the plan for the solution that allowed the robot to complete the task successfully.

- For each step on the trajectory, describe the reasoning that leads to determining the correct action. The reasoning should
be descriptive and precise. You should provide exactly one reasoning string for each step on the trajectory specified by
‘trajectory_features‘.

- At the very end of the response, write a single label FINISHED to indicate that the answer is complete.

Figure 10: Prompt used for Gemini to generate plans, subtasks, and movement labels.
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# Objective

You’re an expert reinforcement learning researcher. You’ve trained a policy for controlling a robotic arm. The policy
computes the correct action based on a reasoning that leads to it, which includes the task that remains to be completed,

the plan for completing that task, and the subtask that currently needs to be done. I want you to prepare such a reasoning,
based on a feedback from a user of that robot.

The reasoning must have the following elements:

- TASK: the task that remains to be done.

- PLAN: a list of high-level steps that need to be executed.
SUBTASK REASONING: reasoning that determines the current subtask.
- SUBTASK REASONING: reasoning that determines the current subtask.
SUBTASK: the current subtask that should be executed.

MOVE REASONING: reasoning that determines the current move.

- MOVE: the current move that should be executed

Write the answer as a python string. It will be used as an additional input for the policy, so keep the format exactly as
described.

# Examples

Given the task "Put the tomato inside the pot on the left burner" and feedback "you are too low, move up", the reasoning
should be "TASK: Put the tomato inside the pot on the left burner. PLAN: Go to the tomato, grasp it, transport it to the
stove, position it in the pot. SUBTASK REASONING: The tomato is grasped. The tomato is already near the pot, but below its
edge. SUBTASK: Position the tomato in the pot. MOVE REASONING: The pot is above current position. Move the arm up. MOVE:
Move up."

Given the task "place the silver lid on the silver pot on the upper right of the table" and feedback "move to the pot", the
reasoning should be "TASK: The 1lid needs to be placed on a silver pot on the upper right part of the scene. PLAN: First
move to the 1lid, then grip it, then move to the pot, then place the 1lid on the pot. SUBTASK REASONING: The lid is gripped,
so it should be moved to the pot. SUBTASK: Move to the pot."

Given the task "move the fork to the bottom left side of the counter" and feedback "move down to grasp the fork", the
reasoning should be "TASK: Pick up the fork and move it to the bottom left side of the counter. PLAN: 1. Move to the fork.
2. Pick up the fork. 3. Move to the bottom left side of the counter. 4. Put down the fork. SUBTASK REASONING: The fork
is the first object that needs to be reached. SUBTASK: 1. Move to the fork. MOVE REASONING: The fork is still downward
from the current position of the arm, so the arm continues to move that direction. MOVE: move down"

Given the task "remove the cylinder from the green cube and place it on top of the red cube" and feedback "close", the
reasoning should be "TASK: Remove the cylinder from the green cube and place it on top of the red cube. PLAN: Approach the
green cube, close the gripper around the cylinder, move the cylinder towards the red cube, open the gripper to place the
cylinder on top of the red cube. SUBTASK REASONING: The arm is now in contact with the cylinder, so it should close the
gripper to grab it. SUBTASK: Close the gripper MOVE REASONING: The cylinder has already been reached and the gripper is
closing. MOVE: Close gripper"

Given the task "pick up the towel" and feedback "go right", the reasoning should be "TASK: Pick up the towel. PLAN: Move to
the towel, Grasp the towel, Pick up the towel SUBTASK REASONING: The arm should reach the towel first. SUBTASK: Move to the
towel. MOVE REASONING: The towel is to the right, so the arm should move right. MOVE: move right"

# The current task

The policy generated the following reasoning: "TASK: Put the mushroom in the white cup. PLAN: Move to the mushroom, pick
it up, move to the cup, put the mushroom in the cup. SUBTASK REASONING: The mushroom is picked up, and the cup is the next
object to interact with. SUBTASK: Move to the cup. MOVE REASONING: The cup is positioned below the arm. MOVE: Move down.
GRIPPER POSITION: [111, 61] VISIBLE OBJECTS: a white cup [124, 25, 176, 113], a wooden table [13, 21, 241, 248], a wooden
table [10, 21, 249, 250]"

Given the task "put the mushroom in the white cup" and feedback "no, the cup is actually in front of the gripper", what
should be the reasoning?

Figure 11: Prompt used for ChatGPT during human intervention experiments

Put the mushroom in the Move the mushroom to the
Put the mushroom on the towel ) . :
[leftmost/rightmost] container measuring tape

] [ Put the animal in the pot ]

Put the purple object in the
[leftmost/rightmost] container

[ Put the corn in the pot ] [

] [ Put the watermelon on the pan ] [Put the edible object on the towel ]

Figure 12: Example starting scenes for each of the cluttered evaluation tasks.
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TASK: Put the black bowl in the
blue sink.

PLAN: Move to the black bowl.
Pick up the black bowl. Move to
the sink. Drop the black bowl in
the blue sink.

SUBTASK: The black bowl is the
first object to interact with >
Move to the black bowl.

MOVE: The black bowl is to the
right of the robot > Move right.

TASK: The task is to put the
carrot in the red bowl.

PLAN: 1. Move to the carrot. 2.
Grasp the carrot. 3. Move to the
red bowl. 4. Release the carrot.
SUBTASK: The robot has
grasped the carrot and needs to
move it to the red bowl > Move
to the red bowl.

MOVE: The red bowl is to the
right of the robot, so the robot
needs to move right to reach it >
Move right

a robot

ayellow banana

ASK: Move to the banana.

N: Move to the banana,
grasp the banana, move the
banana to the plate, release the
banana.

SUBTASK: The banana is on the
left side of the plate, so the robot
needs to move left > Move to
banana.

MOVE: The robot needs to move
left to get closer to the banana >
Move left.

o

TASK: Put the grey sponge on
the yellow towel.

PLAN: Move to the sponge, pick
up the sponge, move to the
towel, put down the sponge.
SUBTASK: The sponge is on the
table, and it needs to be reached
first > Move to the sponge.
MOVE: The sponge is below the
robot, so move down > Move
down.

Figure 13: Our OXE fine-tuned ECoT model can generate reasonings for non-WidowX robots too, despite
never having seen reasoning annotations for said embodiment.
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