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Abstract

This appendix contains further details regarding the theory and experiments. Sec-
tion A gives the proofs of Lemma 1 about the properties of scoring rules and
Theorem 1 about the convergence of active learning with (strictly) proper scoring
functions. Section B provides details of the datasets, baseline implementation
and experiment setup. Section C and Section D includes a comprehensive set of
experimental results, including learning curves and pairwise comparison matrices
on the four datasets that are not included in the main paper.

A Proofs

Proof of Lemma 1 (Properties of scoring)

Proof. QI(L) ≥ 0 by definition of entropy. Now an identity for entropy is that I (Pr(A | B,C)) ≤
I (Pr(A | B)). Which means given more evidence C, the conditional entropy of A cannot increase.
So the decrease in log volume is never negative. This means ∆QI(x|L) ≥ 0.

The result for QS(L) follows directly by the definition of a scoring rule, because the expected
proper score EPr(y|θ,x)[S(Pr(· | x), y)] has a minimum for any distribution Pr(· | x) only when
Pr(· | x) = Pr(y | θ, x).

For ∆QS(x|L) we work as follows. Start with Equation (6) and reverse back in the scores:

EPr(y|L,x)[EPr(x′) Pr(y′|L,(x,y),x′)[S(Pr(· | L, (x, y), x′), y′)]]

− EPr(x′) Pr(y′|L,x′)[S(Pr(· | L, x′), y′)]
= EPr(y|L,x)[EPr(x′) Pr(y′|L,(x,y),x′)[S(Pr(· | L, (x, y), x′), y′)− S(Pr(· | L, x′), y′)]]

where the second line is done by changing EPr(y′|L,x′)[·] to EPr(y′|L,x,x′)[·] (the model is fully
conditional) then to EPr(y,y′|L,x,x′)[·] and rearranging. The second line is ≥ 0 due to the maximum
properties of scoring functions used earlier.

Proof of Theorem 1 (Convergence of active learning)

Proof. The proof for Lemma 5 in [5] can be readily adapted to show for x occurring infinitely
often in Ln and n → ∞ ∆QI(x|Ln) and ∆QS(x|Ln) both approach zero as n → ∞ since
Q(L ∪ {(x, y)}) → Q(L) when Pr(θ | L ∪ {(x, y)}) → Pr(θ | L). Then one adapts the proof
of Theorem 1 in [5], which requires finiteness and discreteness of x, to show that ∆QI(x|Ln) and
∆QS(x|Ln) both approach zero as n→∞ for all x.
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Now consider ∆QI(x|Ln) = EPr(θ|Ln)[KL (Pr(y | θ, x) || Pr(y | Ln, x))], by properties of the KL
function. Let

ΘNZ =
{
θ :

(
lim
n→∞

Pr(θ | Ln)
)
> 0
}

Now θr ∈ ΘNZ due to the arguments of Lemma 5 [5]. From the KL approaching zero, it follows
that for all x and as n → ∞, Pr(y | θ, x) approaches Pr(y | Ln, x) for all θ ∈ ΘNZ . This means
that all θ ∈ ΘNZ yield identical Pr(y | θ, x). Since the model is identifiable, ΘNZ can only have
one element, θr.

Suppose ∆QS(x|Ln)→ 0 as n→∞. Considering the final equation from the proof of Lemma 1,
since EPr(y′|Ln,(x,y),x′)[S(Pr(· | Ln, (x, y), x′), y′) − S(Pr(· | Ln, x′), y′)] ≥ 0 from properties
of the proper scoring rule, it follows that EPr(y|Ln,x) Pr(y′|Ln,(x,y),x′)[S(Pr(· | Ln, (x, y), x′), y′)−
S(Pr(· | Ln, x′), y′)] approaches 0 for all x, x′. Substitute the result from Savage about strictly
proper scoring rules into the above simplification:

EPr(y|Ln,x) Pr(y′|Ln,(x,y),x′)[S(Pr(· | Ln, (x, y), x′), y′)− S(Pr(· | Ln, x′), y′)]
= EPr(y|Ln,x)[G(Pr(· | Ln, (x, y), x′))]−G(Pr(· | Ln, x′))

Because

EPr(y|Ln,x)[Pr(y′ | Ln, (x, y), x′)] = Pr(y′ | Ln, x, x′) = Pr(y′ | Ln, x′)

(the second step because model is fully conditional) and G(·) is stricly convex, it must mean that
Pr(y′ | Ln, (x, y), x′) approaches Pr(y′ | Ln, x′) for all y, y′ and x, x′ as n→∞. Now consider as
n→∞

EPr(θ|Ln)[Pr(y | θ, x)2] = Pr(y | Ln, (x, y), x) Pr(y | Ln, x)→ Pr(y | Ln, x)2

and thus the variance of Pr(y | θ, x) w.r.t. Pr(θ | Ln) approaches zero for all x, y. There-
fore, limn→∞ Pr(θ | Ln) must be non-zero on a set of θ yielding identical Pr(y | θ, x) =
limn→∞ Pr(y | Ln, x). The result follows using the logic above for ∆QI(x|Ln).

B Detailed Experiment settings

B.1 Datasets

We conducted experiments on a variety of binary and multi-class classification datasets, covering
three distinct domains, i.e., News, medical abstracts and reviews. The basic information of those
datasets is summarized in Table 1. IMDB is a balanced binary class dataset that includes both Positive
and Negative classes. PUBMED and SST-5 are imbalanced datasets with multiple classes. PUBMED
includes the five classes, which are Objective (O), Background(B), Conclusions (C), Results (R)
and Methods (M), while SST-5 includes five rating scores from 1 to 5. AG NEWS is a large-scale
balanced multi-class dataset, including four classes: Science/Technology (ST), World (W), Business
(B) and Sports (S). In terms of text pre-processing, we used the tokenizer that comes with DisitlBert.

B.2 Baseline implementation

Algorithm 1 shows the batch algorithm that we used to implemented all the AL methods considered
in our batch experiments for a fair comparison. Note that the acq.fn will return a score or a vector of
scores for each unlabelled sample, which depended which AL method is used. To choose B samples
for a batch with Algorithm 1, we implemented each AL method as follows:

Table 1: The summary of dataset distribution
Dataset Imbalance Multi-class Domain Label and size(%)

AG NEWS No Yes News articles ST/W/B/S(25/25/25/25)
PUBMED 20K RCT Yes Yes Medical abstracts O/B/C/R/M(8/12/15/32/33)
IMDB No No Sentiment reviews P/N(50/50)
SST-5 Yes Yes Sentiment reviews R1/R2/R3/R4/R5(13/26/19/27/15)
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Algorithm 1 Deep Ensemble-based Active Learning with Dynamic Validation Set
Require: initial unlabelled data U , initial labelled data L,
Require: model/network ensemble ΘE = {θ1, ..., θE} built from labelled data L,
Require: acquisition function acq.fn, acquire batch size B, the number of acquisition iteration N
1: Initialize: i = 0, L0 ← L,U0 ← U
2: while i < N do
3: while e < E do
4: Random split Li into a training set and a validation set
5: Train the ensemble models θi,e(e ∈ E) given the current labelled training set and validation set
6: Form ensemble model Θi = {θi,1, θi,2, ..., θi,E}
7: for x ∈ Ui do
8: Compute rx ← acq.fn.(x,Θi)

9: if acq.fn is Max-Entropy or BALD then
10: Acquire B samples via ranking rx
11: if acq.fn is other ALs then
12: Acquire B samples via clustering rx with k-MEANS++ or k-MEAN
13: Li+1 ← Li ∪B
14: Ui+1 ← Ui \B

Table 2: The settings of the initial estimation pool size X and Top fraction size T for WMOCU,
MOCU, CoreMSE and CoreLog on the different dataset

Dataset WMOCU MOCU CoreMSE CoreLog

AG NEWS X=600, T=0.5 X=600, T=0.5 X=600, T=0.5 X=600, T=0.5
PUBMED 20K RCT X=800, T=0.5 X=800, T=0.5 X=800, T=0.5 X=800, T=0.5
IMDB X=800, T=0.5 X=800, T=0.5 X=800, T=0.5 X=800, T=0.5
SST-5 X=800, T=0.5 X=800, T=0.5 X=800, T=0.5 X=800, T=0.5

CoreMSE & CoreLog: Each sample in the unlabeled pool was represented as a vector of scores
computed by Eq (6) in the main paper. We then used k-MEANS to generate B clusters and selected
from each cluster a sample that is closest to the centre of the cluster to form the batch.

Random We sampled B samples uniformly at random from unlabelled pool.

Max-Entropy: We chose top B samples with the highest entropy of the predictive distribution [3, 4].

BALD: Similar to Max-Entropy, we chose top B samples with the maximum mutual information
based on how well labelling those samples would improve the model parameters [2].

MOCU & WMOCU: Similar to how we generated a batch using CoreMSE and CoreLog, we
represented each sample in the unlabeled as a vector of scores computed by Eq (5 & 10) in [5], and
then chose B samples using the clustering approach.

BADGE Following [1], we represented each sample as a gradient embedding generatd from a
pretrained language model, i.e., DistilBert in our experiments. Then, k-MEANS++, as used by Ash
et al. [1], was then adopted to generate B Clusters, from each of which we chose the sample closet to
the cluster mean.

ALPS: Different from BADGE, we followed Ash et al. [1] to generate surprisal embeddings from
DistilBert as inputs to k-MEANS. Then, a similar approach is used to choose the B samples in a
batch.

Pretrained LM: We further used the embeddings generated by the last layer of DistilBert to represent
unlabelled samples in clustering.

B.3 Experiment setup

Table 2 shows the hyperparameters we implemented in the experiments. We set up the same estimation
pool size and top fraction for AL methods in the specific domain.
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C Model performance: Learning curves and pairwise comparison matrices

C.1 Active learning with batch size 1

Figure 1: Learning curves on the four datasets, where we run all the AL methods with batch size 1.
The dashline represents the performance of the backbone classifier trained on the entire dataset.

(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 2: Pairwise comparison matrices of uncertainty active learning strategies combined on four
datasets. Each number in the matrices represents the number of times the corresponding method in
the row beats the method in the column. The maximum value is two based on the number of datasets
tested. The number of the last column indicates the total winning times than the other methods. The
higher value is better.
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C.2 Batch active learning

C.2.1 Batch size 5

Figure 3: Learning curves of all the AL methods with batch size 5 on PUBMED, IMDB, SST-5 AND
AG NEWS. The dashline represents the performance of the backbone classifier trained on the entire
dataset.

(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 4: Pairwise comparison matrices of diversity active learning strategies with batch size 5. Each
number in the matrices represents the number of times the corresponding method in the row beats
the method in the column. The maximum value is four based on the number of datasets tested. The
number of the last column indicates the total winning times than the other methods. The higher value
is better.
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C.2.2 Batch size 10

Figure 5: Learning curves of all the AL methods with batch size 10 on PUBMED, IMDB, SST-5
AND AG NEWS. The dashline represents the performance of the backbone classifier trained on the
entire dataset.

(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 6: Pairwise comparison matrices of diversity active learning strategies with the batch size 10.
Each number in the matrices represents the number of times the corresponding method in the row
beats the method in the column. The maximum value is four based on the number of datasets tested.
The number of the last column indicates the total winning times than the other methods. The higher
value is better.
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C.2.3 Batch size 50

Figure 7: Learning curves of all the AL methods with batch size 50 on PUBMED, IMDB, SST-5
AND AG NEWS. The dashline represents the performance of the backbone classifier trained on the
entire dataset.

(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 8: Pairwise comparison matrices of diversity active learning strategies with the batch size 50.
Each number in the matrices represents the number of times the corresponding method in the row
beats the method in the column. The maximum value is four based on the number of datasets tested.
The number of the last column indicates the total winning times than the other methods. The higher
value is better.
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C.2.4 Batch size 100

Figure 9: Learning curves of all the AL methods with batch size 100 on PUBMED, IMDB, SST-5
AND AG NEWS. The dashline represents the performance of the backbone classifier trained on the
entire dataset.

(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 10: Pairwise comparison matrices of diversity active learning strategies with the batch size
100. Each number in the matrices represents the number of times the corresponding method in the
row beats the method in the column. The maximum value is four based on the number of datasets
tested. The number of the last column indicates the total winning times than the other methods. The
higher value is better.
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(a) F1 pairwise comparison (b) Accuracy pairwise comparison

Figure 11: Pairwise comparison matrices of diversity active learning strategies with batch size 5, 10,
50 and 100. Each number in the matrices represents the number of times the corresponding method in
the row beats the method in the column. The maximum value is four based on the number of datasets
tested. The number of the last column indicates the total winning times than the other methods. The
higher value is better.
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D Ablation studies

D.1 Batch size

Figure 12: Learning curves of batch size 1, 5, 10, 50 and 100 for CoreMSE. The dashline represents
the performance of the backbone classifier trained on the entire dataset.
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Figure 13: Learning curves of batch size 1, 5, 10, 50 and 100 for CoreLog. The dashline represents
the performance of the backbone classifier trained on the entire dataset.
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Figure 14: Learning curves of batch size 1, 5, 10, 50 and 100 for WMOCU. The dashline represents
the performance of the backbone classifier trained on the entire dataset.
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D.2 Dynamic VS

Figure 15: Learning curves of model training with dynamic validation set and fix number of epochs
without validation set for CoreMSE. The dashline represents the performance of the backbone
classifier trained on the entire dataset.
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