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ABSTRACT

Despite the impressive text-to-image (T2I) synthesis capabilities of diffusion mod-
els, they often struggle to understand compositional relationships between objects
and attributes, especially in complex settings. Existing solutions have tackled
these challenges through optimizing the cross-attention mechanism or learning
from the caption pairs with minimal semantic changes. However, can we gen-
erate high-quality complex contrastive images that diffusion models can directly
discriminate based on visual representations? In this work, we leverage large-
language models (LLMs) to compose realistic, complex scenarios and harness
Visual-Question Answering (VQA) systems alongside diffusion models to auto-
matically curate a contrastive dataset, COM-DIFF, consisting of 15k pairs of high-
quality contrastive images. These pairs feature minimal visual discrepancies and
cover a wide range of attribute categories, especially complex and natural scenar-
ios. To learn effectively from these error cases, i.e., hard negative images, we
propose CONTRAFUSION, a new multi-stage curriculum for contrastive learning
of diffusion models. Through extensive experiments across a wide range of com-
positional scenarios, we showcase the effectiveness of our proposed framework on
compositional T2I benchmarks. We will release our contrastive dataset to support
the development of generative models.

1 INTRODUCTION

The rapid advancement of text-to-image generative models (Saharia et al., 2022; Ramesh et al.,
2022) has revolutionized the field of image synthesis, driving significant progress in various appli-
cations such as image editing (Brooks et al., 2023; Zhang et al., 2024), video generation (Brooks
et al., 2024) and medical imaging (Han et al., 2024a). Despite their remarkable capabilities, state-
of-the-art models such as Stable Diffusion (Rombach et al., 2022) and DALL-E 3 (Betker et al.,
2023) still face challenges with composing multiple objects into a coherent scene (Huang et al.,
2023; Liang et al., 2024; Majumdar et al., 2024). Common issues include incorrect attribute bind-
ing, miscounting, and flawed object relationships as shown in Figure 1. For example, when given
the prompt “a red motorcycle and a yellow door”, the model might incorrectly bind the colors to the
objects, resulting in a yellow motorcycle.

Recent progress focuses on optimizing the attention mechanism within diffusion models to better
capture the semantic information conveyed by input text prompts (Agarwal et al., 2023; Chefer et al.,
2023; Pandey et al., 2023). For example, Meral et al. (2023) proposes manipulating the attention on
objects and attributes as contrastive samples during test-time to optimize model performance. While
more focused, the practical application of these methods still falls short of fully addressing attribute
binding and object relationships. Other works advocate to develop compositional generative models
to improve compositional performance as each constituent model captures distributions of an in-
dependent domain (Du & Kaelbling, 2024). However, such approach assumes a fixed prespecified
structure to compose models, limiting generalization to new distributions.

In this paper, we argue that curriculum training is crucial to equip diffusion models with a fun-
damental understanding of compositionality. Given that existing models often struggle with even
basic tasks (e.g., generating three cats when prompted with “Two cats are playing”) (Wang et al.,
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A yellow bowl, a blue mug 
and a pink plate on the table. 

(Obj., Counting, Color) 

A white cat walks towards a 
brown dog. 

(Action, Spatial)

A woman standing in front of 
three paintings on the wall. 

(Counting)

Two cats are playing under a 
tree in a windy day. 

(Scene, Action, Counting)

A dog is feeding a girl. 
(Logic, Action)

!! SDXL

""" """ """ """ """

!! SD3 !! SDXL !! DALLE !! SDXL

Figure 1: Limited Compositionality Understanding in Diffusion Models. Existing SOTA models
such as SDXL, DALL-E 3 often fail to correctly compose objects and attributes. The bottom are
images generated by our CONTRAFUSION.

2024), we progressively introduce more complex compositional scenarios during fine-tuning. This
staged training strategy helps models build a solid foundation before tackling intricate cases before
improving their performance on a wide range of compositional tasks.

Although many datasets exist for compositional generation (Wang et al., 2023; Feng et al., 2023a),
there remains a significant gap in datasets that offer a clear progression from simple to complex
samples within natural and reasonable contexts. Moreover, creating high-quality contrastive image
datasets is both costly and labor-intensive, especially given the current limitations of generative mod-
els in handling compositional tasks. To address this, we propose an automatic pipeline to generate
faithful contrastive image pairs, which we find crucial for guiding models to focus on compositional
discrepancies. In summary, our work can be summarized as follows:

Contrastive compositional dataset. We introduce COM-DIFF, a meticulously crafted compo-
sitional dataset consisting of high-quality contrastive images with minimal visual representation
differences, covering a wide range of attribute categories. By leveraging LLMs, we scale up the
complexity of compositional prompts while maintaining a natural context design. Our dataset fea-
tures faithful images generated by diffusion models, assisted by VQA systems to ensure accurate
alignment with the text prompts.

CONTRAFUSION: Curriculum contrastive learning. We are the first work to incorporate cur-
riculum contrastive learning into a diffusion model to improve compositional understanding. The
process is broken into three streamlined sub-tasks: (1) learning single object-attribute composi-
tion, (2) mastering attribute binding between two objects, and (3) handling complex scenes with
multiple objects. We conduct extensive experiments using the latest benchmarks and demonstrate
that CONTRAFUSION significantly boosts the model’s compositional understanding, outperforming
most baseline generative methods.

2 PRELIMINARY BACKGROUND

2.1 DIFFUSION MODELS

We implement our method on top of the state-of-the-art text-to-image (T2I) model, Stable Diffu-
sion (SD) (Rombach et al., 2022). In this framework, an encoder E maps a given image x ∈ X
into a spatial latent code z = E(x), while a decoder D reconstructs the original image, ensuring
D(E(x)) ≈ x.

A pre-trained denoising diffusion probabilistic model (DDPM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) for noise estimation and a pre-trained CLIP text encoder (Radford et al., 2021) to
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Dataset # Samples Contra.
text

Contra.
Image Categories Complex

DRAWBENCH (Saharia et al., 2022) 200 ✗ ✗ 3 (color, spatial, action) ✓
CC-500 (Feng et al., 2023a) 500 ✗ ✗ 1 (color) ✗
ATTN-AND-EXCT (Chefer et al., 2023) 210 ✗ ✗ 2 (color, animal obj.) ✗
T2I-COMPBENCH (Huang et al., 2023) 6000 ✗ ✗ 6 (color, counting, texture, shape, (non-)spatial, complex) ✓

GEN-AI (Li et al., 2024a) 1600 ✗ ✗
8 (scene, attribute, relation, counting,

comparison, differentiation, logic) ✓

ABC-6K (Feng et al., 2023a) 6000 ✓ ✗ 1 (color) ✗

WINOGROUNDT2I (Zhu et al., 2023) 22k ✓ ✗
20 (action, spatial, direction, color, number, size, texture,

shape, age, weight, manner, sentiment, procedure, speed, etc.) ✗

COMP. SPLITS (Park et al., 2021) 31k ✓ ✓ 2 (color, shape) ✗
WINOGROUND (Thrush et al., 2022) 400 ✓ ✓ 5 (object, relation, symbolic, series, pragmatics) ✗
EQBEN (Wang et al., 2023) 250k ✓ ✓ 4 (attribute, location, object, count) ✗
ARO (Yuksekgonul et al., 2023) 50k ✓ ✓ (relations, attributes) ✗
COM-DIFF (ours) 15k ✓ ✓ 8 (color, counting, shape, texture, (non-)spatial relations, scene, complex) ✓

Table 1: The comparison of compositional T2I datasets. Contra. is the abbreviation of Contrastive.
Complex refers the samples that have multiple objects and complicated attributes and relationships.

process text prompts into conditioning vectors c(y). The DDPM model ϵ(θ) is trained to minimize
the difference between the added noise ϵ and the model’s estimate at each timestep t,

L = Ez∼E(x),y,ε∼N (0,1),t

[
||ε− εθ(zt, t, c(y))||22

]
. (1)

During inference, a latent zT is sampled from N (0, 1) and is iteratively denoised to produce a latent
z0. The denoised latent z0 is then passed to the decoder to obtain the image x′ = D(z0).

2.2 COMPOSITIONAL DATASETS AND BENCHMARKS

The most commonly used data sets for object-attribute binding, including DRAWBENCH (Saharia
et al., 2022), CC-500 (Feng et al., 2023a) and ATTEND-AND-EXCITE (Chefer et al., 2023) con-
struct text prompts by conjunctions of objects and a few of common attributes like color and shape.
To more carefully examine how generative models work on each compositional category, recent
work explores the disentanglement of different aspects of text-to-image compositionality. Huang
et al. (2023) introduces T2I-COMPBENCH that constructing prompts by LLMs which covers six
categories including color, shape, textual, (non-)spatial relationships and complex compositions;
Recently, GEN-AI (Li et al., 2024a) collects prompts from professional designers which captures
more enhanced reasoning aspects such as differentiation, logic and comparison.

Another line of work proposes contrastive textual benchmarks to evaluate the compositional capa-
bility of generative models. ABC-6K (Feng et al., 2023a) contains contrast pairs by either swap-
ping the order objects or attributes while they focus on negative text prompts with minimal changes.
WINOGROUNDT2I (Zhu et al., 2023) contains 11K complex, high-quality contrastive sentence pairs
spanning 20 categories. However, such benchmarks focus on text perturbations but do not have im-
ages, which have become realistic with the advancement of generative models.

Several benchmarks featuring contrastive image pairs have also been introduced. COMPOSITIONAL
SPLITS C-CUB AND C-FLOWERS (Park et al., 2021) mainly focused on the color and shape at-
tributes of birds and flowers, sourcing from Caltech-UCSD Birds (Wah et al., 2011), Oxford-102
(Flowers) (Nilsback & Zisserman, 2008). Thrush et al. (2022) curated WINOGROUND consists of
400 high-quality contrastive text-image examples. EQBEN (Wang et al., 2023) is an early effort
to use Stable Diffusion to synthesize images to evaluate the equivariance of VLMs similarity, but
it lacks more complex scenarios. Yuksekgonul et al. (2023) emphasizes the importance of hard
negative samples and constructs negative text prompts in ARO by swapping different linguistic el-
ements in the captions sourced from COCO and sampling negative images by the nearest-neighbor
algorithm. However, it is not guaranteed the negative images found in the datasets truly match the
semantic meaning of the prompts.

3 DATA CONSTRUCTION: COM-DIFF

To address attribute binding and compositional generation, we propose a new high-quality con-
trastive dataset, COM-DIFF. Next, we introduce our design principle for constructing COM-DIFF.
Each sample in COM-DIFF consists of a pair of images (x+, x−) associated with a positive caption
t+.
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Category Stage-I Stage-II

Shape An american football. (l) An american football and a volleyball.
A volleyball. (Ì) A badminton ball and Frisbee.

Color Ablue backpack. A blue backpack and a yellow purse.
A red backpack A yellow purse and a blue backpack.

Counting Three birds. Two cats and one dog.
Two birds. Two dogs and one cat.

Texture A plastic toy. A rubber tire and a glass mirror.
A fluffy toy. A rubber mirror and a glass tire

Spatial – A plate on the right of a bee.
A bee on the right of a place.

Non-spatial A basketball player is eating dinner. A woman is passing a tennis ball to a man.
A basketball player is dancing. A man is passing a tennis ball to a woman.

Scene A snowy night. In a serene lake during a thunderstorm.
A rainy night. In a serene lake on a sunny day.

Complex Two round clock. Two fluffy dogs are eating apples to the right of a brown cat.
Three square clock. A brown dog are eating pears to the left of two fluffy cats.

Stage-III

Complex

Two green birds standing next to two orange birds on a willow tree.
An orange bird standing next to three green birds on the grass.

A man wearing a blue hat is throwing an american football from the left to the right
to a woman wearing a green pants on the playground during a snowy day.

A woman wearing a green hat is throwing a tennis ball from the right to the left
to a woman wearing a blue hat on the playground during a rainy night.

Table 2: Examples of text prompts. Each sample has a positive (top) and a negative prompt (bottom).

3.1 GENERATING TEXT PROMPTS

Our text prompts cover eight categories of compositionality: color, shape, texture, counting, spa-
tial relationship, non-spatial relationship, scene, and complex. To obtain prompts, we utilize the
in-context learning capability of LLMs. We provide hand-crafted seed prompts as examples and
predefined templates (e.g., “A {color} {object} and a {color} {object}.”) and then ask GPT-4 to
generate similar textual prompts. We include additional instructions that specify the prompt length,
no repetition, etc. In total, we generate 15400 positive text prompts. More information on the text
prompt generation is provided in the appendix A.

To generate a negative text prompt t−, we use GPT-4 to perturb the specified attributes or rela-
tionships of the objects for Stage-I data. In Stage-II, we either swap the objects or the attributes,
depending on which option makes more sense in the given context. For complex sentences, we
prompt GPT-4 to construct contrastive samples by altering the attributes or relationships within the
sentences. Table 2 presents our example contrastive text prompts.

3.2 GENERATING CONTRASTIVE IMAGES

Minimal Visual Differences. Our key idea is to generate contrastive images that are mini-
mally different in visual representations. By ”minimal,” we mean that, aside from the altered at-
tribute/relation, other elements in the images remain consistent or similar. In practice, we source
negative image samples in two ways: 1) generate negative images by prompting negative prompts
to diffusion models; 2) edit the positive image by providing instructions (e.g., change motorcycle
color to red) using MagicBrush (Zhang et al., 2024), as shown at the left of Figure 2.

Text-Image Alignment. The high-level objective of COM-DIFF is to generate positive images that
faithfully adhere to the positive text guidance, while the corresponding negative images do not align
with the positive text, despite having minimal visual differences from the positive images. As the
quality of images generated by diffusion-based T2I generative models varies significantly (Karthik
et al., 2023), we first generate 10-20 candidate images per prompt. However, how to select the most
faithful image is difficult. Existing automatic metrics like CLIPScore are not always effective at
comparing the faithfulness of images when they are visually similar. To address this, we propose
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Pos Prompt  GPT-4
LLaVASD3

Neg Prompt Instruction
Image Editing 
(MagicBrush)

Image Generation 
(SD3)

Prompt:  
“A blue bowl and a pink mug “

Questions 
1. Is there a bowl?  
2. What color is the bowl? 
3. How many bowls are there? 
4. Is there a mug? …. 

Answers 
1. Yes 
2. Red 
3. One 
4. …

1. Yes 
2. Red 
3. Two 
4. …

GPT-4

LLaVA
Stable Diffusion 3

LLaVA Revised 
Caption

Select Best
CLIPScore

Alignment

High

Low

Text-Image Similarity

Select

Better
describe

GPT-4

Curriculum Contrastive LearningData Generation

Stage-IStage-I
Stage-IIStage-II

Stage-III

Multi-Stage Fine-tuning

Dataset

Obj. Attr. Rel. ↑z+
T

z−
T

t+

LLaVALLaVA

Minimal Visual
Diff.

Figure 2: CONTRAFUSION Framework. Data generation pipeline (left) and curricumlum con-
trastive learning (right). Quality control of image geneartion (bottom): Given a prompt, SD3
generates multiple candidate images, which are evaluated by LLaVA. We select the best image by
alignment and CLIPScore. If the alignment score is low, we prompt LLaVA to describe the image
as a new revised caption based on the generated image.

decomposing each text prompt into a set of questions using an LLM and leverage the capabilities of
VQA models to rank candidate images by their alignment score, as illustrated in Figure 2 (bottom) 1.
Note the correct answers can be directly extracted from the prompts. Intuitively, we consider an
image a success if all the answers are correct or if the alignment is greater than θalign for certain
categories, such as Complex. After getting aligned images, we select the best image by automatic
metric (e.g., CLIPScore).

Empirically, we find this procedure fails to generate faithful images particularly when the prompts
become complex, as limited by the compositionality understanding of existing generative models,
which aligns with the observations of Sun et al. (2023). In response to such cases–i.e., the align-
ment scores for all candidate images are low–we introduce an innovative reverse-alignment strategy.
Instead of simply discarding low-alignment images, we leverage a VLM to dynamically revise the
text prompts based on the content of the generated images. By doing so, we generate new captions
that correct the previous inaccuracies while preserving the original descriptions, thereby improving
the alignment between the text and image.

Image-Image Similarity. Given each positive sample, we generate 20 negative images and select
the one with the highest similarity to the corresponding positive image, ensuring that the changes
between the positive and negative image pairs are minimal. In case of color and texture, we use
image editing rather than generation, as it delivers better performance for these attributes. Han et al.
(2024b) proposes that human feedback plays a vital role in enhancing model performance. For
quality assurance, 3 annotators randomly manually reviewed the pairs in the dataset and filtered 647
pairs that were obviously invalid.

4 CONTRAFUSION: CURRICULUM CONTRASTIVE FINE-TUNING

A common challenge in training models with data of mixed difficulty is that it can overwhelm the
model and lead to suboptimal learning (Bengio et al., 2009). Therefore, we divide the dataset into
three stages and introduce a simple but effective multi-stage fine-tuning paradigm, allowing the
model to gradually progress from simpler compositional tasks to more complex ones.

1Examples of decomposed questions are provided in the Appendix A.3
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Counting, Missing Object 
Two cats, one dog, and one rabbit  

are on the grass.

Color 
A red motorcycle in front of  a 

yellow door 

Attribute Binding

Spatial 
A black dog is in the left of a pig

Object Relationships

Action 
A man in yellow T-shirt is crying

Complex

Three differently colored apples 
(yellow, green, red from left to 
right) with a transparent water 
bottle placed behind the middle 
apple.

Action 
A white cat is chasing a little girl in 
a yellow floral dress on the grass 

In the British Museum, a dinosaur 
fossil is fighting with four caveman 
specimens on a circular platform 

Color 
Two blood moons hang in the 
night sky, and a flock of bats flies 
over a medieval-style castle 

A fully armored knight wearing a 
blue cape and a small golden dragon 
perched on their shoulder, is staring 
at a red evil dragon. 

Figure 3: Contrastive dataset examples. Each pair includes a positive image generated from the
given prompt (left) and a negative image that is semantically inconsistent with the prompt (right),
differing only minimally from the positive image.

Stage-I: Single object. In the first stage, the samples consist of a single object with either a specific
attribute (e.g., shape, color, quantity, or texture), a specific action, or within a simple static scene.
The differences between the corresponding negative and positive images are designed to be clear
and noticeable. For instance, “A man is walking” vs. “A man is eating”, where the actions differ
significantly, allowing the model to easily learn to distinguish between them.

Stage-II: Object compositions. We compose two objects with specified interactions and spatial
relationships. An example of non-spatial relationship is “A woman chases a dog” vs. “A yellow dog
chases a woman.” This setup helps the models learn to differentiate the relationships between two
objects.

Stage-III: Complex compositions. To further complicate the scenarios, we propose prompts with
complex compositions of attributes, objects, and scenes. Data in this stage can be: 1) contain more
than two objects; 2) assign more than two attributes to each object, or 3) involve intricate relation-
ships between objects.

Ultimately, our goal is to equip the model with the capability to inherently tackle challenges in
compositional generation. Next, we discuss how to design the contrastive loss during fine-tuning
at each stage. Given a positive text prompt t, a generated positive image x+, and corresponding
negative image x−, the framework comprises the following three major components:

Diffusion Model. The autoencoder converts the positive image and negative image to latent space
as z+0 and z−0 . The noisy latent at timestep t is represented as z+t and z−t . The encoder of the noise
estimator ϵθ is used to extract feature maps z+et and z−et respectively.
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Model Attribute Binding Object Relationship Complex
Color Shape Texture Spatial Non-Spatial

STABLE V1.4 (Rombach et al., 2022) 37.65 35.76 41.56 12.46 30.79 30.80
STABLE V2 (Rombach et al., 2022) 50.65 42.21 49.22 13.42 30.96 33.86
DALL-E 2 (Ramesh et al., 2022) 57.00 55.00 63.74 13.00 30.00 37.00
SDXL (Podell et al., 2023) 64.00 54.00 36.45 20.00 31.00 41.00
COMPOSABLE V2 (Liu et al., 2023) 40.63 32.99 36.45 8.00 29.80 28.98
STRUCTURED V2 (Feng et al., 2023a) 49.90 42.18 49.00 13.86 31.11 33.55
ATTN-EXCT V2 Chefer et al. (2023) 64.00 45.17 59.63 14.55 31.09 34.01
GORS (Huang et al., 2023) 66.03 47.85 62.87 18.15 31.93 33.28
PIXART-α (Chen et al., 2023) 68.86 55.82 70.44 20.82 31.79 41.17
MARS (He et al., 2024) 69.13 54.31 71.23 19.24 32.10 40.49

CONTRAFUSION (Ours) 71.040.13 54.570.25 72.340.26 21.760.18 33.080.35 42.520.38

Table 3: Alignment evaluation on T2I-CompBench. We report average and standard deviations
across three runs. The best results are in bold.

Projection head. We apply a small neural network projection head g(·) that maps image repre-
sentations to the space where contrastive loss is applied. We use a MLP with one hidden layer to
obtain ht = g(zet) = W (2)σ(W (1)(zet)).

Contrastive loss. For the contrastive objective, we utilize a variant of the InfoNCE loss (van den
Oord et al., 2019), which is widely used in contrastive learning frameworks. This loss function is
designed to maximize the similarity between the positive image and its corresponding text prompt,
while minimizing the similarity between the negative image and the same text prompt. The loss for
a positive-negative image pair is expressed as follows:

L = − log
exp(sim(h+

t , f(t))/τ)

exp(sim(h+
t , f(t))/τ) + exp(sim(h−

t , f(t))/τ)
(2)

where τ is a temperature parameter, f(·) is CLIP text encoder, sim function represents cosine simi-
larity:

sim(u, v) =
uT · v
∥u∥∥v∥

(3)

This encourages the model to distinguish between positive and negative image-text pairs.

5 EXPERIMENTS AND DISCUSSIONS

5.1 IMPLEMENTATION DETAILS

Experimental Setup In an attempt to evaluate the faithfulness of generated images, we use GPT-4
to decompose a text prompt into a pair of questions and answers, which serve as the input of our
VQA model, LLaVA v1.5 (Liu et al., 2024). Following previous work (Huang et al., 2023; Feng
et al., 2023a), we evaluate CONTRAFUSION on Stable Diffusion v2 (Rombach et al., 2022).

Baselines We compare our results with several state-ofthe-art methods, including trending open-
sourced T2I models that trained on large training data, Stable Diffusion v1.4 and Stable Diffusion
v2 (Rombach et al., 2022), DALL-E 2 (Ramesh et al., 2022) and SDXL (Podell et al., 2023). Com-
posableDiffusion v2 (Liu et al., 2023) is designed for conjunction and negation of concepts for
pretrained diffusion models. StructureDiffusion v2 (Feng et al., 2023a), Divide-Bind (Li et al.,
2024b) and Attn-Exct v2 (Chefer et al., 2023) are designed for attribute binding for pretrained dif-
fusion models. GORs (Huang et al., 2023) finetunes Stable Diffusion v2 with selected samples and
rewards. PixArt-α (Chen et al., 2023) incorporates cross-attention modules into the Diffusion Trans-
former. MARS (He et al., 2024) adapts from auto-regressive pre-trained LLMs for T2I generation
tasks.

Evaluation Metrics To quantitatively assess the efficacy of our approach, we comprehensively
evaluate our method via two primary metrics: 1) compositionality on T2I-CompBench (Huang et al.,

7
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Figure 5: Average CLIP image-text similarities between the text prompts and the images generated
by different models. The Full Prompt Similarity considers full text prompt. Minimum Object rep-
resents the minimum of the similarities between the generated image and each of the two object
prompts. Example of this benchmark is in subsection C.3.

2023) 2 and 2) color-object compositionality prompts (Chefer et al., 2023). We quantify the perfor-
mance using CLIPScore (Hessel et al., 2022) by evaluating the alignment of textual conditions and
corresponding generated images.

5.2 PERFORMANCE COMPARISON AND ANALYSIS

0.29

0.308

0.325

0.343

0.36

Color Shape Counting Texture Spatial Non-spatial Scene Complex

CLIPScore VQA+CLIPScore

Figure 4: Average CLIP similarity of image-text
pairs in COM-DIFF.

Alignment Assessment. To examine the
quality of COM-DIFF, we measure the align-
ment of the positive image and texts using CLIP
similarity. Figure 4 compares directly select-
ing the best image based on CLIPScore with
our pipeline, which leverages a VQA model to
guide image generation. These results confirm
that our approach consistently improves image
faithfulness across all categories with VQA as-
sistance during image generation and demon-
strate COM-DIFF contains high-quality image-
text pairs.

Benchmark Results Beyond the above evaluation, we also assess the alignment between the gen-
erated images using CONTRAFUSION and text condition on T2I-Compbench. As depicted in Ta-
ble 3, we evaluate several crucial aspects, including attribute binding, object relationships, and
complex compositions. CONTRAFUSION exhibits outstanding performance across 5/6 evaluation
metrics. The remarkable improvement of Complex performance is primarily attributed to Stage-III
training, where high-quality contrastive samples with complicated compositional components are
leveraged to achieve superior alignment capabilities.

Figure 5 presents the average image-text similarity on the benchmark proposed by Chefer et al.
(2023), which evaluates the composition of objects, animals, and color attributes. Compared to other
diffusion-based models, our method consistently outperforms in both full and minimum similarities
across three categories, except for the minimum similarity on Object-Object prompts. These results
demonstrate the effectiveness of our approach.

Ablation Study We conduct ablation studies on T2I-CompBench by exploring three key design
choices. First, we assess the effectiveness of our constructed dataset, COM-DIFF, by fine-tuning
Stable Diffusion v2 directly using COM-DIFF. As shown in Table 4, our results consistently outper-
form the baseline evaluation on Stable Diffusion v2 across all categories, demonstrating that our data
generation pipeline is effective. Next, we validate the impact of our contrastive loss by comparing it
with fine-tuning without this loss. The contrastive loss improves performance in the attribute binding

2More details about specific metrics used in T2I-CompBench are in Appendix.
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Model Attribute Binding Object Relationship Complex
Color Shape Texture Spatial Non-Spatial

STABLE V2 (Rombach et al., 2022) 50.65 42.21 49.22 13.42 30.96 33.86
COM-DIFF 63.63 47.64 61.64 17.77 31.21 35.02
COM-DIFF + Contra. Loss 69.45 54.39 67.72 20.21 32.09 38.14
COM-DIFF + Contra. Loss + Multi-stage FT 71.04 54.57 72.34 21.76 33.08 42.52

Table 4: Ablation on T2I-CompBench. COM-DIFF refers to directly finetune SDv2 on COM-DIFF.

SD3.0DALL-E 3 OursSDXL

To the left of a stone statue, two men are running and talking.


PixArt-Alpha

A brown bear and a white cat, both wearing spacesuits, are playing frisbee on Mars


Three spaceships are sailing through space, and on the top spaceship, an octagonal clock is hanging.


Two little bears swimming in the pool on the terrace through the window of a skyscraper on the rainy day


Figure 6: Qualitative comparison between CONTRAFUSION and other SOTA T2I modes with dif-
ferent prompts.

category, though it has less impact on object relationships and complex scenes. We hypothesize this
is because attribute discrepancies are easier for the model to detect, while relationship differences
are more complex. Finally, applying the multi-stage fine-tuning strategy leads to further improve-
ments, particularly in the Complex category, suggesting that building a foundational understanding
of simpler cases better equips the model to handle more intricate scenarios.

Qualitative Evaluation Figure 6 presents a side-by-side comparison between CONTRAFUSION
and other state-of-the-art T2I models, including SDXL, DALL-E 3, SD v3 and PixArt-α. CON-
TRAFUSION consistently outperforms the other models in generating accurate images based on the
given prompts. SDXL frequently generates incorrect actions and binds attributes to the wrong ob-
jects. DALL-E 3 fails to correctly count objects in two examples and misses attributes in the first
case. SD v3 struggles with counting and attribute binding but performs well in generating actions.
PixArt-α is unable to handle attributes, spatial relationships, and fails to count objects accurately in
the second prompt.

9
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Two gray cats Three cats are playing on the grass, 
with one gray cat on the right of the two 
white cats.

Three gray cats on the grass. Under the blue sky, three cats are 
playing on the grass, with the two 
white cats walking to the gray cat.

Easier, less compositionally More complex, more compositionally

A bear and a skateboard On the street, a bear wearing a blue 
baseball cap is standing on a 
skateboard

On the street, a bear wearing a blue 
baseball cap is holding a skateboard 
and standing to the right of a red fire 
hydrant

On a rainy day, a bear wearing a blue baseball 
cap is riding a colorful skateboard away from a 
gray trash can on the street, while a flock of 
birds flies past him

Figure 7: Examples of CONTRAFUSION for complex compositionality.

0

17.5

35

52.5

70

Aesthetic Alignment

Ours Stable Diffusion v3

Aesthetic Alignment

DALL-E 2

Aesthetic Alignment

SDXL

Aesthetic Alignment

PixArt-Alpha

Figure 8: User study on 100 randomly selected prompts from Feng et al. (2023a). The ratio values
indicate the percentages of participants preferring the corresponding model.

Next, we evaluate how our approach handles complex compositionality, as shown in Figure 7. Using
the same object, “bear” and “cat,” we gradually increase the complexity by introducing variations
in attributes, counting, scene settings, interactions between objects, and spatial relationships. The
generated results indicate that our model effectively mitigates the attribute binding issues present
in existing models, demonstrating a significant improvement in maintaining accurate compositional
relationships.

User Study We conducted a user study to complement our evaluation and provide a more intuitive
assessment of CONTRAFUSION’s performance. Due to the time-intensive nature of user studies
involving human evaluators, we selected top-performing comparable models—DALLE-2, SD v3,
SDXL, and PixArt-α—all accessible through APIs and capable of generating images. As shown in
Figure 8, the results demonstrate CONTRAFUSION’s superior performance in alignment, though the
aesthetic quality may be slightly lower compared to other models.

6 CONCLUSION

In this work, we present CONTRAFUSION, a curriculum contrastive framework to overcome the
limitations of diffusion models in compositional text-to-image generation, such as incorrect attribute
binding and object relationships. By leveraging a curated dataset of positive-negative image pairs
and a multi-stage fine-tuning process, CONTRAFUSION progressively improves model performance,
particularly in complex scenarios. Our experiments demonstrate the effectiveness of this method,
paving the way for more robust and accurate generative models.
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7 LIMITATION

Despite the effectiveness of our current approach, there are a few limitations that can be addressed
in future work. First, our dataset, while comprehensive, could be further expanded to cover an even
broader range of compositional scenarios and object-attribute relationships. This would enhance
the model’s generalization capabilities. Additionally, although we employ a VQA-guided image
generation process, there is still room for improvement in ensuring the faithfulness of the generated
images to their corresponding prompts, particularly in more complex settings. Refining this process
and incorporating more advanced techniques could further boost the alignment between the text and
image.

8 REPRODUCIBILITY

We have made efforts to ensure that our method is reproducible. Appendix A provides a description
of how we construct our dataset. Especially, Appndix A.1 and A.2 presents how we prompt GPT-
4 and use predefined template to generate text prompts of our dataset. Appendix A.3 provides an
example how we utilize VQA system to decompose a prompt into a set of questions, and answers.
Appendix B provides the details of implementation, to make sure the fine-tuning is reproducible.
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A COM-DIFF DATA CONSTRUCTION

A.1 TEXT PROMPTS GENERATION

Here, we design the template and rules to generate text prompts by GPT-4 as follows:

• Color: Current state-of-the-art text-to-image models often confuse the colors of objects
when there are multiple objects. Color prompts in Stage-I follow fixed sentence template
“A {color} {object}.” and “A {color} {object} and a {color} {object}.” for Stage-II.

• Texture: Following Huang et al. (2023), we emphasize in the GPT-4 instructions to require
valid combinations of an object and a textural attribute. The texture prompts follows the
template “A {texture} {object}.” for Stage-I and “A {texture} {object} and a {texture}
{object}.” for Stage-II.

• Shape: We first generate objects with common geometric shapes using fixed template “A
{shape} {object}.” for Stage-I and “A {shape} {object} and a {shape} {object}.” for
Stage-II. Moreover, we ask GPT-4 to generate objects in the same category but with differ-
ent shapes, e.g., American football vs. Volleyball, as contrastive samples.

• Counting: Counting prompts in Stage-I follows fixed sentence template “{count}
{object}.” and “{count} {object} and {count} {object}.” for Stage-II.

• Spatial Relationship: Given predefined spatial relationship such as next to, on the left,
etc, we prompt GPT-4 to generate a sentence in a fixed template as “{object} {spatial}
{object}.” for Stage-II.

• Non-spatial Relationship: Non-spatial relationships usually describe the interactions be-
tween two objects. We prompt GPT-4 to generate text prompts with non-spatial relation-
ships (e.g., actions) and arbitrary nouns. We guarantee there is only one object in the
sentence for Stage-I, and two objects in Stage-II. We also find generative models fails to
understand texts like “A woman is passing a ball to a man”. It’s hard for the model to
correctly generate the directions of actions. We specially design prompts like this.

• Scene: We ask GPT-4 to generate scenes such as weather, place and background. For
Stage-I, the scene is simple, less than 5 words (e.g., on a rainy night.); For Stage-II, scenes
combine weather and background or location (e.g., in a serene lake during a thunderstorm.).

• Complex: Here, we refer to prompts that either contain more than two objects or assign
more than two attributes to each object, or involve intricate relationships between objects.
We first manually curate 10 such complex prompts, each involving multiple objects bound
to various attributes. These manually generated prompts serve as a context for GPT-4 to
generate additional natural prompts that emphasize compositionality. The complex cases
in Stage-II will be two objects with more attributes; Stage-III involves more objects.

Note that when constructing our prompts, we consciously avoided using the same ones as those
in T2I-Compbench, especially considering some prompts from T2I-CompBench are empirically
difficult to generate aligned image (e.g., “a pentagonal warning sign and a pyramidal bookend” as
shown in Figure 9), which are not well-suited for our dataset. We have filtered out similar prompts
from our dataset using LLMs to identify uncommon combinations of objects and attributes.

Figure 9: Example image that is hard to generate to align the prompt from T2I-CompBench.
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A.2 NEGATIVE TEXT PROMPTS GENERATION

We apply in-context learning, everytime we prompt GPT-4 to generate negative cases, we give 5-
10 example test prompts each time, and make sure the generation is not repetitive, within certain
lengths.

• In Stage-I, we prompt GPT-4 to change the attribute of the object such as color, shape,
texture, counting, action, or scene, with instruction the differences should be noticeable.

• In Stage-II, we either swap the objects or attributes and let GPT-4 to validate the swapped
text prompts. For complex cases, we generate negative text by asking GPT-4 to change the
attributes/relationship/scenes.

• In Stage-III, we carefully curate complicated examples with 3-6 objects, each object have
1-3 attributes, with negative prompts change attributes, actions and spatial relationships,
scenes. And we prompt GPT-4 with such examples.

A.3 VQA ASSISTANCE

Instruction for QA Generation. Given an image description, generate one or two multiple-choice
questions that verify if the image description is correct. Table 5 shows an example of a generated
prompt and QA.

Prompt Question Answer

A brown bear and a white cat, both wearing spacesuits,
are playing frisbee on Mars

Is there a bear? Yes
Is there a cat? Yes

What color is the bear? Brown
What color is the cat? White

Does the bear wear a spacesuit? Yes
Does the cat wear a spacesuit? Yes
Is the bear playing the frisbee? Yes
Is the cat playing the frisbee? Yes

Where are they playing? Mars

Table 5: VQA generated questions from a prompt.

Modifying Caption to Align Image. Next, we illustrate how we prompt VQA to revise the caption
when alignment scores of all candidate images are low. Given a generated image and a original text
prompt, we prompt VQA model with the following instruction:

Instruction: “Given the original text prompt describing the image, identify any parts that inac-
curately reflect the image. Then,generate a revised text prompt with correct descriptions, making
minimal semantic changes. Focusing on the counting, color, shape, texture, scene, spatial relation-
ship, non-spatial relationship. ”. At the same time, we will provide examples of revised caption for
in-context learning.

For example, given the following image (Figure 10) and the original text prompt, the modified
prompt generated by VQA model is as following:

Figure 10: Image applies reverse-alignment.

Original text prompt: Three puppies are
playing on the sandy field on a
sunny day, with two black ones
walking toward a brown one.

Modified prompt: Four puppies are
standing on a sandy field on
a sunny day, with three black
puppies and one brown puppy
facing forward.

Note that the instruction ”Focusing on the
counting, color, shape, texture, scene, spatial
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relationship, non-spatial relationship” plays a crucial role in guiding the VQA model to provide
answers that accurately correspond to the specific attributes and categories we are interested in.
Without this directive, the model may occasionally fail to generate precise captions that correctly
describe the image.

A.4 DATA STATISTICS

Stage-I Stage-II Stage-III Total
Shape 500 1000 200 1700
Color 800 1000 200 2000
Counting 800 1000 200 2000
Texture 800 1000 200 2000
Spatial - 1000 200 1200
Non-spatial 800 1000 200 2000
Scene 800 1000 200 2000
Complex - 500 2000 2500

Table 6: Corpus Statistics.

The dataset is organized into three stages,
each progressively increasing in complex-
ity. In Stage-I, the dataset includes sim-
pler tasks such as Shape (500 samples), Color
(800), Counting (800), Texture (800), Non-
spatial relationships (800), and Scene (800),
totaling 4,500 samples. Stage-II introduces
more complex compositions, with each cate-
gory—including Shape, Color, Counting, Tex-
ture, Spatial relationships, Non-spatial relation-
ships, and Scene—containing 1,000 samples,
for a total of 7,500 samples. Stage-III repre-
sents the most complex scenarios, with fewer but more intricate samples. We also include some
simple cases like Stage-I and II, each contain 200 samples, while the Complex category includes
2,000 samples, totaling 3,400 samples. Across all stages, the dataset contains 15,400 samples, pro-
viding a wide range of compositional tasks for model training and evaluation. Figure 11 show more
examples of images in our dataset.

A.5 COMPARISON WITH REAL CONTRASTIVE DATASET

To evaluate how our model would fare with a real hard-negative dataset, we include the results of
fine-tuning our model with COLA (Ray et al., 2023), BISON (Hu et al., 2019) evaluated by T2I-
CompBench in Table 7 (randomly sampled consistent number of samples across datasets).

Although COLA and BISON try to construct semantically hard-negative queries, the majority
of the retrieved image pairs are quite different in practice, often introducing a lot of noisy ob-
jects/background elements in the real images, due to the nature of retrieval from existing dataset.
We hypothesize this makes it hard for the model to focus on specific attributes/relationships in
compositionality. In addition, they don’t have complex prompts with multiple attributes and don’t
involve action, or scene.

In contrast, our dataset ensures the generated image pairs are contrastive with minimal visual
changes, enforcing the model to learn subtle differences in the pair, focusing on a certain cate-
gory. To the best of our knowledge, no real contrastive image dataset only differs on minimal visual
characteristics.

Dataset Color Shape Texture Spatial Non-Spatial Complex
COLA 62.20 48.98 53.73 15.21 30.87 33.15
BISON 59.49 49.36 48.77 14.64 31.25 32.91
Ours 71.04 54.57 72.34 21.76 33.08 42.52

Table 7: Performance of fine-tuning CONTRAFUSION on T2I-CompBench across different dataset.

A.6 QUALITY CONTROL

Coverage of LLM-generated QA Pairs We conducted human evaluations on Amazon Mechan-
ical Turk (AMT). We sampled 1500 prompt-image pairs (about 10% of the dataset, proportionally
across 3 stages) to perform the following user-study experiments. Each sample is annotated by 5
human annotators.
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A green apple and a yellow pearA square clock hanging on the wallA yellow dog running with a woman

A golden vase and a clear glass

A cat is chasing a woman A man is walking on the streetA pyramid in the desert under the sky

Three wolves in the foggy weather and 
a bright moon in the sky. 

Four hobbits are preparing to cross a 
hexagonal time tunnel in an 
underground volcanic cave

A garden with various flowers, five 
garden gnomes—three wearing red 
hats and two wearing green hats—a 
birdbath in the middle, and a 
wooden bench on the left, with two 
butterflies flying above

A green car is parked between two 
blue motorcycles, and a person 
wearing a red jacket is standing to 
the rear left of the car, holding a 
briefcase. 

Cupid is playing with a pink rabbit 
on white clouds with a cotton candy 
texture 

Figure 11: Example contrastive Image pairs in COM-DIFF

To analyze if the generated question-answer pairs by GPT-4 cover all the elements in the prompt, we
performed a user-study wherein for each question-prompt pair, the human subject is asked to answer
if the question-set cover all the objects in the prompt. The interface is presented in Figure 13.

Empirically, we find about 96% of the questions generated by GPT-4 cover all the objects, 94%
cover all the attributes/relationships.

Accuracy of Question-Answering of VQA Models To analyze the accuracy of the VQA model’s
answering results, we performed an additional user-study wherein for each question-image pair,
the human subject is asked to answer the same question. The accuracy of the VQA model is then
predicted using the human labels as ground truths. Results are displayed in Table 8.

Image Stage VQA Accuracy % Annotation Time / Image (s)
Stage-I 93.1% 8.7s
Stage-II 91.4% 15.3s
Stage-III 88.9% 22.6s

Table 8: VQA accuracy and annotation time for sampled images across different stages.
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Figure 12: Comparison with Real Contrastive Dataset: COLA and BISON.

We observe that the VQA model is effective at measuring image-text alignment for the majority of
questions even as the complexity of the text prompt increases, attesting the effectiveness of pipeline.

Alignment of Revised Caption with Images To further validate the effectiveness of revising cap-
tions by VQA, we randomly sampled 500 images that are obtained by revising caption and per-
formed an additional user-study for those samples that obtain low alignment score from VQA an-
swering, but use the reverse-alignment strategy. Specifically, for each revised caption-image pair,
the human subject is asked to answer how accurately the caption describes the image. The interface
is presented in Figure 14. Note we have 5 annotators, each is assigned 100 caption-image pairs.

Empirically, we found that 4% of the samples show that the revised caption similarly describes the
image as the original caption. 94.6% of the samples show the revised caption better describes the
image. Overall,with the following settings, the average rating of the alignment between revised
caption and image is 4.66, attesting that revised caption accurately describes the image.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 13: Interface for User Study: Coverage of LLM-generated QA Pairs

Figure 14: Interface for User Study: Alignment of Revised Caption with Images

Similarity of Contrastive Image Pairs We have 3 annotators in total, each annotator is assigned
2550 images (about 50% samples) to check if the positive and negative image pairs aligns with its
text prompt and are similar with small visual changes on specific attributes/relationships. We filtered
647 images from the randomly selected 7650 images, which is 8.45%, attesting the quality of most
images in the dataset.
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Basic Advanced
Method Attribute Scene Relation Avg Count Differ Compare Logical Avg

Spatial Action Part Negate Universal
SD V2.1 0.75 0.77 0.72 0.72 0.69 0.74 0.66 0.63 0.61 0.50 0.57 0.58
SD-XL TURBO 0.79 0.82 0.77 0.78 0.76 0.79 0.69 0.65 0.64 0.51 0.57 0.60
DEEPFLOYD-IF 0.82 0.83 0.80 0.81 0.80 0.81 0.69 0.66 0.65 0.48 0.57 0.60
SD-XL 0.82 0.84 0.80 0.81 0.81 0.82 0.71 0.67 0.64 0.49 0.57 0.60
MIDJOURNEY V6 0.85 0.88 0.86 0.86 0.85 0.85 0.75 0.73 0.70 0.49 0.64 0.65
SD3-MEDIUM 0.86 0.86 0.87 0.86 0.88 0.86 0.74 0.77 0.72 0.50 0.73 0.68
DALL-E 3 0.91 0.91 0.89 0.89 0.91 0.90 0.78 0.76 0.70 0.46 0.65 0.65

CONTRAFUSION- SD3-MEDIUM (OURS) 0.89 0.88 0.90 0.91 0.88 0.89 0.80 0.79 0.73 0.51 0.73 0.72

Table 9: Gen-AI Benchmark Results.

B TRAINING IMPLEMENTATION DETAILS

We implement our apprpoach upon stable Diffuion v2.1 and we employ the pre-trained text encoder
from the CLIP ViT-L/14 model. The VAE encoder is frozen during training. The resolution is 768,
the batch size is 16, and the learning rate is 3e-5 with linear decay.

C QUANTITATIVE RESULTS

C.1 T2I-COMPBENCH EVALUATION METRICS

Following T2I-CompBench, we use DisentangledBLIP-VQA for color, shape, texture, UniDet for
spatial, CLIP for non-spatial and 3-in-1 for complex categories.

C.2 GEN-AI BENCHMARK

We further evaluate CONTRAFUSION on the Gen-AI (Li et al., 2024a) benchmark. For a fair com-
parison with DALL-E 3, we finetune our model on Stable Diffusion v3 medium. As indicated in
Table 9, CONTRAFUSION performs best on all the Advanced prompts, although it exhibits relatively
weaker performance in some of the basic categories compared to DALL-E 3.

C.3 ATTN & EXCT BENCHMARK PROMPT EXAMPLES

Model Animal-Animal Animal-Obj Obj-Obj

STABLE v1.4 (Rombach et al., 2022) 0.76 0.78 0.77
COMPOSABLE V2 (Liu et al., 2023) 0.69 0.77 0.76
STRUCTURED V2 (Feng et al., 2023a) 0.76 0.78 0.76
ATTN-EXCT V2 (Chefer et al., 2023) 0.80 0.83 0.81
CONFORM (Meral et al., 2023) 0.82 0.85 0.82

Ours 0.84 0.86 0.85

Table 10: Attn-Exct benchmark Results.

The benchmark protocol we follow comprises
structured prompts ‘a [animalA] and a [an-
imalB]’, ‘a [animal] and a [color][object]’,
‘a [colorA][objectA] and a [colorB][objectB]’
. Table 10 demonstrate the results of aver-
age CLIP similarities between text prompts
and captions generated by BLIP for Stable
Diffusion-based methods on this benchmark.
CONTRAFUSION outperform those models on three categories.

D QUALITATIVE RESULTS

Figure 15 presents more comparison between CONTRAFUSION and other state-of-the-art T2I mod-
els, including SDXL, DALL-E 3, SD v3 and PixArt-α.

E RELATED WORK

Understanding and addressing compositional challenges in text-to-image generative models has
been a growing focus in the field. (Thrush et al., 2022; Huang et al., 2023; Chefer et al., 2023)
In particular, Zarei et al. (2024) identifies key compositional challenges in text-to-image diffusion
models and proposes strategies to enhance attribute binding and object relationships. Leveraging
the power of large-language models (LLMs) for compositional generation is another area of active
research. (Drozdov et al., 2022; Mitra et al., 2024; Pasewark et al., 2024) For instance, Feng et al.
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Three westies are chasing two birds on the grass, one of which is yellow and the other is green.

On the table in the living room, there is a hexagonal clock and three glass cups.


SD3.0DALL-E 3 OursSDXL PixArt-Alpha

On the snow, a man in red is throwing a ball to a woman wearing a blue hat.

A wolf and three yellow puppies.


There are two chairs to the right of a house.


On a rainy day, a detective wants to go out but doesn't want to draw any attention.


Figure 15: Qualitative Results.

(2023b) leverages large language models (LLMs) to generate visually coherent layouts and improve
compositional reasoning in visual generation tasks. Futhermore, Du & Kaelbling (2024) argues that
constructing complex generative models compositionally from simpler models can improve compo-
sitional performance.
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