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Abstract

The aim of this paper is the reconstruction of a smooth surface from an unorga-1

nized point cloud sampled by a closed surface, with the preservation of geometric2

shapes, without any further information other than the point cloud. Implicit neural3

representations (INRs) have recently emerged as a promising approach to surface4

reconstruction. However, the reconstruction quality of existing methods relies on5

ground truth implicit function values or surface normal vectors. In this paper, we6

show that proper supervision of partial differential equations and fundamental prop-7

erties of differential vector fields are sufficient to robustly reconstruct high-quality8

surfaces. We cast the p-Poisson equation to learn a signed distance function (SDF)9

and the reconstructed surface is implicitly represented by the zero-level set of the10

SDF. For efficient training, we develop a variable splitting structure by introducing11

a gradient of the SDF as an auxiliary variable and impose the p-Poisson equation12

directly on the auxiliary variable as a hard constraint. Based on the irrotational13

property of the gradient field, we impose a curl-free constraint on the auxiliary14

variable, which leads to a more faithful reconstruction. Experiments on standard15

benchmark datasets show that the proposed INR provides a superior and robust16

reconstruction.17

1 Introduction18

Eikonal 𝑝-Poisson 𝑝-Poisson + curl-free

Figure 1: Comparison of a naive approach (9), the p-Poisson
equation (8), and the proposed p-Poisson equation with the
curl-free condition (11).

Surface reconstruction from an un-19

organized point cloud has been ex-20

tensively studied for more than two21

decades [10, 28, 38, 9, 60] due to22

its many downstream applications23

in computer vision and computer24

graphics[8, 16, 60, 56]. Classical25

point cloud or mesh-based representa-26

tions are efficient but they do not guar-27

antee a watertight surface and are usu-28

ally limited to fixed geometries. Im-29

plicit function-based representations30

of the surface [27, 62, 41, 14] as a31

level set S =
{
x ∈ R3 | u (x) = c

}
32

of a continuous implicit function u :33

R3 → R, such as signed distance34

functions (SDFs) or occupancy func-35

tions, have received considerable attention for providing watertight results and great flexibility in36

representing different topologies. In recent years, with the rise of deep learning, a stream of work37
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called implicit neural representations (INRs) [2, 42, 16, 59, 19, 53, 51, 48] has revisited them by38

parameterizing the implicit function u with neural networks. INRs have shown promising results by39

offering efficient training and expressive surface reconstruction.40

Early INRs [42, 40, 16] treat the points-to-surface problem as a supervised regression problem with41

ground-truth distance values, which are difficult to use in many situations. To overcome this limitation,42

some research efforts have used partial differential equations (PDEs), typically the eikonal equation,43

as a means to relax the 3D supervision [23, 35, 46]. While these efforts have been successful in44

reconstructing various geometries, they rely heavily on the oriented normal vector at each point.45

They often fail to capture fine details or reconstruct plausible surfaces without normal vectors. A raw46

point cloud usually lacks normal vectors or numerically estimated normal vectors [1, 18] contain47

approximation errors. Moreover, the prior works are vulnerable to noisy observations and outliers.48

The goal of this work is to propose an implicit representation of surfaces that not only provides49

smooth reconstruction but also recovers high-frequency features only from a raw point cloud. To this50

end, we provide a novel approach that expresses an approximated SDF as a solution to the p-Poisson51

equation. In contrast to previous studies that only describe the SDF as a network, we define the52

gradient of the SDF as an auxiliary variable, motivated by variable splitting methods [45, 58, 22, 12]53

in the optimization literature. We then parameterize the auxiliary output to automatically satisfy the54

p-Poisson equation by reformulating the equation in a divergence-free form. The divergence-free55

splitting representation contributes to efficient training by avoiding deeply nested gradient chains56

and allows the use of sufficiently large p, which permits an accurate approximation of the SDF. In57

addition, we impose a curl-free constraint [25] because the auxiliary variable should be learned as58

a conservative vector field. The curl-free constraint serves to achieve a faithful reconstruction. We59

carefully evaluate the proposed model on widely used benchmarks and robustness to noise. The60

results demonstrate the superiority of our model without a priori knowledge of the surface normal at61

the data points.62

2 Background and related works63

Implicit neural representations In recent years, implicit neural representations (INRs) [39, 16, 3,64

53, 52], which define a surface as zero level-sets of neural networks, have been extensively studied.65

Early work requires the ground-truth signed implicit function [42, 16, 39], which is difficult to obtain66

in real-world scenarios. Considerable research [3, 4] is devoted to removing 3D supervision and67

relaxing it with a ground truth normal vector at each point. In particular, several efforts use PDEs68

to remove supervision and learn implicit functions only from raw point clouds. Recently, IGR [23]69

revisits a conventional numerical approach [14] that accesses the SDF by incorporating the eikonal70

equation into a variational problem by using modern computational tools of deep learning. Without71

the normal vector, however, IGR misses fine details. To alleviate this problem, FFN [54] and SIREN72

[53] put the high frequencies directly into the network. Other approaches exploit additional loss terms73

to regulate the divergence [6] or the Hessian [61]. The vanishing viscosity method, which perturbs74

the eikonal equation with a small diffusion term, is also considered [35, 47] to mitigate the drawback75

that the eikonal loss has unreliable minima. The classical Poisson reconstruction [30], which recovers76

the implicit function by integration over the normal vector field, has also been revisited to accelerate77

the model inference time [46], but supervision of the normal vector field is required. Neural-Pull [37]78

constructs a new loss function by borrowing the geometrical property that the SDF and its gradient79

define the shortest path to the surface.80

p-Poisson equation The SDF is described by a solution of various PDEs, such as the eikonal81

equation used in the existing work [23, 35, 47]. We use the p-Poisson equation to approximate the82

SDF, which is a nonlinear generalization of the Poisson equation (p = 2):83 {
−△pu = −∇ ·

(
∥∇u∥p−2 ∇u

)
= 1 in Ω

u = 0 on Γ,
(1)

where p ≥ 2, the computation domain Ω ⊂ R3 is bounded, and Γ is embedded in Ω. In contrast to84

the eikonal equation, it is possible to describe a solution of (1) as a variational problem and compute85

an accurate approximation [5, 20]:86

min
u

∫
Ω

∥∇u∥p

p
dx−

∫
Ω

udx. (2)
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As p → ∞, it has been shown [11, 29] that the solution u of (1) converges to the SDF whose zero87

level set is Γ. As a result, increasing p gives a better approximation of the SDF, which is definitely88

helpful for surface reconstruction. However, it is still difficult to use a fairly large p in numerical89

computations and in this paper we will explain one of the possible solutions to the mentioned problem.90

3 Method91

In this section, we propose a p-Poisson equation based Implicit Neural representation with Curl-free92

constraint (PINC). From an unorganized point cloud X = {xi : i = 1, 2, . . . , N} sampled by a93

closed surface Γ, a SDF u : R3 → R whose zero level set is the surface Γ =
{
x ∈ R3 | u (x) = 0

}
94

is reconstructed by the proposed INR. There are two key elements in the proposed method: First,95

using a variable-splitting representation [43] of the network, an auxiliary output is used to learn96

the gradient of the SDF that satisfies the p-Poisson equation (1). Second, a curl-free constraint is97

enforced on an auxiliary variable to ensure that the differentiable vector identity is satisfied.98

3.1 p-Poisson equation99

A loss function in the physics-informed framework [49] of the existing INRs for the p-Poisson100

equation (1) can be directly written:101

min
u

∫
Γ

|u| dx+ λ0

∫
Ω

∣∣∣∇ ·
(
∥∇u∥p−2 ∇u

)
+ 1

∣∣∣ dx, (3)

where λ0 > 0 is a constant. To reduce the learning complexity of the second integrand, we propose102

an augmented network structure that separately parameterizes the gradient of the SDF as an auxiliary103

variable that satisfies the p-Poisson equation (1).104

Variable-splitting strategy Unlike existing studies [23, 35, 6] that use neural networks with only105

one output u for the SDF, we introduce a separate auxiliary network output G for the gradient of106

the SDF. In the optimization literature, it is called the variable splitting method [45, 58, 22, 12] and107

it has the advantage of decomposing a complex minimization into a sequence of relatively simple108

sub-problems. With the auxiliary variable G = ∇u and the penalty method [13], the variational109

problem (3) is converted into an unconstrained problem:110

min
u,G

∫
Γ

|u| dx+ λ0

∫
Ω

∣∣∣∇ ·
(
∥G∥p−2

G
)
+ 1

∣∣∣ dx+ λ1

∫
Ω

∥∇u−G∥2 dx, (4)

where λ1 > 0 is a penalty parameter representing the relative importance of the loss terms.111

p-Poisson as a hard constraint Looking more closely at the minimization (4), if G is already a112

gradient to satisfy (1), then the second term in (4) is no longer needed and it brings the simplicity of113

one less parameter. Now, for a function F : Ω → R3 such that ∇ · F = 1, for example F = 1
3x, the114

p-Poisson equation (1) is reformulated by the divergence-free form:115

∇ ·
(
∥∇u∥p−2 ∇u+ F

)
= 0. (5)

Then, there exists a vector potential Ψ : R3 → R3 satisfying116

∥G∥p−2
G+ F = ∇×Ψ, (6)

where G = ∇u. Note that a similar idea is used in the neural conservation law [50] to construct a117

divergence-free vector field built on the Helmholtz decomposition [32, 55]. From the condition (6),118

we have ∥G∥p−1
= ∥∇ ×Ψ− F∥ and G is parallel to ∇×Ψ− F , then the auxiliary output G is119

explicitly written:120

G =
∇×Ψ− F

∥∇ ×Ψ− F∥
p−2
p−1

. (7)

This confirms that the minimization problem (4) does not require finding G directly, but rather that it121

can be obtained from the vector potential Ψ. Therefore, the second loss term in (4) can be eliminated122
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by approximating the potential function Ψ by a neural network and defining the auxiliary output G as123

a hard constraint (7). To sum up, we use a loss function of the form124

Lp-Poisson =

∫
Γ

|u| dx+ λ1

∫
Ω

∥∇u−G∥2 dx, (8)

where G is obtained by (7), the first term is responsible for imposing the boundary condition of (1),125

and the second term enforces the constraint G = ∇u between primary and auxiliary outputs. It is126

worth mentioning that G in (7) is designed to exactly satisfy the p-Poisson equation (1).127

An advantage of the proposed loss function (8) and the hard constraint (7) is that (1) can be solved128

for sufficiently large p, which is critical to make a better approximation of the SDF. It is not129

straightforward in (3) or (4) because the numeric value of (p− 2)-power with a large p easily exceeds130

the limit of floating precision. On the other hand, in (7) we use (p− 2)/(p− 1)-power, which allows131

stable computation even when p becomes arbitrarily large. The surface reconstruction with varying132

p in Figure 7 shows that using a large enough p is crucial to get a good reconstruction. As the p133

increases, the reconstruction gets closer and closer to the point cloud. Furthermore, it is worth noting134

that the proposed representation expresses the second-order PDE (1) with first-order derivatives only.135

By reducing the order of the derivatives, the computational graph is simplified than (3) or (4).136

Note that one can think of an approach to directly solve the eikonal equation ∥∇u∥ = 1 with an137

auxiliary variable H = ∇u as an output of the neural network:138

min
u,∥H∥=1

∫
Γ

|u| dx+ η

∫
Ω

∥∇u−H∥2 dx, (9)

where η > 0. The above loss function may produce a non-unique weak solution of the eikonal139

equation, which causes numerical instability and undesirable estimation of the surface reconstruction;140

see Figure 1. To alleviate such an issue, the vanishing viscosity method is used in [35, 47] to141

approximate the SDF by uσ as σ → 0, a solution of −σ△uσ + sign (uσ) (|∇uσ| − 1) = 0. However,142

the results are dependent on the hyper-parameter σ > 0 related to the resolution of the discretized143

computational domain and the order of the numerical scheme [17, 24].144

3.2 Curl-free constraint145

In the penalty method, we have to compute more strictly to ensure that G = ∇u by using progressively146

larger values of λ1 in (8), but in practice we cannot make the value of λ1 infinitely large. Now, we147

can think of yet another condition for enforcing the constraint G = ∇u from a differential vector148

identity:149

∇×G = 0 ⇐⇒ G = ∇u (10)

for some scalar potential function u. While it may seem straightforward, adding a penalty term150 ∫
Ω
∥∇ ×G∥2 dx at the top of (8) is fraught with problems. Since G is calculated by using a curl151

operation (7), the mentioned penalty term makes a long and complex computational graph. In152

addition, it has been reported that such loss functions, which include high-order derivatives computed153

by automatic differentiation, induce a loss landscape that is difficult to optimize [33, 57]. In order to154

relax the mentioned issue, we augment another auxiliary variable G̃, where G = G̃ and ∇× G̃ = 0155

are constrained.156

By incorporating the new auxiliary variable G̃ and its curl-free constraint, we have the following loss157

function:158

LPINC = Lp-Poisson + λ2

∫
Ω

∥∥∥G− G̃
∥∥∥2 dx+ λ3

∫
Ω

∥∥∥∇× G̃
∥∥∥2 dx. (11)

Note that the optimal G̃ should have a unit norm according to the eikonal equation. To facilitate159

training, we relax this nonconvex equality condition into a convex constraint ∥ G̃ ∥≤ 1. To this end,160

we parameterize the second network auxiliary output Ψ̃ and define G̃ by161

G̃ = P
(
Ψ̃
)
:=

Ψ̃

max
{
1, ∥ Ψ̃ ∥

} , (12)

where P is the projection operator to the three-dimensional unit ball.162

4



…
𝛻 × 𝛹 − 𝐹

𝛻 × 𝛹 − 𝐹
𝑝−2
𝑝−1

x 𝐺 x

Input

Primary output

Auxiliary output

𝑢(x)

෩𝛹 x ෨𝐺 x

Auxiliary output

MLP

𝛹 x

෩𝛹

Figure 2: The visualization of the augmented network structure with two auxiliary variables.

Figure 2 illustrates the proposed network architecture. The primary and the auxiliary variables are163

trained in a single network, instead of being trained separately in individual networks. The number164

of network parameters remains almost the same since only the output dimension of the last layer is165

increased by six, while all hidden layers are shared.166

3.3 Proposed loss function167

In the case of a real point cloud to estimate a closed surface by range scanners, it is inevitable to have168

occluded parts of the surface where the surface has a concave part depending on possible angles of169

the measurement [34]. It ends up having relatively large holes in the measured point cloud. Since170

there are no points in the middle of the hole, it is necessary to have a certain criterion for how to fill171

in the hole. In order to focus to check the quality of LPINC (11) in this paper, we choose a simple rule172

to minimize the area of zero level set of u:173

Ltotal = LPINC + λ4

∫
Ω

δϵ (u) ∥∇u∥ dx, (13)

where λ4 > 0 and δϵ(x) = 1 − tanh2
(
x
ϵ

)
is a smeared Dirac delta function with ϵ > 0. The174

minimization of the area is used in [21, 47] and the advanced models [15, 26, 61] on missing parts of175

the point cloud provide better performance of the reconstruction.176

4 Experimental results177

In this section, we evaluate the performance of the proposed model to reconstruct 3D surfaces from178

point clouds. We study the following questions: (i) How does the proposed model perform compared179

to existing INRs? (ii) Is it stable from noise? (iii) What is the role of the parts that make up the model180

and the loss? Each is elaborated in order in the following sections.181

Implementation As in previous studies [42, 23, 35], we use an 8-layer network with 512 neurons182

and a skip connection to the middle layer, but only the output dimension of the last layer is increased183

by six due to the auxiliary variables. For (13), we empirically set the loss coefficients to λ1 = 0.1,184

λ2 = 0.0001. λ3 = 0.0005, and λ4 = 0.1 and use p = ∞ in (7) for numerical simplicity. We185

implement all numerical experiments on a single NVIDIA RTX 3090 GPU. In all experiments, we186

use the Adam optimizer [31] with learning rate 10−3 decayed by 0.99 every 2000 epochs.187

Datasets We leverage two widely used benchmark datasets to evaluate the proposed model for188

surface reconstruction: Surface Reconstruction Benchmark (SRB) [7] and Thingi10K [63]. The189

geometries in the mentioned datasets are challenging because of their complex topologies and190

incomplete observations. Following the prior works, we adopt five objects per dataset. We normalize191

the input data to center at zero and have a maximum norm of one.192

Baselines We compare the proposed model with the following baselines: (i) IGR [23], (ii) SIREN193

[53], (iii) SAL [3], (iv) PHASE [35], (v) DiGS [6], and (vi) VisCo [47] from only raw point cloud194

data without normal vectors.195
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Figure 3: 3D Reconstruction results for SRB and Thingi10K datasets.

Metrics To estimate the quantitative accuracy of the reconstructed surface, we measure Chamfer196

(dC) and Hausdorff (dH) distances between the ground-truth point clouds and the reconstructed197

surfaces. Moreover, we report one-sided distances d−→
C

and d−→
H

between the noisy data and the198

reconstructed surfaces. Please see Appendix A.2 for precise definitions.199

4.1 Surface reconstruction200

We validate the performance of the proposed PINC (13) in surface reconstruction in comparison to201

other INR baselines. For a fair comparison, we consider the baseline models that were trained without202

a normal prior. Table 1 summarizes the numerical comparison on SRB in terms of metrics. We report203

the results of baselines from [35, 47, 6]. The results show that the reconstruction quality obtained is204

on par with the leading INRs, and we achieved state-or-the-art performance for Chamfer distances.205

We further verify the accuracy of the reconstructed surface for the Thingi10K dataset by measuring206

the metrics. For Thingi10K, we reproduce the results of IGR, SIREN, and DiGS without normal207

vectors using the official codes. Results on Thingi10K presented in Table 2 show the proposed208

method achieves superior performance compared to existing approaches. PINC achieves similar or209

better metric values on all objects.210

The qualitative results are presented in Figure 3. SIREN, which imposes high-frequency features to211

the model by using a sine periodic function as activation, restores a somewhat torn surface. Similarly,212

DiGS restores rough and rogged surfaces, for example, the human face and squirrel body are not213

smooth and are rendered unevenly. On the other hand, IGR provides smooth surfaces but tends to214

over-smooth details such as the gargoyle’s wings and detail on the star-shaped bolt head of screwstar.215
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Table 1: Results on surface reconstruction of SRB.
Anchor Daratech DC Gargoyle Loard Quas

GT Scans GT Scans GT Scans GT Scans GT Scans
Model dC dH d−→

C
d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

IGR 0.45 7.45 0.17 4.55 4.9 42.15 0.7 3.68 0.63 10.35 0.14 3.44 0.77 17.46 0.18 2.04 0.16 4.22 0.08 1.14
SIREN 0.72 10.98 0.11 1.27 0.21 4.37 0.09 1.78 0.34 6.27 0.06 2.71 0.46 7.76 0.08 0.68 0.35 8.96 0.06 0.65
SAL 0.42 7.21 0.17 4.67 0.62 13.21 0.11 2.15 0.18 3.06 0.08 2.82 0.45 9.74 0.21 3.84 0.13 414 0.07 4.04
PHASE 0.29 7.43 0.09 1.49 0.35 7.24 0.08 1.21 0.19 4.65 0.05 2.78 0.17 4.79 0.07 1.58 0.11 0.71 0.05 0.74
DiGS 0.29 7.19 0.11 1.17 0.20 3.72 0.09 1.80 0.15 1.70 0.07 2.75 0.17 4.10 0.09 0.92 0.12 0.91 0.06 0.70
VisCO 0.21 3.00 0.15 1.07 0.26 4.06 0.14 1.76 0.15 2.22 0.09 2.76 0.17 4.40 0.11 0.96 0.12 1.06 0.7 0.64
PINC 0.29 7.54 0.09 1.20 0.37 7.24 0.11 1.88 0.14 2.56 0.04 2.73 0.16 4.78 0.05 0.80 0.10 0.92 0.04 0.67

Table 2: Results on surface reconstruction of Thingi10K.
Squirrel Buser head Screwstar Frogrock Pumpkin

Model dC dH dC dH dC dH dC dH dC dH

IGR 0.36 11.97 0.38 5.95 0.18 3.02 0.48 12.05 0.11 1.13
SIREN 0.47 5.66 0.43 4.81 0.27 4.98 0.78 14.75 0.46 5.03
DiGS 0.50 12.45 0.39 10.64 0.26 6.33 0.45 10.50 0.32 8.03
PINC 0.35 11.55 0.37 6.19 0.17 3.00 0.43 11.06 0.10 1.90

The results confirm that the proposed PINC (13) adopts both of these advantages: PINC represents a216

smooth and detailed surface. More results can be found in the appendix.217

4.2 Reconstruction from noisy data218

In this section, we analyze whether the proposed PINC (13) produces robust results to the presence of219

noise in the input point data. In many situations, the samples obtained by the scanning process contain220

a lot of noise and inaccurate surface normals are estimated from these noisy samples. Therefore, it is221

an important task to perform accurate reconstruction using only noisy data without normal vectors.222

To investigate the robustness to noise, we perturb the data with additive Gaussian noise with mean223

zero and two standard deviations 0.005 and 0.01.224

We quantify the ability of the proposed model to handle noise in the input points. The qualitative225

results are shown in Figure 4. Compared to existing methods, the results demonstrate superior226

resilience of the proposed model with respect to noise corruption in the input samples. We can227

observe that SIREN and DiGS restore broken surfaces that appear to be small grains as the noise228

level increases. On the other hand, the proposed model produces a relatively smooth reconstruction.229

Results show that PINC is less sensitive to noise than others.230

4.3 Ablation studies231

This section is devoted to ablation analyses which show that each part of the proposed loss function232

Ltotal in conjunction with the divergence-free splitting architecture plays an important role in high-233

quality reconstruction.234

Effect of curl-free constraint We first study the effect of the curl-free constraint on reconstructing235

high fidelity surfaces. To investigate the effectiveness of the proposed curl-free constraint, we236

compare the performance of PINC without the curl-free loss term, i.e., the model trained with the loss237

function Lp-Poisson (8). The results on the SRB dataset are depicted in Figure 5. The variable splitting238

method, which satisfies the p-Poisson equation as a hard constraint (without the curl-free condition),239

recovers a fairly decent surface, but it generates oversmoothed surfaces and details are lost. However,240

as we can see from the result reconstructed with the curl-free constraint, this constraint allows us to241

capture the details that PINC without the curl-free condition cannot recover.242

Effect of minimal area criterion We study the effect of the minimal area criterion suggested in243

Section 3.3. In real scenarios, there are defected regions where the surface has not been measured. To244

fill this part of the hole, the minimum surface area is considered. Figure 6 clearly shows this effect.245

Some parts in the daratech of SRB have a hole in the back. Probably because of this hole, parts that246

are not manifolds are spread out as manifolds as shown in the left figure without considering the247
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Figure 4: Reconstruction results from noisy observations. Two levels of additive Gaussian noise with
standard deviations σ = 0.005 (low) and 0.01 (high) are considered.

wo/ curl-free w/ curl-free

Figure 5: Comparison of surface reconstruction without (left) and with (right) curl-free constraint.

minimal area. However, we can see that adding a minimal area loss term alleviates this problem. We248

would like to note that, except for daratech, we did not encounter this problem because other data249

are point clouds sampled from a closed surface and also are not related to hole filling. Indeed, we250

empirically observe that the results are quite similar with and without the minimal area term for all251

data other than daratech.252

(a) wo/ area loss (b) w/ area loss

Figure 6: Comparison of surface recovery without (a) and with (b) minimum area criterion.
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(a) p = 2 (b) p = 10 (c) p = 100

Figure 7: Surface reconstruction of anchor data with various p. The results show the importance of
using a sufficiently large p for an accurate approximation.

Effect of large p The p-Poisson equation (1) draws the SDF as p becomes infinitely large. Therefore,253

it is natural to think that it would be good to use a large p. Here, we conducted experiments on the254

effect of p. We define G with various p = 2, 10, and 100 and learn the SDF with it. Figure 7 shows255

surfaces that were recovered from the Gargoyle data in the SRB with different p values. When p is256

as small as 2, it is obvious that it is difficult to reconstruct a compact surface from points. When p257

is 10, a much better surface is constructed than that of p = 2, but the by-products still remain on258

the small holes. Furthermore, a large value of p = 100 provides a quite proper reconstruction. This259

experimental result demonstrates that a more accurate approximation can be obtained by the use of a260

large p, which is consistent with the theory. This once again highlights the advantage of the variable261

splitting method we have proposed, which allows an arbitrarily large p to be used. This highlights262

the advantage of the variable splitting method (7) we have proposed in Section 3.1, which allows an263

arbitrarily large p to be used. Note that the previous approaches have not been able to use large p264

because the numeric value of p-power easily exceeds the limit of floating precision. On the other265

hand, the proposed method is amenable to large p and hence the reconstruction becomes closer to the266

point cloud.267

5 Conclusion and limitations268

We presented a p-Poisson equation-based shape representation learning, termed PINC, that recon-269

structs high-fidelity surfaces using only the locations of given points. We introduced the gradient of270

the SDF as an auxiliary network output and incorporated the p-Poisson equation into the auxiliary271

variable as a hard constraint. The curl-free constraint was also used to provide a more accurate272

representation. Furthermore, the minimal surface area regularization was considered to provide a273

compact surface and overcome the ill-posedness of the surface reconstruction problem caused by274

unobserved points. The proposed PINC successively achieved a faithful surface with intricate details275

and was robust to noisy observations.276

The minimization of the surface area is used to reconstruct missing parts of points under the as-277

sumption that a point cloud is measured by a closed surface. Regarding the hole-filling strategy,278

it still needs further discussion and investigation of various constraints such as mean curvature or279

total variation of the gradient. At present, the proposed PDE-based framework is limited to closed280

surfaces and is inadequate to reconstruct open surfaces. We leave the development to open surface281

reconstruction as future work. Establishing a neural network initialization that favors the auxiliary282

gradient of the SDF would be an interesting venue.283

9



References284

[1] Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. In Proceedings285

of the Fourteenth Annual Symposium on Computational Geometry, pages 39–48, 1998.286

[2] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman.287

Controlling neural level sets. Advances in Neural Information Processing Systems, 32, 2019.288

[3] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic learning of shapes from raw data. In289

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages290

2565–2574, 2020.291

[4] Matan Atzmon and Yaron Lipman. SALD: Sign agnostic learning with derivatives. arXiv292

preprint arXiv:2006.05400, 2020.293

[5] Alexander G. Belyaev and Pierre-Alain Fayolle. On variational and PDE-based distance294

function approximations. In Computer Graphics Forum, volume 34, pages 104–118. Wiley295

Online Library, 2015.296

[6] Yizhak Ben-Shabat, Chamin Hewa Koneputugodage, and Stephen Gould. DiGS: Divergence297

guided shape implicit neural representation for unoriented point clouds. In 2022 IEEE/CVF298

Conference on Computer Vision and Pattern Recognition (CVPR), pages 19301–19310, 2022.299

[7] Matthew Berger, Joshua A Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T Silva.300

A benchmark for surface reconstruction. ACM Transactions on Graphics (TOG), 32(2):1–17,301

2013.302

[8] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gael Guennebaud,303

Joshua A Levine, Andrei Sharf, and Claudio T Silva. A survey of surface reconstruction from304

point clouds. In Computer graphics forum, volume 36, pages 301–329. Wiley Online Library,305

2017.306

[9] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Joshua A. Levine, Andrei307

Sharf, and Claudio T. Silva. State of the art in surface reconstruction from point clouds. In 35th308

Annual Conference of the European Association for Computer Graphics, Eurographics 2014 -309

State of the Art Reports. The Eurographics Association, 2014.310

[10] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin.311

The ball-pivoting algorithm for surface reconstruction. IEEE transactions on visualization and312

computer graphics, 5(4):349–359, 1999.313

[11] Tilak Bhattacharya, Emmanuele DiBenedetto, and Juan Manfredi. Limits as p → ∞ of314

△pup = f and related external problems. Rendiconti del Seminario Matematico Università e315

Politecnico di Torino, 47:15–68, 1989.316

[12] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed opti-317

mization and statistical learning via the alternating direction method of multipliers. Foundations318

and Trends® in Machine learning, 3(1):1–122, 2011.319

[13] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,320

2004.321

[14] Fatih Calakli and Gabriel Taubin. SSD: Smooth signed distance surface reconstruction. In322

Computer Graphics Forum, volume 30, pages 1993–2002. Wiley Online Library, 2011.323

[15] Vicent Caselles, Gloria Haro, Guillermo Sapiro, and Joan Verdera. On geometric variational324

models for inpainting surface holes. Computer Vision and Image Understanding, 111(3):351–325

373, 2008.326

[16] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In327

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages328

5939–5948, 2019.329

10



[17] Alexander G. Churbanov and Petr N. Vabishchevich. Numerical solution of boundary value330

problems for the eikonal equation in an anisotropic medium. Journal of Computational and331

Applied Mathematics, 362:55–67, 2019.332

[18] Tamal K. Dey, Gang Li, and Jian Sun. Normal estimation for point clouds: A comparison study333

for a voronoi based method. In Proceedings Eurographics/IEEE VGTC Symposium Point-Based334

Graphics, pages 39–46. IEEE, 2005.335

[19] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer.336

Points2surf learning implicit surfaces from point clouds. In Computer Vision–ECCV 2020: 16th337

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V, pages 108–124.338

Springer, 2020.339

[20] Pierre-Alain Fayolle. Signed distance function computation from an implicit surface. arXiv340

preprint arXiv:2104.08057, 2021.341

[21] Henry Fuchs, Zvi M Kedem, and Samuel P Uselton. Optimal surface reconstruction from planar342

contours. Communications of the ACM, 20(10):693–702, 1977.343

[22] Tom Goldstein and Stanley Osher. The split Bregman method for L1-regularized problems.344

SIAM journal on imaging sciences, 2(2):323–343, 2009.345

[23] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric346

regularization for learning shapes. ICML’20, page 11. JMLR.org, 2020.347

[24] Jooyoung Hahn, Karol Mikula, and Peter Frolkovič. Laplacian regularized eikonal equation348
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A Implementation Details459

In this section, we provide more details about the implementation for reproducibility. Note that our460

code is built on top of IGR 1 (MIT License).461

A.1 Experimental Setup462

Parameter Tuning The proposed training loss Ltotal (13) is a weighted sum of five loss terms463

with four regularization parameters λ1, λ2, λ3, and λ4. In all surface reconstruction experiments,464

we use λ1 = 0.1, λ2 = 0.0001, λ3 = 0.0005, and λ4 = 0.1. In the proposed model, p is also a465

hyperparameter to be chosen. Considering the theoretical fact that p should be infinitely large and466

numerical simplicity, we set p = ∞. We empirically confirm no significant difference between when467

p = 100 and when p = ∞. Moreover, we set the smoothing parameter ϵ = 1 for approximating468

Dirac delta in (13).469

Network Architecture As in previous studies [42, 23, 35], we represent the primary and auxiliary470

outputs by a single 8-layered multi-layer perceptron (MLP) R3 → R7 with 512 neurons and a skip471

connection to the fourth layer, but only the output dimension of the last layer is increased by six due to472

the two auxiliary variables; see Figure 2. We use softplus activation function α (x) = 1
β ln

(
1 + eβx

)
473

with β = 100. Network weights are initialized by the geometric initialization proposed in [3].474

Training details The gradient and the curl of networks are computed with auto-differentiation475

library (autograd) [44]. In all experiments, we use the Adam optimizer [31] with learning rate 10−3476

decayed by 0.99 every 2,000 epochs. At each iteration, we uniform randomly sample 16,384 points477

x ∈ X from the point cloud X . We sample the collocation points of Ω as provided in [23]. The478

collocation points consist of global points and local points. The local collocation points are sampled479

by perturbing each of the 16,384 points drawn from the point cloud with a zero mean Gaussian480

distribution with a standard deviation equal to the distance to the 50th nearest neighbor. The global481

collocation points are made up of approximately 2,000 points from the uniform distribution U (−η, η)482

with η = 1.1.483

Baseline models For baseline models on the Thingi10K dataset, we use the official codes of IGR 1484

(MIT License), SIREN2 (MIT License), and DiGS 3 (MIT License). We faithfully follow the official485

implementation to train each model without normal prior. For the variable splitting representation of486

the eikonal equation (9), there is a single auxiliary output. Consequently, we use the same 8 layer487

MLP with 512 nodes, but a network with an output dimension of 4. We normalize the auxiliary output488

to make it a unit norm, and use the normalized one to represent H .489

A.2 Evaluation490

Metrics We measure the distance between two point clouds X and Y by using the standard one-491

sided and double-sided ℓ1 Chamfer distances d−→
C
, dC and Hausdorff distances d−→

H
, dH . Each are492

defined as follows:493

d−→
C
(X ,Y) =

1

|X |
∑
x∈X

min
y∈Y

∥x− y∥2 ,

dC (X ,Y) =
1

2

(
d−→
C
(X ,Y) + d−→

C
(Y,X )

)
,

d−→
H
(X ,Y) = max

x∈X
min
y∈Y

∥x− y∥2 ,

dH (X ,Y) = max
{
d−→
H
(X ,Y) + d−→

H
(Y,X )

}
.

When we estimate the distance from a surface, we sample 10M uniformly random points from the494

surface and then measure the distance from the sampled point clouds by the metrics defined above.495

1https://github.com/amosgropp/IGR
2https://github.com/vsitzmann/siren
3https://github.com/Chumbyte/DiGS
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Figure 8: Additional qualitative results of the surface reconstruction on SRB and Thingi10K datasets.

Level set extraction We extract the zero level set of a trained neural network u by using the496

classical marching cubes meshing algorithm [36] on a 512× 512× 512 uniform grid.497

B Additional Results498

Additional qualitative results Figure 8 provides additional qualitative results of surface recon-499

struction on SRB and Thingi10K discussed in Section 4.1.500

Reconstruction of large point clouds We further provide qualitative results for surface reconstruc-501

tion from large models taken from Thingi10K. The adopted point clouds consist of from 35K to 980K502

vertices. Figure 9 depicts the qualitative reconstruction results of PINC on these large point clouds.503

The model is trained with the same configuration used in Section 4.1.504

More results on effect of p Theoretically, an accurate SDF can be obtained as p grows infinitely.505

That the same story continues in practice is confirmed by the results shown in Figure 10. We can506

see that the larger p induces a better reconstruction. This phenomenon is also observed in Figure 7.507

Moreover, it can be seen that p = ∞, which we used in the implementation, gives a similar qualitative508
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Figure 9: Reconstructed surfaces of large models from Thingi10K.

𝑝 = 2 𝑝 = 10 𝑝 = 100 𝑝 = ∞

Figure 10: Quality of surface reconstruction with varying p from p = 2 to p = ∞.

result to p = 100. These experimental results once again remind us how important it is to be able to509

use a large p.510

Furthermore, we provide numerical verification for the use of p = ∞ in Figure 11. For notational511

convenience, we use the subscript up to denote the dependence of the solution on the parameter p.512

Figure 11 depicts graphs of the mean squared error (MSE) of up and u∞ over different p. MSEs are513

computed by discretizing the computational domain Ω into a 100 × 100 × 100 uniform grid. The514

results show that the MSE decreases as p increases. In other words, it confirms that up is getting515

closer to u∞ as p grows, which supports the justification for using p = ∞.516
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Figure 11: MSEs of up and u∞ over different p.
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