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Appendix
Proof of Lemma 1

Proof. Consider the messaging scheme 7*(m,|s) defined
above, which is clearly Markov since it does not depend on
any history information. We perturb the scheme a bit and
parameterize the perturbation by € > 0. We show that if € is
small enough, the perturbed scheme is persuasive.

We construct a perturbed messaging scheme 7 as follows.
We leave the scheme untouched for any state s € S\ {s;, },
ie.,

r

1 ifa=pg5(s)
0 otherwise

wmals) = {

And for s;,, we set

1—¢ ifa=a
m(mglsi,) = Q€ ifa=ai, .
0 otherwise

The perturbed scheme is also Markov. For Markov
schemes, the persuasiveness constraint (5) can be reduced
to the following:

> pn(s)m(mals)un(s,a)
seS

> pu(s)m(mals)ur(s,d'),Ya,a' € A,Vh.
seS

Y

Thus the original scheme 7*(m,|s) satisfies:

Z ph(s) [u"‘(s7 ail) - u’l‘(s7 al)} > 07va/ # ailﬂth
SESil

(12)

where we define S; = {s | 8}(s) = a;}. Note that we
change the weak inequality in Equation (11) to the strict one
here because we have u,(s;,,a;,) > ur(s4,,a’),Va' € A
according to our assumption. Similarly, we have:

Z on(8) [ur(s, ai,) — ur(s,a’)] > 0,Va' # a;,, Vh.
SES'iZ

(13)
Now we show that the perturbed scheme satisfies constraint
(11) for a small enough e. When the sender sends message
My, , the receiver knows, according to the definition of T,

r1 . .

that the only possible states are those in S;, . Thus, to ensure
persuasiveness, we need to guarantee that for any action a’
and history h, the following holds:

Yo on(e) fur(s,ai,) —up(s,a)]

s€Si; \{si, }

+ pn(si) (1 =€) [ur(siy, ai,) — ur(siy, @)
= Z ph(S) [uT(Sa ai1) - U,-(S, a/)]

s€Si;

- ph(8i1)€ [uT(Sil ) ai1) -
>0.

uT(8i1 ) a/)]

This can be done by setting

. Zsesi ph(s) [UT(57 ai1) - ur(57 a/)}
0 < e <min 1 - ,
a’sh ph(sil) [UT(Siuail) - UT(Sil,CL )]
(14
which is  well-defined since  w,(s;,,a;,) >

ur(siy,a’),¥a' # a;,. And the right-hand side is strictly
positive according to Equation (12).

When the sender sends M, , the set of possible states is
Si» U {si, }- Thus the persuasiveness constraint in this case
becomes:

ph(sil )6 [ur(sil ) ai2) - UT(Sil ) a/)]

+ Z on(8) [ur(s,aiy) — ur(s,a’)] > 0,Va',Vh.
S€Si,

That the second term is strictly positive according to Equa-
tion (13), while the first term can be negative since a;,
is the unique maximizer of u,(s;,,a), i.e., up(Si,,as,) <
ur(8iy, aiy ). For any a’ with u,(s;,, a;,) > ur(si,,a’), set-
ting any positive € will do. But for a’ with u,.(s;,,a:,) <
ur(8;,,a’), we need to make e small enough to ensure the
above inequality. Thus we can set:

{ZSGSiQ Pn(8) [ur(s,aiy) — ur(s,a’)] }‘

ph(sil) [U’T(sil ) ai2) - u""(sil ) CL/)]

min
a’ h

O<e<

15)

Note that the term inside the absolute value function is
strictly negative.

When the sender sends messages other than m,, and
My, , the persuasiveness constraints are the same as those of
the original scheme, and thus already satisfied. Therefore, to
guarantee persuasiveness, we can choose any e that satisfies
both Equation (14) and (15). And According to our analysis,
there are clearly infinitely many such choices. O

Proof of Theorem 1
Proof. Define a new scheme based on M 4 as follows:

> w(mlh,s).

meM,(h)

7r/(Tn'a|h7‘5‘)) -

This new scheme induces a new MDP for the receiver. We
claim that the value function is

Vs (h,ma)
= > V&(h,m)

meM,(h)

Zs 7r(m|h, S)ph(s)
Zm'eMa(h) s m(m/|h, s)pn(s) ’
(16)

and that the receiver’s strategy a = ['(h,m,) is optimal,
hence persuasive.

Denote by A’ = h + (s,a). To prove the claims, it suf-
fices to show that the value function satisfies the Bellman
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722 equation:
V;/(h, M)
=argmax { Z pr(slma,h) |fM‘(& a)
+) P(s]s,a) > 7 (marlW sV (I, ma/)] }
a7

723 and that using a = 3’ (h, m,) maximizes the right-hand side
724  of the above equation.

725 Since B(h,m) is the receiver’s optimal strategy in the
726 original MDP, we have that
V3 (h,m)

= arg;nax { Z pn(s|m, h) [ur(s, )

S

+ WZP(S’\S, a) Zw’(m|h’, sV (K, m)} } (18)

727 And for any m € M,(h), by definition, action a maximizes
728 the right-hand side.
729 Combining Equation (18) and Equation (16) gives:

V" (hyma)
-y >, m(mlh, s)pn(s)] 22, pr(slm, h)u,(s, a)]
meM, (h) Zm’eMa(h) 25 m(m/ |, s)pn(s)

> m(mih, s)pn(s)
+ 8
me%: P '€Mq(h) 25 m(m!|h, s)pn(s) ZS:
(s|h,m)ZP(s’\s,a) Zﬁ(m’h’,s')Vz’r(h',m’)] }
(19)
730 Consider the first term:

T [>_ m(mlh, s)pn(s)] D5 pu(sim, h)u.(s, a)]
meM.(h) DomreM, (k) 2os TR, 8)pn(s)
> Pu(s)m(m|h, s)u.(s, a)
me%:(h) 2o "€ M, (k) 2o m(m/|h, s)pn(s)
S on()mlmalh, ) (s,0)
> ™(malh, 5)pn(s)
= pu(slh,ma)u(s, a), (20)

731 The second equation is obtained by plugging in Equation
732 (7), and in the last equation,

pr(s)7' (malh, s)
> Pr(8)T (malh, s')

pn(s )ZmeM (h)”(m|h s)
Zs/ pr(s') ZmeMa(h) m(mlh, s)

pr(slh,ma) =

is the receiver’s posterior belief in the new MDP. Now con-

sider the second term of Equation (19). Define:

h') = ZP(3'|s,a) Zw(m'|h',s’)V2”(h’,m')

m/’

Note that the state transition P(s’|s,a) is equivalent to

prs(8'). According to Equation (16), we have:

VI ma) Y S W, o (s

m/€M,(h') s’

= > W, )Z (m|h', s")pws (7).

meM,(h')
Therefore,

/):th, sz ,m)m(m|h', s)
—ZVQ ,m Z(mm,s)pw(s')

)

_Z . vEw, )Z (m|W,s") o (s)

a’ meM, (h')

—ZVQ (W', mar Z Z a(m/|k, 8" ) pn (')

s' m/EM,(h')

=thf(s’) Zﬂ"(mﬂh ST (R mar).

Thus the second term of Equation (19) can be written as:

~ Z > (m|h3,0h Zp s|h, m)V

meM,( Z '(malh, 5)pn(s

Note that Zs "(mg|h, s)pr(s) does not depend on s. Using

Equation (7), we have:

pr(s)m(mlh, s) /
12 ZZ sy )

meMg(h)

7' (malh, s) ,
> mam Son(s) " )

:’szh S|h7ma (h/)

Put both terms back to Equation (19), we get:
V27Tl (h7 ma)

=3 pulslima)ur(s, @)+ 3 pn(slh,ma) V()

= th(s|h,ma)uT(s7a) + Vz,oh(s\h,ma) Z {

ry

pn (s ZT{' ma |h, YV (h’,maf)}
:th(s|h,ma){ur(s,a)—&—'yth(sVL,ma)

pn (s Z?T mg |h, YV (h',maf)}.

>

s/

(7).
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Note that the above equation depends crucially on Equa-
tion (18). And in the new MDP, for any message m &
M, (h), choosing action a maximizes the right-hand side
of Equation (18). This means in the right-hand side of the
above equation, action a is also the best choice. Therefore,
We have Equation (17). O

Additional Experiment results

We report the experimental results in a setting where the
sender can use threat-based strategies. We re-use the game
instances generated for experiments with the standard, non-
threat-based k-memory strategies.

Running time. The running time of the bi-linear program
method is listed in Table 5 and Table 6. As shown in Ta-
ble 5, Gurobi gives feasible solutions for all game instances
of size 2 but failed for almost all games with a larger size.
Compared with Table 1, this implies that finding a threat-
based strategy is much more difficult for Gurobi. This also
aligns with our intuitions as the strategy space is larger in
the threat-based setting (see Section 7).

Table 6 shows similar patterns as Table 2: the number of
solvable games decreases as the memory length £ increases.
Again, Gurobi finds much fewer threat-based solutions than
non-threat-based ones due to the larger search space.

The results for our algorithm are shown in Table 7 and
Table 8. Our algorithm gives feasible solutions for all game
instances within 30 minutes. In fact, it takes about only 30
seconds for our algorithm to output a feasible solution for
most instances. Compared with Table 3 and 4, our algorithm
takes only a slightly longer time to find a feasible threat-
based solution.

We apply our algorithm to larger games and report the re-
sults in Figure 7. Our algorithm can solve games with sizes
up to 12 x 12 within 30 minutes, which is similar to the case

Table 5: Number of games
that Gurobi gives a feasible
solution within 30 mins for
k=1

Table 6: Number of games
that Gurobi gives a feasible
solution within 30 mins for
game size 2 X 2.

Game size Memory length k&
2 3 4 5 6 8 1 2 3 4 5 6
0920 2 0 0 0 O 0920 8 8 8 5 1
0720 0 0 0 0 O 0720 11 8 6 5 3
v 05/20 3 0 0 0 O v 0520 11 8 7 5 3
03(20 6 0 0 0 O 0320 12 9 8 4 3
01120 2 1 0 0 O 01]20 16 10 9 5 2

Table 7: Average running
time (in seconds) of our
threat-based algorithm for
k=1

Table 8: Average running
time (in seconds) of our
threat-based algorithm for
game size 2 X 2.

Game size Memory length k
‘ 2 3 4 5 ‘ 1 2 3 4
09 ] 0.619 2901 10.051 28.017 0.9 | 0.631 2469 9.893 39.054
0.7 | 0.625 2963 10.278 28.731 0.7 | 0.630 2482 9918 38.935
v 0510620 2929 10.130 28.219 vy 050634 2479 9847 38.894
03] 0.621 2930 10.174 28232 03] 0.628 2471 9.782 38.636
0.1 | 0.640 3.009 10.439 29.118 0.1 ] 0.638 2514 9979 39.071

of non-threat-based strategies as shown in Figure 4. Com-
paring Figure 4 and 7, we can see that the average utility of
threat-based strategies is larger than non-threat-based ones.
This is also because the strategy space is larger with threat-
based strategies.

Performance. Figure 6 compares the performance of
both algorithms in 2 x 2 games with different discount fac-
tors and memory lengths. Our algorithm achieves almost
identical performance compared to the bi-linear program
method. Since our results are averaged over the instances
that are solved by both algorithms, one reason for the identi-
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Figure 6: Average sender utility obtained by different threat-based algorithms in 2 x 2 games.
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Figure 7: Average running time and utility of our threat-
based algorithm for £ = 1 in games with different sizes.

cal performance is that in this threat-based setting, Gurobi is
only able to solve much fewer game instances (see Table 6
and 4 for details). Similar to Figure 3, in general, increasing
the memory length does not lead to a higher expected utility,
i.e., using a more complicated strategy may not benefit the
sender too much. Also note that, since both algorithms are
only able to give feasible solutions, a longer memory length
may sometime result in a lower utility in our experiments.

Table 9: Average sender utility obtained by different threat-
based algorithms with memory length £ = 1, where - de-
notes that there is no game instance can be solved in 30 min-
utes.

¥ Algorithm > gxame Slzj 5
09 Our algorithm | 4.859 8.232 6.613 7.158
' Gurobi 4.859 7.994 - -
07 Our algorithm | 1.658 2.204 2.163  2.395
’ Gurobi 1.658 - - -
05 Our algorithm | 1.023  1.587 1.291 1.440
’ Gurobi 1.023  1.445 - -
03 Our algorithm | 0.728 1.065 0.914 1.039
' Gurobi 0.728 1.061 - -
0.1 Our algorithm | 0.564 0.892 0.712 0.811
’ Gurobi 0.564 0.892 - -

The performance comparison for different game sizes is
shown in Table 9. The “-” symbol indicates that no feasible
solution is found for any of the 20 game instances. Our algo-
rithm also achieves similar performance compared to the bi-
linear method in instances solved by both algorithms. Sim-
ilar to Figure 2, the sender is able to obtain larger expected
utilities in larger games in general.



