
Appendix667

Proof of Lemma 1668

Proof. Consider the messaging scheme ⇡⇤(ma|s) defined669

above, which is clearly Markov since it does not depend on670

any history information. We perturb the scheme a bit and671

parameterize the perturbation by ✏ > 0. We show that if ✏ is672

small enough, the perturbed scheme is persuasive.673

We construct a perturbed messaging scheme ⇡ as follows.674

We leave the scheme untouched for any state s 2 S \ {si1},675

i.e.,676

⇡(ma|s) =

⇢
1 if a = �⇤

r (s)
0 otherwise

.

And for si1 , we set677

⇡(ma|si1) =

8
<

:

1� ✏ if a = ai1
✏ if a = ai2
0 otherwise

.

The perturbed scheme is also Markov. For Markov678

schemes, the persuasiveness constraint (5) can be reduced679

to the following:680

X

s2S

⇢h(s)⇡(ma|s)ur(s, a)

�

X

s2S

⇢h(s)⇡(ma|s)ur(s, a
0), 8a, a0 2 A, 8h.

(11)

Thus the original scheme ⇡⇤(ma|s) satisfies:681

X

s2Si1

⇢h(s) [ur(s, ai1)� ur(s, a
0)] > 0, 8a0 6= ai1 , 8h,

(12)

where we define Sj = {s | �⇤
r (s) = aj}. Note that we682

change the weak inequality in Equation (11) to the strict one683

here because we have ur(si1 , ai1) > ur(si1 , a
0), 8a0 2 A684

according to our assumption. Similarly, we have:685

X

s2Si2

⇢h(s) [ur(s, ai2)� ur(s, a
0)] > 0, 8a0 6= ai2 , 8h.

(13)

Now we show that the perturbed scheme satisfies constraint686

(11) for a small enough ✏. When the sender sends message687

mai1
, the receiver knows, according to the definition of ⇡,688

that the only possible states are those in Si1 . Thus, to ensure689

persuasiveness, we need to guarantee that for any action a0690

and history h, the following holds:691

X

s2Si1\{si1}

⇢h(s) [ur(s, ai1)� ur(s, a
0)]

+ ⇢h(si1)(1� ✏) [ur(si1 , ai1)� ur(si1 , a
0)]

=
X

s2Si1

⇢h(s) [ur(s, ai1)� ur(s, a
0)]

� ⇢h(si1)✏ [ur(si1 , ai1)� ur(si1 , a
0)]

�0.

This can be done by setting 692

0 < ✏  min
a0,h

(P
s2Si1

⇢h(s) [ur(s, ai1)� ur(s, a0)]

⇢h(si1) [ur(si1 , ai1)� ur(si1 , a
0)]

)
,

(14)

which is well-defined since ur(si1 , ai1) > 693

ur(si1 , a
0), 8a0 6= ai1 . And the right-hand side is strictly 694

positive according to Equation (12). 695

When the sender sends mai2
, the set of possible states is 696

Si2 [ {si1}. Thus the persuasiveness constraint in this case 697

becomes: 698

⇢h(si1)✏ [ur(si1 , ai2)� ur(si1 , a
0)]

+
X

s2Si2

⇢h(s) [ur(s, ai2)� ur(s, a
0)] � 0, 8a0, 8h.

That the second term is strictly positive according to Equa- 699

tion (13), while the first term can be negative since ai1 700

is the unique maximizer of ur(si1 , a), i.e., ur(si1 , ai2) < 701

ur(si1 , ai1). For any a0 with ur(si1 , ai2) � ur(si1 , a
0), set- 702

ting any positive ✏ will do. But for a0 with ur(si1 , ai2) < 703

ur(si1 , a
0), we need to make ✏ small enough to ensure the 704

above inequality. Thus we can set: 705

0 < ✏ 

�����min
a0,h

(P
s2Si2

⇢h(s) [ur(s, ai2)� ur(s, a0)]

⇢h(si1) [ur(si1 , ai2)� ur(si1 , a
0)]

)����� .

(15)

Note that the term inside the absolute value function is 706

strictly negative. 707

When the sender sends messages other than mai1
and 708

mai2
, the persuasiveness constraints are the same as those of 709

the original scheme, and thus already satisfied. Therefore, to 710

guarantee persuasiveness, we can choose any ✏ that satisfies 711

both Equation (14) and (15). And According to our analysis, 712

there are clearly infinitely many such choices. 713

Proof of Theorem 1 714

Proof. Define a new scheme based on MA as follows: 715

⇡0(ma|h, s) =
X

m2Ma(h)

⇡(m|h, s).

This new scheme induces a new MDP for the receiver. We 716

claim that the value function is 717

V ⇡0

2 (h,ma)

=
X

m2Ma(h)

V ⇡
2 (h,m)

P
s ⇡(m|h, s)⇢h(s)P

m02Ma(h)

P
s ⇡(m

0|h, s)⇢h(s)
,

(16)

and that the receiver’s strategy a = �0(h,ma) is optimal, 718

hence persuasive. 719

Denote by h0 = h + (s, a). To prove the claims, it suf- 720

fices to show that the value function satisfies the Bellman 721



equation:722

V ⇡0

2 (h,ma)

= argmax
â

(
X

s

⇢h(s|ma, h)

"
ur(s, â)

+ �
X

s0

P (s0|s, â)
X

a0

⇡0(ma0 |h0, s0)V ⇡0

2 (h0,ma0)

#)
,

(17)

and that using a = �0(h,ma) maximizes the right-hand side723

of the above equation.724

Since �(h,m) is the receiver’s optimal strategy in the725

original MDP, we have that726

V ⇡
2 (h,m)

= argmax
â

(
X

s

⇢h(s|m,h)

"
ur(s, â)

+ �
X

s0

P (s0|s, â)
X

a0

⇡0(m|h0, s0)V ⇡
2 (h0,m)

#)
. (18)

And for any m 2 Ma(h), by definition, action a maximizes727

the right-hand side.728

Combining Equation (18) and Equation (16) gives:729

V ⇡0

2 (h,ma)

=
X

m2Ma(h)

[
P

s ⇡(m|h, s)⇢h(s)] [
P

s ⇢h(s|m,h)ur(s, a)]P
m02Ma(h)

P
s ⇡(m

0|h, s)⇢h(s)

+
X

m2Ma(h)

P
s ⇡(m|h, s)⇢h(s)P

m02Ma(h)

P
s ⇡(m

0|h, s)⇢h(s)
�
X

s

(

⇢h(s|h,m)
X

s0

P (s0|s, a)

"
X

m0

⇡(m0
|h0, s0)V ⇡

2 (h0,m0)

#)

(19)

Consider the first term:730

X

m2Ma(h)

[
P

s ⇡(m|h, s)⇢h(s)] [
P

s ⇢h(s|m,h)ur(s, a)]P
m02Ma(h)

P
s ⇡(m

0|h, s)⇢h(s)

=
X

m2Ma(h)

P
s ⇢h(s)⇡(m|h, s)ur(s, a)P

m02Ma(h)

P
s ⇡(m

0|h, s)⇢h(s)

=

P
s ⇢h(s)⇡(ma|h, s)ur(s, a)P

s ⇡(ma|h, s)⇢h(s)

=
X

s

⇢h(s|h,ma)ur(s, a), (20)

The second equation is obtained by plugging in Equation731

(7), and in the last equation,732

⇢h(s|h,ma) =
⇢h(s)⇡0(ma|h, s)P
s0 ⇢h(s

0)⇡0(ma|h, s0)

=
⇢h(s)

P
m2Ma(h)

⇡(m|h, s)
P

s0 ⇢h(s
0)
P

m2Ma(h)
⇡(m|h, s)

is the receiver’s posterior belief in the new MDP. Now con- 733

sider the second term of Equation (19). Define: 734

V (h0) =
X

s0

P (s0|s, a)

"
X

m0

⇡(m0
|h0, s0)V ⇡

2 (h0,m0)

#
.

Note that the state transition P (s0|s, a) is equivalent to 735

⇢h0(s0). According to Equation (16), we have: 736

V ⇡0

2 (h0,ma)
X

m02Ma(h0)

X

s0

⇡(m0
|h0, s0)⇢h0(s0)

=
X

m2Ma(h0)

V ⇡
2 (h0,m)

X

s0

⇡(m|h0, s0)⇢h0(s0).

Therefore, 737

V (h0) =
X

s0

⇢h0(s0)
X

m

V ⇡
2 (h0,m)⇡(m|h0, s0)

=
X

m

V ⇡
2 (h0,m)

X

s0

⇡(m|h0, s0)⇢h0(s0)

=
X

a0

X

m2Ma0 (h0)

V ⇡
2 (h0,m)

X

s0

⇡(m|h0, s0)⇢h0(s0)

=
X

a0

V ⇡0

2 (h0,ma0)
X

s0

X

m02Ma(h0)

⇡(m0
|h0, s0)⇢h0(s0)

=
X

s0

⇢h0(s0)
X

a0

⇡0(ma0 |h0, s0)V ⇡0

2 (h0,ma0).

Thus the second term of Equation (19) can be written as: 738

�
X

m2Ma(h)

P
s ⇡(m|h, s)⇢h(s)P

s ⇡
0(ma|h, s)⇢h(s)

X

s

⇢h(s|h,m)V (h0).

Note that
P

s ⇡
0(ma|h, s)⇢h(s) does not depend on s. Using 739

Equation (7), we have: 740

�
X

m2Ma(h)

X

s

⇢h(s)⇡(m|h, s)P
s ⇡

0(ma|h, s)⇢h(s)
V (h0)

=�
X

s

⇢h(s)⇡0(ma|h, s)P
s ⇡

0(ma|h, s)⇢h(s)
V (h0)

=�
X

s

⇢h(s|h,ma)V (h0).

Put both terms back to Equation (19), we get: 741

V ⇡0

2 (h,ma)

=
X

s

⇢h(s|h,ma)ur(s, a) + �
X

s

⇢h(s|h,ma)V (h0)

=
X

s

⇢h(s|h,ma)ur(s, a) + �
X

s

⇢h(s|h,ma)
X

s0

(

⇢h0(s0)
X

a0

⇡0(ma0 |h0, s0)V ⇡0

2 (h0,ma0)

)

=
X

s

⇢h(s|h,ma)

(
ur(s, a) + �

X

s

⇢h(s|h,ma)
X

s0

(

⇢h0(s0)
X

a0

⇡0(ma0 |h0, s0)V ⇡0

2 (h0,ma0)

)
.



Note that the above equation depends crucially on Equa-742

tion (18). And in the new MDP, for any message m 2743

Ma(h), choosing action a maximizes the right-hand side744

of Equation (18). This means in the right-hand side of the745

above equation, action a is also the best choice. Therefore,746

We have Equation (17).747

Additional Experiment results748

We report the experimental results in a setting where the749

sender can use threat-based strategies. We re-use the game750

instances generated for experiments with the standard, non-751

threat-based k-memory strategies.752

Running time. The running time of the bi-linear program753

method is listed in Table 5 and Table 6. As shown in Ta-754

ble 5, Gurobi gives feasible solutions for all game instances755

of size 2 but failed for almost all games with a larger size.756

Compared with Table 1, this implies that finding a threat-757

based strategy is much more difficult for Gurobi. This also758

aligns with our intuitions as the strategy space is larger in759

the threat-based setting (see Section 7).760

Table 6 shows similar patterns as Table 2: the number of761

solvable games decreases as the memory length k increases.762

Again, Gurobi finds much fewer threat-based solutions than763

non-threat-based ones due to the larger search space.764

The results for our algorithm are shown in Table 7 and765

Table 8. Our algorithm gives feasible solutions for all game766

instances within 30 minutes. In fact, it takes about only 30767

seconds for our algorithm to output a feasible solution for768

most instances. Compared with Table 3 and 4, our algorithm769

takes only a slightly longer time to find a feasible threat-770

based solution.771

We apply our algorithm to larger games and report the re-772

sults in Figure 7. Our algorithm can solve games with sizes773

up to 12⇥12 within 30 minutes, which is similar to the case774

Table 5: Number of games
that Gurobi gives a feasible
solution within 30 mins for
k = 1.

Game size
2 3 4 5 6 8

�

0.9 20 2 0 0 0 0
0.7 20 0 0 0 0 0
0.5 20 3 0 0 0 0
0.3 20 6 0 0 0 0
0.1 20 2 1 0 0 0

Table 6: Number of games
that Gurobi gives a feasible
solution within 30 mins for
game size 2⇥ 2.

Memory length k
1 2 3 4 5 6

�

0.9 20 8 8 8 5 1
0.7 20 11 8 6 5 3
0.5 20 11 8 7 5 3
0.3 20 12 9 8 4 3
0.1 20 16 10 9 5 2

Table 7: Average running
time (in seconds) of our
threat-based algorithm for
k = 1.

Game size
2 3 4 5

�

0.9 0.619 2.901 10.051 28.017
0.7 0.625 2.963 10.278 28.731
0.5 0.620 2.929 10.130 28.219
0.3 0.621 2.930 10.174 28.232
0.1 0.640 3.009 10.439 29.118

Table 8: Average running
time (in seconds) of our
threat-based algorithm for
game size 2⇥ 2.

Memory length k
1 2 3 4

�

0.9 0.631 2.469 9.893 39.054
0.7 0.630 2.482 9.918 38.935
0.5 0.634 2.479 9.847 38.894
0.3 0.628 2.471 9.782 38.636
0.1 0.638 2.514 9.979 39.071

of non-threat-based strategies as shown in Figure 4. Com- 775

paring Figure 4 and 7, we can see that the average utility of 776

threat-based strategies is larger than non-threat-based ones. 777

This is also because the strategy space is larger with threat- 778

based strategies. 779

Performance. Figure 6 compares the performance of 780

both algorithms in 2 ⇥ 2 games with different discount fac- 781

tors and memory lengths. Our algorithm achieves almost 782

identical performance compared to the bi-linear program 783

method. Since our results are averaged over the instances 784

that are solved by both algorithms, one reason for the identi- 785

Figure 6: Average sender utility obtained by different threat-based algorithms in 2⇥ 2 games.



Figure 7: Average running time and utility of our threat-
based algorithm for k = 1 in games with different sizes.

cal performance is that in this threat-based setting, Gurobi is786

only able to solve much fewer game instances (see Table 6787

and 4 for details). Similar to Figure 3, in general, increasing788

the memory length does not lead to a higher expected utility,789

i.e., using a more complicated strategy may not benefit the790

sender too much. Also note that, since both algorithms are791

only able to give feasible solutions, a longer memory length792

may sometime result in a lower utility in our experiments.793

Table 9: Average sender utility obtained by different threat-
based algorithms with memory length k = 1, where - de-
notes that there is no game instance can be solved in 30 min-
utes.

� Algorithm Game size
2 3 4 5

0.9 Our algorithm 4.859 8.232 6.613 7.158
Gurobi 4.859 7.994 - -

0.7 Our algorithm 1.658 2.204 2.163 2.395
Gurobi 1.658 - - -

0.5 Our algorithm 1.023 1.587 1.291 1.440
Gurobi 1.023 1.445 - -

0.3 Our algorithm 0.728 1.065 0.914 1.039
Gurobi 0.728 1.061 - -

0.1 Our algorithm 0.564 0.892 0.712 0.811
Gurobi 0.564 0.892 - -

The performance comparison for different game sizes is794

shown in Table 9. The “-” symbol indicates that no feasible795

solution is found for any of the 20 game instances. Our algo-796

rithm also achieves similar performance compared to the bi-797

linear method in instances solved by both algorithms. Sim-798

ilar to Figure 2, the sender is able to obtain larger expected799

utilities in larger games in general.800


