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A Details on Experimental Setup

A.1 Evaluation Method

To evaluate the attack, existing methods Zhang et al. (2020); Chen et al. (2021); Nguyen et al. (2023);
Struppek et al. (2024); An et al. (2022) train an evaluation model E that has a distinct architecture and
is trained on the private dataset Dpriv. Similar to human inspection practices (Zhang et al., 2020), the
evaluation model acts as a human proxy for assessing the quality of information leaked through MI attacks.
We report the details of the evaluation models in the Tab. A.1. All the evaluation models are provided by
Chen et al. (2021); Struppek et al. (2022); An et al. (2022).

Table A.1: Details of evaluation model E in all the experimental setup. All the evaluation models are
provided by Chen et al. (2021); Struppek et al. (2022); An et al. (2022).

Attack T Dpriv Dpub Resolution E E’s accuracy
GMI (Zhang et al., 2020)

VGG16 (Simonyan & Zisserman, 2014)
IR152 (He et al., 2016)
FaceNet64 (Cheng et al., 2017)

CelebA CelebA/FFHQ 64×64 FaceNet112 95.80

KedMI (Chen et al., 2021)
LOMMA (Nguyen et al., 2023)
PLGMI (Yuan et al., 2023)
RLBMI (Han et al., 2023)
BREPMI (Kahla et al., 2022)

PPA (Struppek et al., 2022)

ResNet18 (He et al., 2016)

Facescrub FFHQ 224×224 Inception-V3 96.20%

ResNet101 (He et al., 2016)
ResNet152 (He et al., 2016)

DenseNet121 (Huang et al., 2017)
DenseNet169 (Huang et al., 2017)

MaxVIT (Tu et al., 2022)
ResneSt101 Stanford Dogs AFHQ Dogs Inception-V3 79.79%

MIRROR (An et al., 2022) Inception-V1 (Inc) VGGFace2 FFHQ 160×160 ResNet50 99.88%
ResNet50 (He et al., 2016) 224×224 Inception-V1 99.65%

IF-GMI (Qiu et al., 2024) ResNet18 Facescrub FFHQ 224×224 Inception-V3 96.20%ResNet152

We evaluate defense methods using the following metrics:

• Natural Accuracy (Acc ↑). This metric measures the accuracy of the defended model on a
private test set, reflecting its performance on unseen data. Higher natural accuracy indicates better
performance of the primary task.

• Attack accuracy (AttAcc ↓) Zhang et al. (2020). This metric measures the percentage of
successful attacks, where success is defined as the ability to reconstruct private information from
the model’s outputs. Lower attack accuracy indicates a more robust defense. Following existing
works (Zhang et al., 2020; Chen et al., 2021; Nguyen et al., 2023; Struppek et al., 2022), we utilize
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a separate evaluation model E to evaluate the inverted images. Higher attack accuracy on the
evaluation model signifies a more effective attack, implying a weaker defense.

• K-Nearest Neighbor Distance (KNN Dist ↑) Chen et al. (2021). KNN distance measures
the similarity between a reconstructed image of a specific identity and their private images. This
is calculated using the L2 norm in the feature space extracted from the penultimate layer of the
evaluation model. In MI defense, a higher KNN Dist value indicates a greater degree of robustness
against model inversion (MI) attacks and a lower quality of attacking samples on that model.

• δeval and δfaceStruppek et al. (2022). We also use δeval and δface metrics from (Struppek et al.,
2022) to quantify the quality of inverted images generated by PPA. These two metrics are the same
concept as KNN Dist, but different in the model to produce a feature to calculate distance. δface

use pretrained FaceNet (Schroff et al., 2015) as model to extract penultimate features, while δeval

uses evaluation model for PPA attack.

• Trade-off value ( ∆ ↑) Ho et al. (2024). To quantify the trade-off between model utility (natural
accuracy) and attack performance (attack accuracy), we follow previous work and let NoDef model
and defended model be fn and fd respectively, we compute ∆ = AttAccfn −AttAccfd

Accfn −Accfd

. This metric
calculates the ratio between the decrease in attack accuracy and the decrease in natural accuracy
when applying an MI attack to a model without defenses (NoDef) and defense models. We remark
that this metric is used when defense models have lower natural accuracy compared to the no-defense
model. A higher ∆ value indicates a more favorable trade-off.

A.2 Dataset

We use three datasets including CelebA (Liu et al., 2015), Facescrub (Ng & Winkler, 2014), and Stanford
Dogs (Dataset, 2011) as private training data and use two datasets including FFHQ (Karras et al., 2019)
and AFHQ Dogs(Choi et al., 2020) as public dataset.

The CelebA dataset (Liu et al., 2015) is an extensive compilation of facial photographs, encompassing more
than 200,000 images that represent 10,177 distinct persons. For MI task, we follow (Zhang et al., 2020;
Chen et al., 2021; Nguyen et al., 2023) to divide CelebA into private dataset and public dataset. There is
no overlap between private and public dataset. All the images are resized to 64×64 pixels.

Facescrub (Ng & Winkler, 2014) consists of a comprehensive collection of 106836 photographs showcasing 530
renowned male and female celebrities. Each individual is represented by an average of around 200 images,
all possessing diversity of resolution. Following PPA (Struppek et al., 2022), we resize the image to 224×224
for training target models.

The FFHQ dataset comprises 70,000 PNG images of superior quality, each possessing a resolution of
1024x1024 pixels. FFHQ is used as a public dataset to train GANs using during attacks (Zhang et al.,
2020; Chen et al., 2021; Struppek et al., 2022).

Stanford dogs (Dataset, 2011) contains more than 20,000 images encompassing 120 different dogs. AFHQ
Dogs (Choi et al., 2020) contain around 5,000 dog images in high resolution. Follow (Struppek et al., 2022),
we use Stanford dogs dataset as private dataset while AFHQ Dogs as the public dataset.

VGGFace2 (Cao et al., 2018) is a large-scale face recognition dataset designed for robust face recognition
tasks. It consists of images that are automatically downloaded from Google Image Search, capturing a wide
range of variations in factors such as pose, age, illumination, ethnicity, and profession. The diversity of the
dataset makes it suitable for training and evaluating face recognition models across different conditions and
demographics. It contains more than 3.3 milions images for 9000 identities.

A.3 Train the Defense model using Random Erasing

We depict our method in Algorithm 1.
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Algorithm 1 Train the Defense model using Random Erasing
Input: Private training data Dpriv = {(xi, yi)}N

i=1, model Tθ, a maximum masking area portion ah.
Output: The MIDRE-trained model Tθ.
Initialize t← 0
while t < tRE do

Sample a mini-batch Db with size b from Dpriv

DRE = {}
while (x, y) in Db do

x̃ = x
Randomly select ae within the range [0.1, ah]
x̃ = RE(x, ae) ▷ This is following the procedure discussed in Sec. 2.2
Dmask ← (x̃, y)

end while
Compute L(θ) = 1

b

∑DRE ℓ(Tθ(x̃i), yi)
Backward Propagation θ ← θ − α∇L(θ)

end while

A.4 Hyper-parameters for Model Inversion Attack

In the case of GMI(Zhang et al., 2020), KedMI(Chen et al., 2021), and PLG-MI(Yuan et al., 2023),
BREPMI(Kahla et al., 2022), our approach is primarily based on the referenced publication outlining the
corresponding attack. However, in certain specific scenarios, we adhere to the BiDO study due to its distinct
model inversion attack configuration in comparison to the original paper. The LOMMA(Nguyen et al., 2023)
approach involves adhering to the optimal configuration of the method, which encompasses three augmented
model architectures: EfficientNetB0, EfficientNetB1, and EfficientNetB2. We adopt exactly the same experi-
mental configuration, including the relevant hyper-parameters, as described in the referenced paper. We also
follow PPA and MIRROR paper’s configuration (Struppek et al., 2022; An et al., 2022) for our MI attack
setups.

A.5 Hyper-parameters for MIDRE

Our method only requires a hyper-parameter ah, which is 0.4 for all low-resolution setups. According to
high-resolution setups, we use ah = 0.4 and ah = 0.8 as two setups for our defense.

B Additional Experimental Results

B.1 Experiments on low resolution images

We evaluate our method against existing Model Inversion defenses. We follow the experiment setup in BiDO
(Peng et al., 2022) and report the results on the standard setup using T = VGG16 and Dpriv = CelebA
in Tab. B.2. We evaluate against six MI attacks, including GMI (Zhang et al., 2020), KedMI (Chen et al.,
2021), LOMMA (Nguyen et al., 2023) with two variances (LOMMA+GMI and LOMMA+KedMI), PLGMI
(Yuan et al., 2023), and a black-box attack, BREPMI (Kahla et al., 2022).

Overall, our proposed method, MIDRE, achieves significant improvements in security for 64×64 setups
compared to SOTA MI defenses. MIDRE achieves this by demonstrably reducing top-1 attack accuracy
while maintaining natural accuracy on par with other leading MI defenses. Specifically, compared to BiDO,
MIDRE offers a substantial 43.74% decrease in top-1 attack accuracy with sacrificing only 7.05% in natural
accuracy (measured using the KedMI attack method). Notably, while BiDO achieves similar natural accuracy
to MIDRE, it suffers from a significantly higher top-1 attack accuracy (8.84% higher than MIDRE).

4



Published in Transactions on Machine Learning Research (08/2025)

Table B.2: We report the MI attacks under multiple SOTA MI attacks on images with resolution 64×64.
We compare the performance of these attacks against existing defenses including NoDef, BiDO, MID and
our method. T = VGG16, Dpriv = CelebA, Dpub = CelebA.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

LOMMA
+ GMI

NoDef 86.90 74.53 ± 5.65 - 1312.93
MID 79.16 54.53 ± 4.35 2.58 1348.21
BiDO 79.85 53.73 ± 4.99 2.95 1422.75
MIDRE 79.85 31.93 ± 5.10 6.04 1590.12

LOMMA
+ KedMI

NoDef 86.90 81.80 ± 1.44 - 1211.45
MID 79.16 67.20 ± 1.59 1.89 1249.18
BiDO 79.85 63.00 ± 2.08 2.67 1345.94
MIDRE 79.85 43.07 ± 1.99 5.49 1503.89

PLGMI

NoDef 86.90 97.47 ± 1.68 - 1149.67
MID 79.16 93.00 ± 1.90 0.58 1111.61
BiDO 79.85 92.40 ± 1.74 0.72 1228.36
MIDRE 79.85 66.60 ± 2.94 4.38 1475.76

GMI

NoDef 86.90 20.07 ± 5.46 - 1679.18
MID 79.16 20.93 ± 3.12 -0.11 1698.50
BiDO 79.85 6.13 ± 2.98 1.98 1927.11
MIDRE 79.85 3.20 ± 2.15 2.39 2020.49

KedMI

NoDef 86.90 78.47 ± 4.60 - 1289.46
MID 79.16 53.33 ± 4.97 3.25 1364.02
BiDO 79.85 43.53 ± 4.00 4.96 1494.35
MIDRE 79.85 34.73 ± 4.15 6.20 1620.66

BREPMI

NoDef 86.90 57.40 ± 4.92 - 1376.94
MID 79.16 39.20 ± 4.19 2.35 1458.61
BiDO 79.85 37.40 ± 3.66 2.84 1500.45
MIDRE 79.85 21.73 ± 2.99 5.06 1611.78

Table B.3: Results of IF-GMI(Qiu et al., 2024) attack on Facescrub dataset. Here, we use T = ResNet18/
ResNet152, Dpriv = Facescrub, Dpub = FFHQ, image resolution = 224×224 images, attack method = IF-
GMI.

Architecture Defense Acc ↑ AttAcc ↓ δeval ↑ δface ↑ FID ↑

ResNet18 NoDef 94.22 98.30 110.04 0.647 40.239
MIDRE (0.1, 0.4) 97.28 72.58 122.03 0.698 39.7238
MIDRE (0.1, 0.8) 93.33 24.85 171.48 0.966 41.325

ResNet152 NoDef 95.43 97.24 115.76 0.633 45.703
MIDRE (0.1, 0.4) 97.90 74.50 133.22 0.662 40.669
MIDRE (0.1, 0.8) 95.74 31.43 150.89 0.847 40.388

B.2 Additional results

We further show the effectiveness of our proposed method on a wide range of target model architectures
including IR152, FaceNet64, DenseNet-169, ResNeSt-101, and MaxVIT. The results are shown in Tab. B.4,
B.5, and Tab.B.6 and B.7 (for comparison with TL-DMI) for 64×64 images and in Tab.B.9 and B.10 for
224×224 images.

The experiment results consistently demonstrate the effectiveness of our proposed method. For example,
with T = IR152, we sacrifice only 6.25% in natural accuracy, but the attack accuracies drop significantly,
from 22.07% (PLGMI attack) to 40% (LOMMA + GMI attack). Similarly, when T = FaceNet64, natural
accuracy decreases by 6.94%, while the attack accuracies drop significantly, from 24.47% (PLGMI attack)
to 45% (LOMMA attack). We report the results of additional setup in Tab. B.8. In particular, we use
attack method = PLGMI, T = VGG16/IR152/FaceNet64, Dpriv = CelebA, Dpub = FFHQ. In addition to
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measuring attack accuracy, we incorporate KNN distance to demonstrate the efficacy of our strategy across
different evaluation scenarios. The specifics of KNN distance can be found in Sec. A.1.

For high resolution images, interestingly, with Dpriv = Facescrub, we see a slight increase in natural accuracy
(1.95%) along with a significant reduction in attack accuracy of around 40%. These results consistently show
that MIDRE significantly reduces the impact of MI attacks. We report detailed results of PPA attack on
our method compared to SOTA defense including MID, DP, BiDO, TL-DMI, NLS and RoLSS, SSF, TTS.
the results are presented in Tab. B.9 and B.10. We also use δeval and δface, with details in Sec. A.1 to
evaluate quality of PPA inverted images.

Table B.4: Additional results on 64×64 images. We use T = IR152. The target models are trained on Dpriv

= CelebA and Dpub = CelebA. The results conclusively show that our defense model is effective compared
to NoDef models.

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑

GMI NoDef 91.16 32.40 ± 4.88 1587.28
MIDRE 84.91 7.87 ± 3.30 1888.47

KedMI NoDef 91.16 78.93 ± 5.15 1262.44
MIDRE 84.91 40.07 ± 4.99 1548.16

LOMMA
+ GMI

NoDef 91.16 80.93 ± 4.56 1253.03
MIDRE 84.91 40.93 ± 6.11 1559.88

LOMMA
+ KedMI

NoDef 91.16 90.87 ± 1.31 1116.90
MIDRE 84.91 52.13 ± 1.81 1481.70

PLGMI NoDef 91.16 99.47 ± 0.93 1021.42
MIDRE 84.91 77.40 ± 4.79 1470.46

Table B.5: Additional results on 64×64 images. We use T = FaceNet64. The target models are trained
on Dpriv = CelebA and Dpub = CelebA. The results conclusively show that our defense model is effective
compared to NoDef models.

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑

GMI NoDef 88.50 29.60 ± 5.43 1607.86
MIDRE 81.56 6.73 ± 3.42 1908.19

KedMI NoDef 88.50 81.67 ± 2.63 1270.71
MIDRE 81.56 36.33 ± 6.06 1545.93

LOMMA
+ GMI

NoDef 88.50 83.33 ± 3.40 1259.61
MIDRE 81.56 37.60 ± 3.74 1570.85

LOMMA
+ KedMI

NoDef 88.50 90.87 ± 1.31 1116.90
MIDRE 81.56 54.33 ± 1.44 1456.84

PLGMI NoDef 88.50 99.47 ± 0.69 1091.51
MIDRE 81.56 75.00 ± 4.30 1509.78

B.3 User Study

In addition to attack accuracy measured by the evaluation model, we conduct a user study to further
validate the attack’s effectiveness. Overall, we conduct two setups for user study with low-resolution images
and high-resolution images. Our interface for user study is illustrated in Fig. B.1.

In the low-resolution setup, we compare our proposed method and BiDO (Peng et al., 2022). For fair
comparison, we use the same setup as BiDO: T = VGG16, Dpriv = CelebA, Dpub = CelebA and use the
pre-trained model of BiDO to generate their images. We use the attack method PLG-MI to generate the
inverted images and randomly select one image for each identity for overall 150 first identities. We upload
it to Amazon Mechanical Turk and designate three individuals to vote on two of our model’s and BiDO’s
reconstructed images, for a total of 450 votes. Participants were asked to select one of 4 options: BiDO,
MIDRE, none, or both, for each image pair. Each pair was rated by three different users.
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Table B.6: Additional results compared with TL-DMI on 64×64 images. We use T = IR152. The target
models are trained on Dpriv = CelebA and Dpub = CelebA. The results conclusively show that our defense
model is effective.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist↑

GMI
NoDef 91.16 32.40 ± 4.88 - 1587.28

TL-DMI 86.70 8.93 ± 3.73 5.26 1819.00
MIDRE 87.94 11.07 ± 3.60 6.62 1813.11

KedMI
NoDef 91.16 78.93 ± 5.15 - 1262.44

TL-DMI 86.70 64.60 ± 4.93 3.21 1333.00
MIDRE 87.94 46.67 ± 5.45 10.02 1455.88

LOMMA
+ GMI

NoDef 91.16 80.93 ± 4.56 - 1253.03
TL-DMI 86.70 41.87 ± 5.37 8.76 1551.00
MIDRE 87.94 49.40 ± 6.30 9.79 1497.50

LOMMA
+
KedMI

NoDef 91.16 90.87 ± 1.31 - 1116.90
TL-DMI 86.70 77.73 ± 1.57 2.95 1305.00
MIDRE 87.94 62.93 ± 2.15 8.68 1551.00

Table B.7: Additional results compared with TL-DMI on 64×64 images. We use T = FaceNet64. The target
models are trained on Dpriv = CelebA and Dpub = CelebA. The results conclusively show that our defense
model is effective.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

GMI
NoDef 88.50 29.60 ± 5.43 - 1607.86

TL-DMI 83.41 15.73 ± 4.58 2.72 1752.00
MIDRE 85.74 7.47 ± 2.59 8.02 1898.29

KedMI
NoDef 88.50 81.67 ± 2.63 - 1270.71

TL-DMI 83.41 73.40 ± 4.10 1.62 1265.00
MIDRE 85.74 42.93 ± 5.22 14.04 1512.52

LOMMA
+ GMI

NoDef 88.50 83.33 ± 3.40 - 1259.61
TL-DMI 83.41 43.67 ± 5.60 7.79 1616.00
MIDRE 85.74 43.33 ± 6.02 14.49 1550.77

LOMMA
+
KedMI

NoDef 88.50 90.87 ± 1.31 - 1116.90
TL-DMI 83.41 79.60 ± 1.78 2.21 1345.00
MIDRE 85.74 58.07 +/- 1.78 11.88 1386.67

Table B.8: We report the PLGMI attacks on images with resolution 64×64. We compare to NoDef and
BiDO methods. T = VGG16, IR152 and FaceNet64, Dpub = FFHQ. We remark that BiDO only releases
their implementation and pretrained model in the setup of T = VGG16.

Architecture Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

VGG16
NoDef 86.90 81.80 ± 2.74 - 1323.27
BiDO 79.85 60.93 ± 3.99 2.96 1440.16

MIDRE 79.85 36.07 ± 4.76 6.49 1654.41

IR152 NoDef 91.16 96.60 ± 2.11 - 1187.37
MIDRE 84.91 54.02 ± 4.86 6.81 1579.28

FaceNet64 NoDef 88.50 95.00 ± 2.56 - 1250.90
MIDRE 81.56 51.60 ± 3.61 6.25 1501.85

In the high-resolution setup, we compare MIDRE and TL-DMI (Ho et al., 2024), which is a state-of-the-art
MI defense. We use the setup: T = ResNet101, Dpriv = Facescrub, Dpub = FFHQ, attack method = PPA.
For every defense, we create inverted images for each of the 530 classes, then select one image for each class.
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Table B.9: We report the PPA MI attacks on images with resolution 224×224. We compare the performance
of these attacks against existing defenses including NoDef, MID, DP, BiDO NLS, TLDMI, and MI-RAD
variances. Dpriv = Facescrub Dpub = FFHQ, Arhchitecture is Resnet18, ResNet152 and ResNet101. We
denote “NA" for δface and δeval if these numbers are not available in the official paper Ho et al. (2024); Koh
et al. (2024); Struppek et al. (2024). We denote “OP" for ∆ if the accuracy of the defense model outperforms
that of the NoDef model.

Architecture Defense Acc ↑ AttAcc ↓ δeval ↑ δface ↑ ∆ ↑

ResNet18

NoDef 94.22 88.67 123.85 0.74 -
MID 91.15 65.47 137.75 0.87 7.56
DP 89.80 75.26 130.41 0.82 3.03
BiDO 91.33 76.56 127.86 0.75 4.54
TL-DMI 91.12 22.36 NA NA 21.39
MIDRE(0.1, 0.4) 97.28 48.16 131.72 0.80 OP
MIDRE(0.1,0.8) 93.33 13.89 154.79 0.97 84.02

ResNet152

NoDef 95.43 86.51 113.03 0.73 -
MID 91.56 66.18 137.18 0.86 5.25
BiDO 91.80 58.14 147.28 0.87 7.82
NLS 91.50 14.34 NA 1.23 18.36
RoLSS 93.00 64.98 NA NA 8.86
SSF 93.79 70.71 NA NA 9.63
TTS 93.97 73.59 NA NA 8.85
MIDRE(0.1,0.4) 97.90 42.44 139.66 0.82 OP
MIDRE(0.1,0.8) 95.47 15.97 155.61 0.95 OP

ResNet101

NoDef 94.86 83.00 128.60 0.76 -
MID 92.70 82.08 122.96 0.76 0.43
DP 91.36 74.88 131.38 0.82 2.32
BiDO 90.31 67.07 139.15 0.84 3.50
TL-DMI 90.10 31.82 NA NA 10.75
NLS(-0.05) 94.79 33.14 130.94 0.90 712.29
RoLSS 92.40 58.68 NA NA 9.89
SSF 93.79 71.06 NA NA 11.16
TTS 94.16 77.26 NA NA 8.20
MIDRE(0.1,0.4) 98.02 43.58 139.01 0.81 OP
MIDRE(0.1,0.8) 95.15 15.47 155.80 0.96 OP

Finally, we upload them to Amazon Mechanical Turk and follow the same procedure as low-resolution images
setup.

Comparing BiDO and our proposed MIDRE: According to the results, 221 users voted in favour of
BiDO, 108 in favour of our approach, 119 in favour of neither, and 2 in favour of both. It suggests that the
reconstructed image quality from our model is not as good as the reconstructed image quality from BiDO,
therefore our proposed defense is more effective. Our results are presented in Tab. B.11.

Comparing SOTA TL-DMI and our proposed MIDRE: According to the results in Tab. B.12, 509
users chose images inverted from our model, while 537 users voted in favor of TL-DMI. This suggests that
the inverted images from our models are of lower quality than those from TL-DMI. In addition, there are
522 people voted for none of the two images is similar with the original image, meanwhile only 22 users chose
that both images are similar to the real image.

According to the final results of both settings, MIDRE is a better defense mechanism against MI than SOTA
BiDO and TL-DMI, which is in line with the findings of other evaluation metrics.
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Table B.10: We report the PPA MI attacks on images with resolution 224×224. We compare the performance
of these attacks against existing defenses including NoDef, MID, DP, BiDO NLS, TLDMI, and MI-RAD
variances. Dpriv = Facescrub Dpub = FFHQ, Arhchitecture is DenseNet169, DenseNet121, ResneSt101, and
MaxVIT. We denote “NA" for δface and δeval if these numbers are not available in the official paper Ho
et al. (2024); Koh et al. (2024); Struppek et al. (2024). We denote “OP" for ∆ if the accuracy of the defense
model outperforms that of the NoDef model.

Architecture Defense Acc ↑ AttAcc ↓ δeval ↑ δface ↑ ∆ ↑

DenseNet169

NoDef 95.49 87.80 124.74 0.77 -
RoLSS 72.14 6.77 NA NA 3.47
SSF 92.95 60.99 NA NA 10.56
MIDRE(0.1,0.4) 97.99 46.67 136.18 0.81 NA
MIDRE(0.1,0.8) 95.04 15.78 154.96 0.95 160.04

DenseNet121

NoDef 95.54 95.13 116.14 0.68 -
NLS(-0.05) 92.13 40.69 179.53 0.97 15.96
RoLSS 74.25 10.24 NA NA 3.99
SSF 93.09 65.21 NA NA 12.21
MIDRE(0.1,0.4) 98.19 46.98 134.86 0.81 OP
MIDRE (0.1,0.8) 95.76 15.66 154.62 0.96 OP

ResneSt101

NoDef 95.38 84.27 129.18 0.81 -
NLS(-0.05) 88.82 13.23 172.73 1.10 10.01
MIDRE(0.1,0.4) 98.11 45.43 137.78 0.80 NA
MIDRE(0.1,0.8) 95.09 15.54 156.44 0.96 237.00

MaxVIT

NoDef 98.36 80.66 110.69 0.69 -
TL-DMI 93.01 21.17 NA NA 10.59
NLS(-0.05) 98.23 55.09 127.68 0.81 63.93
RoLSS 95.09 25.17 NA NA 15.68
MIDRE(0.1,0.4) 98.46 42.50 133.61 0.81 OP
MIDRE(0.1,0.8) 96.52 13.92 155.31 0.96 31.63

Table B.11: We report results for an user study that was performed with Amazon Mechanical Turk. Re-
constructed samples of PLG-MI/VGG16/CelebA/CelebA with first 150 classes. The study asked users for
inputs regarding the similarity between a private training image and the reconstructed image from BiDO
trained model and our trained model. Less number of reconstructed images from our defensed model are
selected by users, suggesting our defense is more effective.

Defense Num of samples selected by users as
more similar to private data

BiDO 221
Ours 108
Both 119
None 2

B.4 Qualitative Results

We provide inversion results from the recent IF-GMI attack in Fig. B.2 (T = ResNet-18) and Fig. B.3
(T = ResNet-152) and Dpriv = Facescrub, Dpub = FFHQ. These results further demonstrate the effectiveness
of our proposed method.
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Table B.12: We report results for an user study that was performed with Amazon Mechanical Turk. Re-
constructed samples of PPA/ResNet101/FaceScrub/FFHQ with all 530 classes. The study asked users for
inputs regarding the similarity between a private training image and the reconstructed image from TL-DMI
trained model and our trained model. Less number of reconstructed images from our defensed model are
selected by users, suggesting our defense is more effective.

Defense Num of samples selected by users as
more similar to private data

TL-DMI 537
Ours 509
Both 522
None 22

Figure B.1: Our Amazon Mechanical Turk (MTurk) interface for user study with model inversion attacking
samples. Participants were asked to select one of 4 options: A, B, none, or both, for each image pair where
A and B are the inverted images of our defense and other defense model. Each pair was rated by three
different users.

C Additional analysis of privacy effect of MIDRE

C.1 Feature space analysis of Random Erasing’s defense effectiveness

In addition to the visualization of feature space analysis in Sec. 3.2 (main paper), we provide more visual-
ization in other setup: T = ResNet-152 (Simonyan & Zisserman, 2014), Dpriv = Facecrub (Ng & Winkler,
2014), Dpub = FFHQ (Karras et al., 2019), attack method = PPA (Struppek et al., 2022). We observe
Property P1: Model trained with RE-private images following our MIDRE leads to a discrep-
ancy between the features of MI-reconstructed images and that of private images, resulting in
degrading of attack accuracy.

We use the following notation: ftrain, fpriv , fRE , and frecon represent the features of training images,
private images , RE-private images , and MI-reconstructed images , respectively. To extract these features,

we first train the target model without any defense (NoDef) and another target model with our MIDRE.
Then, we pass images into these models to obtain the penultimate layer activations. Specifically, we input
private images into the models to obtain fpriv. Next, we apply RE to private images, pass these RE-private
images into the models to obtain fRE . We also perform MI attacks to obtain reconstructed images from
NoDef model (resp. MIDRE model), and then feed them into the NoDef model (resp. MIDRE model) to
obtain frecon. Then, we visualize penultimate layer activations fpriv, fRE , frecon by both NoDef and our

10



Published in Transactions on Machine Learning Research (08/2025)

Figure B.2: Reconstructed image obtained from IF-GMI attack with T = ResNet-18, Dpriv = Facescrub,
Dpub = FFHQ. The quality of the reconstructed image obtained from the attack on the model trained by
MIDRE is comparatively worse when compared to that from NoDef method, suggesting the efficiency of our
proposed defense MIDRE.

Figure B.3: Reconstructed image obtained from IF-GMI attack with T = ResNet-152, Dpriv = Facescrub,
Dpub = FFHQ. The quality of the reconstructed image obtained from the attack on the model trained by
MIDRE is comparatively worse when compared to that from NoDef method, suggesting the efficiency of our
proposed defense MIDRE.
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MIDRE model. We use ae = 0.4 to train MIDRE and to generate RE-private images. Additionally, we
visualize the convex hull of these features. For visualization, we employ PCA to reduce the dimension of the
feature space.

The visualization in Fig. C.4 shows the same trend as in Sec. 3.2. Specially, we observe the mismatch
in feature space of MIDRE. Under MIDRE target model, fMIDRE

RE and fMIDRE
priv have partial overlaps,

but they are not identical. Meanwhile, fMIDRE
recon tend to match with fMIDRE

RE (RE-private images are
training data for MIDRE, and follows the discussion above). Therefore, fMIDRE

recon do not replicate fMIDRE
priv ,

significantly degrading the MI attack. Furthermore, Fig. C.5 shows that the mismatch between fMIDRE
RE and

fMIDRE
priv does not cause the reduction of model utility. This is because the private images remain distinct

from other classes and distant from other classification regions, even when their representations are partially
overlapped with RE-private images (the training data).

(a) NoDef, T = ResNet152, ae = 0.4, AttAcc = 86.51%, fNoDef
train = fNoDef

priv

(b) MIDRE, T = ResNet152, ae = 0.4, AttAcc = 15.97%, fMIDRE
train = fMIDRE

RE

Figure C.4: Feature space analysis to show that, under MIDRE, fMIDRE
recon and fMIDRE

priv has a
discrepancy, degrading MI attack. We visualize penultimate layer activations of private images (⋆
fpriv), RE-private images (▼ fRE), and MI-reconstructed images (× frecon) generated by both (a) NoDef
and (b) our MIDRE model. We also visualize the convex hull for private images , RE-private images ,

and MI-reconstructed images . In (a), fNoDef
recon closely resemble fNoDef

priv , consistent with high attack

accuracy. In (b), private images and RE-private images share some similarity but they are not identical,

with partial overlap between fMIDRE
priv and fMIDRE

RE . Importantly, fMIDRE
recon closely resembles fMIDRE

RE

as RE-private is the training data for MIDRE. This results in a reduced overlap between fMIDRE
recon and

fMIDRE
priv , explaining that MI does not accurately capture the private image features under

MIDRE.

C.2 Importance of partial erasure and random location for privacy-utility trade-off

In this section, we analyse two properties of Random Erasing that are: Property P2: Partial Erasure, and
Property P3: Random Location. In the addition of the setup in Sec. 3.2, we report a new experiment
using the following setup: We use T = MaxVIT, Dpriv = Facecrub (Ng & Winkler, 2014), Dpub = FFHQ
(Karras et al., 2019), attack method = PPA (Struppek et al., 2022).

To evaluate the effectiveness of Partial Erasure and Random Location, we conduct experiments on three
schemes: Entire Erasing (EE), Fixed Erasing (FE), and Random Erasing (RE). These schemes are
compared against a No Defense baseline, which is trained for 100 epochs without any defense. In Entire
Erasing (EE) scheme, we progressively reduce the number of training epochs to simulate different levels of
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Figure C.5: MIDRE target model achieves high accuracy despite partial overlap of fMIDRE
RE

and fMIDRE
priv using the target model T = ResNet152. We visualize the penultimate layer activations of

RE-private images and private images for three identities. While fMIDRE
RE and fMIDRE

priv do not completely
overlap, the model can still classify private images with high accuracy. This is because the private images
remain distinct from other classes and distant from other classification regions, even when their representa-
tions are partially shared with RE-private images (the training data). We remark that RE randomly erases
different regions from the images in different iterations, preventing the model to learn shortcut features and
forcing the model to learn intr insic features and become more generalizable beyond training data.

pixel concealment. Specifically, we train the model for 50, 60, 70, 80, 90, and 100 epochs, corresponding
to 50%, 40%, 30%, 20%, 10%, and 0% pixel concealment, respectively. For Fixed Erasing (FE), a fixed
location within each image is erased throughout the entire training process. However, the erased location
varied across different images. For Random Erasing (RE), the location of erased areas is randomly selected
for each image and training iteration. We train the RE model for 100 epochs with different values of the
erasure ratio, ae = 0.5, 0.4, 0.3, 0.2, 0.1 corresponding to 50%, 40%, 30 %, 20%, and 10% pixel concealment,
respectively.

We report the results in Tab. C.13. The results exhibit the same trend as outlined in Section 3.2 of the
main paper. Specifically, Property P2 demonstrates the privacy effect in defending against MI attacks,
where partial erasure (fixed or random) proves more effective than entire erasure (reducing epochs) despite
identical pixel concealment percentages. Property P3 validates the recovery of model utility, evidenced by
the enhanced accuracy of RE models while archiving lower attack accuracy than FE models across varying
erased portion ratios ae.

Table C.13: We compare three different techniques for pixel concealment, to reduce the amount of private
information presented to the model during training. Here, we use T = MaxVIT, Dpriv = Facescrub, Dpub

= FFHQ, attack method = PPA. The results show that simply reducing epochs as in “Entire Erasure” is
insufficient for degrading attack performance. Meanwhile, RE improves model utility while degrading attack
accuracy effectively.

Concealment
Partial Erasure Entire Erasing

Random Erasing Fixed Erasing
ae Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓)

0% 0 98.36 80.66 98.36 80.66 98.36 80.66
10% 0.1 98.73 70.92 98.59 74.81 97.93 82.93
20% 0.2 98.61 56.93 98.11 57.74 98.00 82.17
30% 0.3 98.35 42.10 97.90 43.40 98.04 83.49
40% 0.4 98.06 28.21 97.31 31.06 97.95 83.18
50% 0.5 98.73 16.34 94.67 16.11 98.03 84.29
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(a) Masking Random Pixels (b) Masking Multiple Patches

Figure D.6: We compare our RE masking strategy with two alternative masking approaches: (a) Masking
Random Pixels, and (b) Masking Multiple Patches. In (a), we randomly mask a proportion of pixels from 10%
(p = 0.1) to 60% (p = 0.6). In (b), we randomly mask either 4 small patches, denoted as 4P (αe ∈ [0.025, 0.1]),
or 8 small patches, denoted as 8P (αe ∈ [0.0125, 0.1]). We evaluate these strategies using the PPA attack
method with T = ResNet18, Dpriv = FaceScrub, and Dpub = FFHQ. The results demonstrate that our RE
masking strategy achieves a better privacy-utility trade-off compared to both Masking Random Pixels and
Masking Multiple Patches.

D Ablation Study

D.1 Ablation study on alternative masking strategies

In this section, we conduct experiments using alternative masking strategies. In addition to the traditional
random erasing method, we explore two additional approaches: (1) masking random pixels, and (2) masking
multiple patches.

• Masking random pixels: Instead of masking a square region as in our proposed Random Erasing
(RE) method, we apply masking at the pixel level. For example, we randomly mask 10% of the
image pixels by replacing them with random values. In our experiments, we train the target model
with varying levels of random pixel masking, ranging from 10% (p = 0.1) to 60% (p = 0.6).

• Masking multiple patches: Instead of masking a single large square region, we apply multiple
smaller masks to the image. In our experiments, we randomly mask each training image with either
4 small patches (4P) or 8 small patches (8P). To ensure a fair comparison with MIDRE, we adjust
the patch sizes accordingly. For 4P, we set αe ∈ [0.025, 0.1], so that the total area of the four
small patches is approximately equivalent to that of MIDRE with αe ∈ [0.1, 0.4]) (RE(αh = 0.4)).
Similarly, for 8P, we use αe ∈ [0.0125, 0.1], making the total masked area comparable to MIDRE
with αe ∈ [0.1, 0.8] (RE(αh = 0.8)).

We summarize the results of the two alternative masking strategies in Fig. D.6.

• Masking Random Pixels: We clearly observe that this method performs better than the baseline
(NoDef) in terms of reducing attack accuracy. However, it is less effective than our proposed MIDRE
in both lowering attack accuracy and preserving natural accuracy.

• Masking Multiple Patches: Although distributing the masking across multiple smaller regions
provides some privacy benefits, masking a single large region—as done in our approach—still achieves
a better utility-privacy trade-off.
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D.2 Ablation study on Masking Values.

In this section, we examine the effect of masking value to MIDRE performance. We select attack method
= PLGMI (Yuan et al., 2023), T = FaceNet64, Dpriv = CelebA, Dpub = FFHQ. We set ae = (0.2,0.2).
Similar to (Zhong et al., 2020), we investigate four types of masking values: 0, 1, a random value, and the
mean value. In case of random value, we randomly select it within a range (0,1). The mean value uses the
ImageNet dataset’s mean pixel values ([0.485, 0.456, 0.406]).

Tab. D.14 demonstrates that the mean value offers the best balance between robustness against MI attacks
and maintaining natural image accuracy. Consequently, we adopt the Imagenet mean pixel values for masking
in MIDRE.

Table D.14: The effect of different masking value. We use attack method = PLGMI (Yuan et al., 2023),
T = FaceNet64, Dpriv = CelebA, Dpub = FFHQ. Overall, mean value achieves the best balance between
robustness against MI attacks and maintaining natural image accuracy.

Masking value Acc ↑ AttAcc ↓ ∆ ↑ Ranking
NoDef 88.50 95.00 ± 2.56 - -
0 83.72 69.20 ± 2.64 5.40 3
1 83.68 70.00 ± 3.18 5.18 4
random 80.76 51.87 ± 4.43 5.57 2
mean 85.14 68.87 ± 3.97 7.78 1

D.3 Ablation study on Area Ratio.

In MIDRE, the area ratio ae controls the portion of an image masked to prevent MI attacks. This experiment
investigates the impact of different ae values on MIDRE’s performance. In particular, ae is randomly selected
within the range (0.1, ah), guaranting that at least 10% of the image is always masked. We select three
values for ah: 0.3, 0.4, and 0.5. Similar to the previous ablation study, we employ attack method = PLGMI
(Yuan et al., 2023), T = FaceNet64, Dpriv = CelebA, Dpub = FFHQ. The masking process uses the ImageNet
mean pixel values.

The results in Tab. D.15 indicate that increasing ah strengthens MIDRE’s defense against MI attacks, but
this comes at the cost of reduced natural accuracy. To achieve a balance between robustness and natural
accuracy, we opt ah = 0.4 in MIDRE.

Table D.15: The effect of area ratio. We use attack method = PLGMI (Yuan et al., 2023), T = FaceNet64,
Dpriv = CelebA, Dpub = FFHQ. To achieve a balance between robustness and natural accuracy, we opt ah

= 0.4 in MIDRE.

ah Acc ↑ AttAcc ↓ ∆ ↑ Ranking
NoDef 88.50 95.00 ± 2.56 - -
0.3 83.55 65.07 ± 4.02 6.05 2
0.4 81.65 51.60 ± 3.61 6.34 1
0.5 78.50 45.40 ± 3.85 4.96 3

D.4 Ablation study on Aspect Ratio.

We perform an ablation study on the aspect ratio of random erasing for model inversion defense. The results
presented in Tab. D.16 demonstrate that the influence of aspect ratio on attack accuracy is not as significant
as that of area ratio.
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Table D.16: We report the LOMMA+KedMI attacks on images with resolution 64×64. T = VGG16, Dpriv

= CelebA, Dpub = CelebA with different aspect ratios of RE in MIDRE. We also put NoDef result as a
baseline.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

LOMMA+KedMI

NoDef 86.90 81.80 ± 1.44 - 1211.45
MIDRE 79.85 43.07 ± 1.99 5.49 1503.89

MIDRE(aspect ratio = 0.5) 81.32 49.13 ± 1.53 5.85 1424.40
MIDRE(aspect ratio = 2.0) 81.65 51.87 ± 1.62 5.70 1440.00

D.5 Adaptive attack

We perform adaptive attacks in which the attacker knows the portions of the masking area ae and uses it
during inversion attacks. We use 2 setups: Setup 1: T = ResNet152, Dpriv = Facescrub, Dpub = FFHQ,
Attack method = PPA, image size = 224 × 224. Setup 2: T = VGG16, Dpriv/Dpub = CelebA, Attack
method = LOMMA + KedMI, image size = 64 × 64. We use ae = [0.1,0.8] and ae = [0.1,0.4] for setup 1
and setup 2 to train MIDRE and during attack.

Adaptive attacks fail to enhance attack performance in both two experimental setups (See Tab.
D.17). This may be due to the dynamic masking positions employed in each attack iteration, hindering the
convergence of the inverted images. Overall, even when attackers are fully informed about RE and use this
knowledge to design an adaptive MI attack, they still fail to achieve accurate inversion results.

We compare the loss curves of the adaptive and normal attacks in Fig. D.7. The results show that the
dynamic masking positions in each iteration cause greater fluctuations in the adaptive attack loss compared
to the normal attack. In addition, PPA already incorporates learning rate adjustments during inversion,
which do not reduce the loss fluctuations.
Table D.17: We conduct the adaptive attacks where
the attacker knows the masking area portions ae and
uses them during inversion attacks. Adaptive at-
tacks (Adapt.Att) fail to enhance attack per-
formance in both setups.

Setup Attack AttAcc

Setup 1 MIDRE 15.97
MIDRE (Adapt.Att) 10.50 (-5.47%)

Setup 2 MIDRE 43.07
MIDRE (Adapt.Att) 38.53 (-4.54%)

Figure D.7: PPA and PPA(Adapt) loss curves,
with learning rate (Lr) adjustment.

D.6 The effectiveness of substitute pixels generated by inpainting for MIDRE.

We incorporated an inpainting method (Telea, 2004) to replace masked values, following the experimental
setup described earlier. Our results show that MIDRE (inpainting) modestly improves model accuracy while
reducing the attack success rate by 4.34%, which is indicated in Tab. D.18. However, this approach incurs
a higher computational cost compared to RE.

Table D.18: We report the LOMMA+KedMI attack on images with resolution 64×64. T = VGG16, Dpriv

= CelebA, Dpub = CelebA to target models trained with RE with substitue pixel generate by inpaiting.

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑

LOMMA+KedMI
NoDef 86.90 81.80 ± 1.44 1211.45

MIDRE 79.85 43.07 ± 1.99 1503.89
MIDRE (inpainting) 80.42 38.73 ± 1.27 1508.28
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E Discussion

We propose a new defense against MI attacks using Random Erasing (RE) during training. RE reduces
private information exposure while significantly lowering MI attack success, with small impact on model
accuracy. Our method outperforms existing defenses across 34 experiment setups using 7 SOTA MI attacks,
11 model architectures, 6 datasets, and user study.

E.1 Broader Impacts

Model inversion attacks, a rising privacy threat, have garnered significant attention recently. By studying
defenses against these attacks, we can develop best practices for deploying AI models and build robust
safeguards for applications, especially those that rely on sensitive training data. Research on model inversion
aims to raise awareness of potential privacy vulnerabilities and strengthen the defense.

E.2 Limitation

Firstly, we currently focus on enhancing the robustness of classification models against MI attacks. This is
really important because these models are being used more and more in real-life situations where privacy
and security are a major concern. In the future, we plan to expand our research scope to encompass MI
attacks and defenses for a broader range of machine learning tasks.

Secondly, while our current experiments are comprehensive compared to prior works (Zhang et al., 2020; Chen
et al., 2021; Nguyen et al., 2023; Kahla et al., 2022; Struppek et al., 2022; Ho et al., 2024; Koh et al., 2024)
which mainly focus on image data, real-world applications often involve diverse private/sensitive training
data. Addressing these real-world data complexities through a comprehensive approach will be essential for
building robust and trustworthy machine learning systems across various domains.

F Experiments Compute Resources

In order to carry out our experiments, we utilise a workstation equipped with the Ubuntu operating system,
an AMD Ryzen CPU, and 4 NVIDIA RTX A5000 GPUs. Furthermore, we utilise a secondary workstation
equipped with the Ubuntu operating system, an AMD Ryzen CPU, and two NVIDIA RTX A6000 GPUs.

G Related Work

G.1 Model Inversion Attacks

The GMI (Zhang et al., 2020) is a pioneering approach in model inversion to leverages publicly available data
and employs a generative model GAN to invert private datasets. This methodology effectively mitigates the
generation of unrealistic data instances. KedMI (Chen et al., 2021) can be considered an enhanced iteration of
the GMI model, as it incorporates the transmission of knowledge to the discriminator through the utilization
of soft labels. PLGMI (Yuan et al., 2023) is the current leading model inversion method in the field. It
leverages pseudo labels derived from public data and the target model. LOMMA (Nguyen et al., 2023)
employs an augmented model in order to reduce the model inversion overfitting. The augmented model
is trained to distill knowledge from a target model by utilizing public data. During attack, the attackers
generate images in order to minimize the identity loss in both the target model and the augmented model.
However, it should be noted that the aforementioned four approaches are specifically designed for target
models that have been trained on low-resolution data, specifically 64x64 for the CelebA private dataset.
Recently, PPA (Struppek et al., 2022), MIRROR (An et al., 2022), and DMMIA (Qi et al., 2023), IF-
GMI(Qiu et al., 2024) perform the attack on high resolution images. In addition, Kahla et. al. (Kahla et al.,
2022) introduced the BREPMI attack as a form of label-only model inversion attack, where the assault is
based on the predicted labels of the target model. Another work is RLBMI (Han et al., 2023), which utilizes
a reinforcement learning approach to target a model in a black box scenario.
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G.2 Model Inversion Defenses

To defend against MI attacks, differential privacy (DP) (Dwork, 2006; 2008) has been studied in earlier
works. Studies in (Dwork, 2006; 2008) have shown that current DP mechanisms do not mitigate MI attacks
while maintaining desirable model utility at the same time. More recently, regularizations have been pro-
posed for MI defenses (Wang et al., 2021; Peng et al., 2022; Struppek et al., 2024). (Wang et al., 2021)
propose regularization loss to the training objective to limit the dependency between the model inputs and
outputs. In BiDO (Peng et al., 2022), they propose regularization to limit the the dependency between
the model inputs and latent representations. However, these regularizations conflict with the training loss
and harm model utility considerably. To restore the model utility partially, (Peng et al., 2022) propose to
add another regularization loss to maximize the dependency between latent representations and the outputs.
However, searching for hyperparameters for two regularizations in BiDO requires computationally-expensive.
Recently, (Ye et al., 2022) introduced a new approach that utilises differential privacy to protect against
model inversion. (Gong et al., 2023) proposed a novel Generative Adversarial Network (GAN)-based ap-
proach to counter model inversion attacks. In this paper, we do not conduct experiments to compare to
these methods as the code is not available. (Struppek et al., 2024) study the effect of label smoothing
regularization on model privacy leakage. Their findings demonstrate that positive label smoothing factors
can amplify privacy leakage, whereas negative label smoothing factors mitigate privacy concerns at the cost
of a substantial decrease in model utility, resulting in a more favorable utility-privacy trade-off. Recently,
(Ho et al., 2024) introduce a novel approach to defending against model inversion attacks by focusing on the
model training process. Their proposed Transfer Learning-based Defense against Model Inversion (TL-DMI)
aims to restrict the number of layers that encode sensitive information from the private training dataset into
the model. As restricting the number of model parameters that encode private information can potentially
impact the model’s performance. (Koh et al., 2024) study the impact of DNN architecture designs, partic-
ularly skip connections, on model inversion attacks. They found that removing skip connections in the last
layers can enhance model inversion robustness. However, this approach necessitates searching for optimal
skip connection removal and scaling factor combinations, which can be computationally intensive. Both
TL-DMI and MI-RAD experiences difficulty in achieving competitive balance between utility and privacy.
We show comparison of several defense approaches with our MIDRE in Fig. 1 (main paper).
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