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ABSTRACT

Developing agents that can follow multimodal instructions remains a fundamen-
tal challenge in robotics and AI. Although large-scale pre-training on unlabeled
datasets (no language instruction) has enabled agents to learn diverse behaviors,
these agents often struggle with following instructions. While augmenting the
dataset with instruction labels can mitigate this issue, acquiring such high-quality
annotations at scale is impractical. To address this issue, we frame the problem as a
semi-supervised learning task and introduce GROOT-2, a multimodal instructable
agent trained using a novel approach that combines weak supervision with latent
variable models. Our method consists of two key components: constrained self-
imitating, which utilizes large amounts of unlabeled demonstrations to enable the
policy to learn diverse behaviors, and human intention alignment, which uses a
smaller set of labeled demonstrations to ensure the latent space reflects human
intentions. GROOT-2’s effectiveness is validated across four diverse environ-
ments, ranging from video games to robotic manipulation, demonstrating its robust
multimodal instruction-following capabilities.

Figure 1: By feeding a mixture of demonstrations and some multimodal labels, we learn GROOT-2, a human-
aligned agent capable of understanding multimodal instructions and adaptable to various environments, ranging
from video games to robot manipulation, including Atari, Minecraft, Language Table, and Simpler Env.

1 INTRODUCTION

Developing policies that can follow multimodal instructions to solve open-ended tasks in open-world
environments is a long-standing challenge in robotics and AI research. With the advancement of
large-scale pretraining (Brown et al., 2020; Baker et al., 2022; Brohan et al., 2022), the research
paradigm for instruction-following policies has shifted from reinforcement learning to supervised
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Figure 2: The ELBO Objective of the VAE and Latent Space Spectrum. We define a spectrum based on
R = BC

BC+KL
, where R = 0 corresponds to “mechanical imitation” and R = 1 to “posterior collapse.” At

low R, latent vector z directly outputs action sequences without considering observations ( BC → 0 ). As R
increases, z represents high-level task information, such as specific object interactions. At R = 1, z provides no
beneficial information for decision-making.

learning. In a supervised learning approach, researchers collect large amounts of demonstration data
and annotate each demonstration with multimodal instructions—such as videos (Duan et al., 2017;
Jang et al., 2022), texts (Padalkar et al., 2023; Lynch et al., 2023), and episode returns (Chen et al.,
2021)—using hindsight relabeling. In theory, the instruction-following capability of such policies
improves as the dataset grows. However, annotating demonstrations with high-quality multimodal
labels is prohibitively expensive, making it challenging to scale these methods in practice.

Another line of work (Lynch et al., 2020c; Ajay et al., 2020; Cai et al., 2023b) avoids the need for
additional human annotations by learning from demonstration-only data in a self-supervised manner.
These approaches leverage latent variable generative models (Kingma & Welling, 2013) to jointly
learn an encoder and a latent-conditioned policy. The resulting policy is capable of completing
multiple tasks specified by a reference video (Cai et al., 2023b). While a reference video is generally
expressive enough to represent various tasks, the inherent ambiguity in videos can lead to a learned
latent space that is misaligned with human intention. For example, the encoder module may capture
the dynamics between adjacent frames in a video, thereby learning a latent representation of the
action sequence—a process we refer to as “mechanical imitation.” While this latent space accurately
reconstructs the target action sequence, the resulting latent representation is difficult for human users
to leverage during policy deployment. Another potential issue is “posterior collapse,” where the latent
space collapses to a single point and loses its influence over the policy during inference. We attribute
this mismatch between training and inference to the absence of direct supervision for aligning the
latent space with human intention. As illustrated in Figure 2, an ideal controllable latent-induced
policy space must strike a balance between these two extremes.

We present GROOT-2 (refer to Figure 1), a multimodal instructable agent developed using a latent
variable model under weak supervision. To unify the training pipeline, we encode instructions from
all modalities as distributions over the latent space. The training objectives consist of two key compo-
nents: (1) constrained self-imitating, which utilizes large amounts of unlabeled demonstrations to
enable the latent-conditioned policy to learn diverse behaviors; and (2) human intention alignment,
which uses relatively small sets of multimodal labels to align the latent space with human intentions.
Specifically, we apply the maximum log-likelihood method in the latent space for alignment. The un-
derlying principle is that the latent embedding encoded by multimodal labels should also be sampled
from the distribution learned from the corresponding video. Our approach is both general and flexible,
as demonstrated through evaluations across four diverse environments—ranging from video games to
robotic manipulation—including Atari Games (Bellemare et al., 2013), Minecraft (Johnson et al.,
2016), Language Table Lynch et al. (2023), and Simpler Env (Li et al., 2024). These experiments
highlight GROOT-2 ’s robust ability to follow multimodal instructions, with extensive tests showing
that scaling up either unlabeled or labeled demonstrations further enhances performance.

2 BACKGROUND AND PROBLEMS

2.1 LATENT VARIABLE MODELS ENABLE CONTROLLABLE BEHAVIOR GENERATION

In recent years, the GPT series (Radford, 2018; Radford et al., 2019; Brown et al., 2020) has
demonstrated impressive capabilities in controllable text generation. Its success can be attributed to
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self-supervised pretraining and the advantageous properties of natural language. A natural language
paragraph contains rich dependencies between sentences. For instance, the title of an article sets the
central theme for its body, and the response in a question-answer or dialogue is highly correlated
with the preceding text. This characteristic enables large language models, trained via next-token
prediction, to achieve controllable text generation through prompts during inference. Unfortunately,
such strong correlations do not exist between low-level actions. A desired behavior may not have
a necessary preceding trajectory segment. Thus, it isn’t easy to prompt a pre-trained policy model
to generate a desired behavior. Instead, the generation of actions depends on an underlying latent
intention variable. A natural approach is to employ latent variable generative models to jointly model
trajectory data and the latent variables that drive them, allowing for controllable behavior generation
by manipulating the latent variables during inference. Next, we will elaborate on how latent variable
models model trajectory data.

As a classic latent variable generative model, Variational Autoencoder (VAE, Kingma & Welling
(2013)) has been widely used in fields such as image generation and text generation. With the
development of the offline pretraining paradigm, recent years have seen an increasing number of
works utilizing VAE to model trajectory data. Typically, its architectures consist of three components:
a posterior encoder, a prior encoder, and a policy decoder. The posterior encoder, q(z|τ), encodes
a specific behavioral trajectory τ = (o1:N ,a1:N ) and generates a posterior distribution over the
latent space. When the action sequence can be accurately inferred from the observation sequence
(Baker et al., 2022; Zhang et al., 2022)—i.e., when the inverse dynamics model of the environment
pIDM(a1:N |o1:N ) is easily learned—the action sequence can be excluded from the posterior’s input
(Cai et al., 2023b), thus reducing the distribution condition to o1:N . The prior encoder, p(z|o1:k),
generates a distribution over the latent space based on the history of observations, where k denotes
the length of the observation window. When k = 0, the prior distribution is independent of historical
observations and is typically assumed to follow a standard normal distribution N (0; 1). The decoder,
π(at|o1:t, z), is generally a latent-conditioned policy that takes in the environment’s observations
along with a specific latent variable to predict the next action to be executed. According to variational
inference theory, we can optimize the VAE’s modeling capabilities by maximizing the Evidence
Lower Bound (ELBO)

LELBO = Ez∼q(z|o1:N )

[
N∑
t=k

− log π(at|o1:t, z)

]
+DKL(q(z|o1:N ) ∥ p(z|o≤k)). (1)

There are generally three main objectives for using VAE to model trajectory data: (1) Modeling
multimodal behaviors (Lynch et al., 2020a; Mees et al., 2022): For instance, when trajectory data
is collected from different individuals, the variations in action sequences across different behavior
modes can be substantial. Directly applying a naive behavior cloning algorithm may result in poor
modeling performance. Introducing an additional latent variable to differentiate between behavior
modes can help mitigate conflicts between them during training. (2) Skill discovery (Xu et al.,
2023; Gupta et al., 2019): Complex trajectory data is often composed of various skills. A VAE can
abstract action sequences in a self-supervised manner, enabling skill reuse in downstream tasks, such
as accelerating the exploration process in reinforcement learning (Pertsch et al., 2021; Ajay et al.,
2020). (3) Following reference videos to complete open-ended tasks (also known as one-shot
demonstration learning, Cai et al. (2023b)): This approach aims to leverage the learned posterior
encoder to recognize the underlying intention behind a reference video and encode it as a latent,
which can then drive a policy to complete the specified task in a novel deployment. It points to a way
to pre-train instruction-following policies using unlabeled trajectory data. We primarily focus on the
third objective in the following paragraphs.

2.2 MODELING BEHAVIORS WITH VAE LEADS TO AMBIGUOUS LATENT SPACE

Several studies on VAE (Alemi et al., 2018; Abeer et al., 2024) have pointed out that the Pareto
frontier of the ELBO contains an infinite number of solutions for the latent space, a phenomenon we
refer to as latent space ambiguity. To facilitate understanding, we provide an informal illustration
in Figure 2, which shows several possible latent spaces when a VAE is used to model behaviors,
all having similar ELBO values. We differentiate these latent spaces using the ratio R = BC

BC+KL ,
where R = 0 and R = 1 represent two extremes of the latent space. When R approaches 0, the
latent condition contains much information, nearly dictating every action of the policy’s behavior. We
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Figure 3: Comparison of Policies with Different Latent Spaces. The reference video depicts digging for
diamonds. A policy that mechanically imitates the trajectory falls into lava, while one aligned with human
intention avoids lava and successfully reaches the diamonds.

refer to this as mechanical imitation, where the VAE effectively degenerates into an Autoencoder
(AE). Conversely, when R approaches 1, the latent loses its ability to control the policy’s output, a
phenomenon known as posterior collapse (Fang et al., 2019; Pagnoni et al., 2018), in which the
VAE reduces to an Auto-regressive (AR) model. Intuitively, as R increases, the information encoded
in the latent space becomes more high-level, and the policy relies more on environmental feedback
(observations) to make decisions that align with the dataset’s distribution. On the other hand, when R
is smaller, the policy tends to down-weight the environment’s observations.

Not all latent spaces effectively support following a reference video. As shown in Figure 3, the
gap between the environment state in the reference video and during policy deployment requires
the posterior encoder to extract intentions independent of environmental dynamics. For instance, in
the Minecraft task “mining a diamond underground,” a reference video may show a player walking
forward and mining a diamond. If the latent encodes only the trajectory sketch, the policy might fail
by colliding with obstacles in the deployment environment. This mismatch occurs because humans
interpret the video as “mining the diamond” rather than copying specific actions. Aligning the latent
space with human intentions is critical for improving policy steerability.

3 ALIGNING POLICY LEARNERS WITH WEAK SUPERVISION

We explore the development of instructable agents based on latent variable models. To avoid “latent
space ambiguity”, we introduce human intention knowledge into the generative pretraining process
of the policy model to assist in shaping the latent space. As multimodal labels associated with
demonstrations carry rich human intention details, we propose a weakly supervised policy learning
algorithm to leverage large amounts of unlabeled demonstration data to learn the latent space while
using a small amount of multimodal labeled data to align the latent space with human intention.
Ultimately, this enables instructions from all modalities to be unified within the same latent space.
Next, we will elaborate on the dataset collection, training pipeline, and inference procedure.

Dataset Collection. We can collect two types of training data from the web: a large set of unlabeled
demonstrations Ddem = {(o1:N ,a1:N )} and a relatively small set of annotated demonstrations
Dlab = {(o1:N ,a1:N ,w1:M )}, where o is the image observation provided by the environment, a is
the action taken by the policy, w is the word token, N is the length of a demonstration, M is the
length of an annotation sentence. The annotation sentence can be multimodal, such as a language
sentence (with M ≥ 1) or a scaler of the episode return (with M = 1), which explains the behavior
or outcome of the demonstration from a human’s perspective. Since the annotation data is expensive
to collect, we have |Dlab| ≪ |Ddem|.
Training Pipeline. Our goal is to learn a shared latent spaceZ , per-modal instruction encoders e(z|c),
and a latent-conditioned policy π(at|o≤t, z). Leveraging past observations is essential for a policy to
make decisions in a partially observable environment such as Minecraft (Johnson et al., 2016). We call
the learned policy model GROOT-2, whose training pipeline is shown in Figure 4. For an unlabeled
demonstration (o1:N ,a1:N ), we use the encoder module to produce a prior distribution e(z|o1) and a
posterior distribution e(z|o1:N ). Using the reparameterization trick (Kingma & Welling, 2013), we
sample the latent z from the posterior distribution e(z|o1:N ) and train the policy model, conditioned
on z and o1:t, to reconstruct the entire action sequence causally. To limit the information presented in
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Figure 4: Pipeline for Constructing a Training Batch for GROOT-2. Each batch includes two sample types:
(1) demonstration-only samples for learning a latent-conditioned policy (Constrained Self-Imitating); and (2)
labeled samples (text or expected returns) for aligning the latent space with human intentions (Human Intention
Alignment). The sample ratio varies by dataset distribution.

the latent space, we introduce an auxiliary KL divergence term in the objective:

Ldem(o,a) = Ez∼e(z|o1:N )

[
N∑
t=1

− log π(at|o1:t, z)

]
+ β1DKL(e(z|o1:N ) ∥ e(z|o1)). (2)

This allows the model to leverage demonstration-only data to enhance the complexity of the la-
tent space, a process we refer to as “constrained self-imitating.” For a labeled demonstration
(o1:N ,a1:N ,w1:M ), we pass the label w1:M through the encoder module to obtain a latent distribu-
tion and train the policy model to reconstruct the action sequence based on the latent z sampled from
this distribution e(z|w1:M ). This allows human knowledge to be modeled in the latent space. Further,
to make the encoder understand demonstration o1:N just like humans, we introduce an auxiliary MLE
term: maximize the log-likelihood of e(z|o1:N ) given the latent z sampled from e(z|w1:M ). Unlike
the prior behavior cloning term, the aligning term can be quickly calculated in closed form. This
process is referred to as “human intention alignment”:

Llab(o,a,w) = Ez∼e(z|w1:M )

[
N∑
t=1

− log π(at|o1:t, z)

]
− β2Ez∼sg[e(z|w1:M )] [log e(z|o1:N )] , (3)

where sg[·] denotes stop gradient operation. The MLE-based alignment objective ensures that the
latent sampled from the label-conditioned distribution e(z|w1:M ) can also be sampled from its
video-conditioned distribution e(z|o1:N ). The final loss function combines the two objectives:

L(Ddem,Dlab) = E(o,a)∼Ddem [Ldem(o,a)] + E(o,a,w)∼Dlab [Llab(o,a,w)] . (4)

Specific implementation details, such as the model design choice, can be found in the Appendix A.

Inference Procedure. GROOT-2 supports two types of instructions during inference: (1) visual-
based instruction – the user can either retrieve a demonstration from the dataset as a reference video or
manually record a reference video to serve as the condition for the policy; (2) label-based instruction
– the user can input a text sentence or specify an expected return as the condition (depending on the
label modality used during the model’s training). We tested them in the following experiments.

4 CAPABILITIES AND ANALYSIS

We aim to address the following questions: (1) How does GROOT-2 perform in open-world video
games and robotic manipulation? (2) Can GROOT-2 follow instructions beyond language and video?
(3) What insights can be gained from visualizing the learned latent space? (4) How does GROOT-2
scale with labeled and unlabeled trajectories? (5) What is the impact of backbone initialization on
performance? (6) How do language and video losses influence performance?

Environment and Benchmarks. We conduct experiments across four types of representative
environments: classical 2D game-playing benchmarks on Atari (Bellemare et al., 2013), 3D open-
world gameplaying benchmarks on Minecraft (Johnson et al., 2016; Lin et al., 2023), and Robotics
benchmarks on Language Table simulator (Lynch et al., 2023) and Simpler Env simulator(Li et al.,
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Figure 5: Diverse visual environments used in the experiments. We test our GROOT-2 on both video games
(simple Atari games and the complex Minecraft game) and robotic manipulation environments (Language Table
and Simpler Env). Minecraft is a partially observable open-ended environment, while others are fully observable.

Table 1: Results on the Open-World Minecraft Benchmark. This benchmark includes 8 task families and
100 tasks. Each task is evaluated 30 times across three seeds, and the average success rate is calculated per task
family. For example, Combat (16) indicates 16 tasks in the Combat family.

Methods Prompt Combat Hunt Ride Breed Craft Mine Interact Plant
(16) (10) (4) (8) (20) (20) (10) (12)

VPT N/A 11±3 20±4 7±2 2±0 4±1 7±2 21±6 22±7

STEVE-1 lang 12±3 9±2 54±8 4±2 5±2 6±3 53±9 33±8

STEVE-1 visual 15±4 10±3 38±9 6±2 6±2 10±4 40±8 43±7

GROOT-1 visual 18±5 28±8 26±6 12±3 15±4 22±7 57±8 75±6

GROOT-2 lang 40±7 43±5 46±6 22±6 18±3 37±5 55±4 75±9

GROOT-2 visual 37±4 48±7 51±4 20±4 27±3 36±7 63±6 77±7

2024), illustrated in Figure 5. These four simulators are used to evaluate whether GROOT-2 can
be effectively steered by returns (Chen et al., 2021; Mnih et al., 2015), reference videos (Cai et al.,
2023b; Jang et al., 2022), and textual instructions (Brohan et al., 2022; 2023).

Results on the Open-World Minecraft Benchmark. To evaluate policy models in Minecraft, we
used the contractor dataset from Baker et al. (2022), containing 160M frames. According to the
meta information, labeled trajectories account for approximately 35% of the total data. We extended
the Minecraft SkillForge Benchmark (Cai et al., 2023b) from 30 to 100 tasks, grouped into eight
families: Combat, Hunt, Ride, Breed, Craft, Mine, Interact, and Plant. Details are in the Appendix C.
We compared GROOT-2 with three baselines: (1) VPT (Baker et al., 2022), a foundational model
trained on YouTube data via imitation learning, lacking instruction-following; (2) STEVE-1 (Lifshitz
et al., 2023), which supports text and future image-conditioned instructions; and (3) GROOT-1 (Cai
et al., 2023b), a self-supervised model using reference videos as instructions. Key findings from
Table 1 are as follows: (1) GROOT-2 (visual) consistently outperforms GROOT-1 across all task
categories, with particularly notable gains in mob interaction tasks like Combat and Hunt. Comparing
trajectories on Hunt, GROOT-1 mechanically repeats “attack” actions, while GROOT-2 actively
tracks objects, showing that text data enhances object-centric understanding and better aligns with
human intentions. (2) GROOT-2 (text) performs similarly to GROOT-2 (visual) across most tasks,
demonstrating that language and visual modalities share task knowledge. This enables the model to
leverage both modalities for improved task completion. This highlights the advantage of combining
multimodal data for better alignment with human intentions and improved policy performance.

Results on the Language Table benchmark. To assess GROOT-2’s multimodal instruction
following capabilities in the context of Robotic Table Manipulation, we utilized the Google Language
Table as our testing platform and compared it with methods such as LAVA (Lynch et al., 2023), RT-1
(Brohan et al., 2022), GROOT-1 (Cai et al., 2023b). We utilize a dataset provided by Lynch et al.
(2023) comprising 100M trajectories. We removed the text labels from half of the trajectories in the
dataset, creating a 1 : 1 ratio of labeled to unlabeled trajectories. Given that the Language Table
environment comes with five task families, all of which are instructed solely through language, we
curated five reference videos for each task with relatively clear intentions to evaluate the model’s
ability to comprehend video instructions. Detailed specifics are provided in the appendix D. The
experimental results are shown in the Table 2. We observed that: (1) GROOT-2 leads by an absolute
success rate of 4% following text-based instructions compared, likely due to GROOT-2’s more
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Table 2: Results on the Language Table Benchmark. We reported success rates (in %) within 200 steps for
each instruction modality, averaging over 250 rollouts. Results are averaged over 3 seeds with mean and stderr.
“-” indicates missing data. The percentages in parentheses indicate the proportion of labels used.

Task Family BC-Zero LAVA RT-1 GROOT-1 GROOT-2 (50%) GROOT-2 (100%)

lang lang lang visual lang visual lang visual

block to block - 90±2 - 8±2 84±9 78±9 86±8 82±7

block to absolute loc - 72±4 - 10±3 70±8 68±8 76±6 70±8

block to block relative loc - 72±3 - 4±1 74±9 64±7 76±8 62±6

block to relative loc - 64±4 - 8±2 82±5 78±6 84±6 80±4

separate two blocks - 94±2 - 12±2 98±1 96±2 98±0 98±0

Overall 72±3 78±4 74±13 8±2 82±8 76±7 84±6 78±8

Table 3: Results on the Simpler Env Benchmark. We report the success rate (in %) of the video-instruction
and language-instruction following for each model on 3 task families. The percentages in parentheses indicate
the proportion of labels used.

Methods Prompt Pick Coke Can Move Near Open/Close Drawer

H-Pose V-Pose S-Pose Avg Avg Open Close Avg

RT-1-X lang 57 20 70 49 32 7 52 29
Octo-base lang 5 0 1 1 3 0 2 1

GROOT-2 (50%) visual 42 18 52 37 35 29 30 30
lang 52 20 50 41 42 27 33 30

GROOT-2 (100%) visual 40 22 47 36 35 27 33 30
lang 53 23 52 42 45 27 35 31

refined model architecture design. We mark the results of RT-2 in gray here, as it uses significantly
more training data than ours. (2) The performance of GROOT-2 in following video instructions
dropped by approximately 6% compared to text instructions, possibly due to the ambiguity of the
reference videos, where a “block to block” type video could be interpreted as a “block to relative
location” type task. (3) GROOT-1 struggled to understand the intentions conveyed by the reference
videos. We observed that GROOT-1 imitated a reference video’s trajectory sketch rather than their
colors and shapes. This further underscores the importance of introducing language annotations for
some trajectory data as a crucial method to align with human intentions.

Results on the Simpler Env Benchmark. We utilized the Simpler Env (Li et al., 2024) simulation of
the Google Robot environment to evaluate the policy’s capability in controlling complex robotic arms.
GROOT-2 is trained on the OpenX dataset (Collaboration et al., 2023). We erased the text labels
from half of the dataset’s trajectories, achieving a 1:1 balance between labeled and unlabeled data.
We evaluated three types of tasks: Pick Coke Can, Move Near, and Open/Close Drawer. Following
Li et al. (2024); Brohan et al. (2023), we set up multiple variants for each task. For instance, the Pick
Coke Can task involved three different poses for the Coke can; in the Move Near task, the layout and
types of objects varied; and in the Open/Close Drawer task, the drawer had three layers from top to
bottom. We compared GROOT-2 with baseline methods such as RT-1 (Brohan et al., 2022), and
Octo (Octo Model Team et al., 2024). Among these, RT-1-X is an efficient language-conditioned
transformer-based policy trained on the entire OpenX (Collaboration et al., 2023) dataset, which can
be considered the performance boundary that GROOT-2 can achieve. As shown in Table 3, we found
that GROOT-2 (lang) and GROOT-2 (visual) achieved comparable performance to the RT-1-X
model across all three tasks. This indicates that our method retains language control capabilities and
imbues the policy with equivalent visual instruction control abilities.

Can GROOT-2 Follow Instructions Beyond Language and Video, Like Episode Returns?

We evaluated GROOT-2 ’s steerability and performance on four Atari games (Breakout, Demon
Attack, Hero, and Name This Game). Datasets from Agarwal et al. (2020), containing approximately
10M frames per game, were used. Episode returns were normalized to µ = 0, σ = 1.

For training, we constructed a dataset with 30% labeled trajectories (returns) and 70% unlabeled
data. Using this dataset, we trained GROOT (wsl) (weakly supervised learning). For comparison,
GROOT (ssl) was trained on the same dataset without return labels in a fully self-supervised manner.
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Figure 6: Comparison of Weakly Supervised (WSL) and Self-Supervised (SSL) Learning on 4 Atari Games.
Policies are evaluated under return and reference video conditions. For return conditioning, normalized returns
are input into the encoder, while for video conditioning, videos with similar returns (error < 0.05) are used.

Figure 7: t-SNE Visualization of Learned Latent Spaces on Four Atari Games. The first row shows
results under self-supervised learning, while the second row displays GROOT-2 ’s performance under weakly
supervised learning. Points represent reference videos, with shapes indicating games and colors denoting episode
returns. The first four columns compare individual games, and the last column shows a mixed-game comparison.

Both models were jointly trained across the four games. During inference, we evaluated policy perfor-
mance in following reference videos sampled from the test set with normalized returns {−1, 0,+1},
using 20 samples per category. Results (Figure 6) show: (1) GROOT (ssl) can recognize behavioral
quality in reference videos, constructing a rough intention space even without labeled guidance. (2)
Labeled data significantly improved GROOT (wsl)’s ability to understand video instructions, with the
greatest gains in Hero and Name This Game. We also evaluated GROOT (wsl) on return-style instruc-
tions with normalized rewards {−1, 0,+1}. The similarity between video and reward-conditioned
performance suggests the video encoder and reward encoder share the same intention space. The
Atari experiments aim to evaluate GROOT-2 ’s performance on modalities beyond language and
video, rather than maximizing scores, distinguishing it from traditional offline RL methods.

What Does the Visualization of the Learned Latent Space Reveal?

We applied t-SNE to visualize embeddings from randomly sampled reference videos. Each point in
Figure 7 represents a unique video, with shapes denoting game environments and colors indicating
episode returns. The first row illustrates results for GROOT (ssl), where videos in Breakout, Demon
Attack, and Name This Game are classified into two categories based on episode return magnitudes,
suggesting that the self-supervised algorithm distinguishes only significant score differences. In
contrast, GROOT (ssl) shows poor clustering and limited steerability in the Hero game. The second
row shows results for GROOT (wsl), which captures continuous variations in video behavior quality
across all games. As shown in the fifth column, embeddings from different environments follow
a continuous pattern aligned with reward labels, indicating a shared latent space that promotes
cross-environment knowledge transfer.

How Does Scaling Up Unlabeled Trajectories Impact Performance?

We trained four GROOT-2 variants with 0%, 25%, 50%, and 100% unlabeled data in Minecraft.
Performance was tested on five Minecraft tasks (Chop Tree, Hunt Animals, Combat Enemies, Open
Chest, Climb Mountain) and scored relative to skilled human players. For example, if a human
collects 20.0 logs in 600 steps and GROOT-2 collects 15.0, the score is 0.75. Results (Figure 8) show
consistent improvement with more unlabeled data, with the 100% variant achieving a 5× gain in the

8



Published as a conference paper at ICLR 2025

Figure 8: Performance Comparison on Unlabeled Demonstrations. Human-normalized task scores are
averaged over 20 rollouts across 5 Minecraft tasks to evaluate the agent’s reference-video following ability.

Climb Mountain task over the 0% version. It is worth noting that the Climb Mountain and Open
Chest tasks do not have language instructions in the training set.

How Does Scaling Up Labeled Trajectories Impact Performance?

Figure 9: Ablation Study on Labeled
Trajectories in the Language Table.

To evaluate the impact of labeled trajectory proportions in
the training set on the instruction-following capabilities of
GROOT-2, we conducted experiments on the Language Table
benchmark. The total number of trajectories remained constant
across different dataset configurations, with only the propor-
tion of trajectories containing text labels varying. Figure 9
reports the success rate achieved by GROOT-2 conditioned
on language. At low labeled data proportions (0%−25%), the
success rate rapidly increased from 10% to 65%, indicating
that labeled data significantly influences model performance.
However, as the labeled data proportion increased to 50%− 80%, the success rate plateaued, rising
slightly from 82% to 83%, demonstrating diminishing marginal gains from additional labeled data.
Therefore, under resource constraints, a labeled data proportion of 50% may represent the optimal
balance between performance and cost.

How Does Backbone Initialization Affect Performance?

We evaluated different initializations for ViT (random, ImageNet, CLIP) and BERT (random, BERT,
CLIP) on the Language Table Benchmark. For randomly initialized models, both backbones were
unfrozen during training. According to Table 4, CLIP initialization yielded the best results for ViT,
followed by ImageNet, with minimal difference between them, while random initialization performed
worst. For BERT, CLIP and standard BERT initialization performed similarly, both surpassing
random initialization. Initializing vision and language encoders with CLIP parameters improves
policy performance and reduces training time.

Backbone ViT ViT ViT/BERT BERT BERT

Weights - ImageNet CLIP - BERT
SR (in %) 76±10 80±11 82±8 79±12 81±8

Table 4: Ablation study on the backbone initialization.

Variants −Llab baseline −Ldem baseline

Prompt vision vision lang lang
SR (in %) 10±2 76±7 12±3 82±8

Table 5: Ablation on Llab and Ldem objectives.

How Does Language and Video Losses Impact Performance?

The Llab loss significantly enhances the model’s understanding of reference videos, as observed in
the Language Table environment. We compared a variant without Llab loss to the full GROOT-2
model, both trained on the same scale of the Language Table dataset, and tested their ability to follow
reference videos using standard evaluation scripts. As shown in Table 5, the variant without Llab
loss failed to complete any tasks. Further analysis of its output videos revealed that it mechanically
mimicked the arm movement trajectories in the reference videos, completely ignoring object colors
and shapes, which is inconsistent with human understanding of the reference videos.

The Ldem loss is indispensable in the GROOT-2 architecture. Removing Ldem causes the pipeline
to degrade into an autoencoder when processing unlabeled data. Without constraints on the latent
encoding, the model tends to learn the video encoder as an inverse dynamics model, encoding low-
level action sequences in latent z instead of high-level task information, thereby significantly reducing
the behavior cloning loss. Additionally, Table 5 show that removing Ldem causes the language
encoder’s latent z to collapse, leading to a dramatic drop in task success rates.
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5 RELATED WORKS

Learning Policies Across Diverse Domains. Developing policies for sequential control tasks in
real and virtual environments poses significant challenges. Research spans domains such as robotic
manipulation (Yu et al., 2019; Lynch et al., 2023), video games (Bellemare et al., 2013; Guss et al.,
2019), and embodied navigation (Hong et al., 2020; Savva et al., 2019; Huang et al., 2023), with
approaches categorized into reinforcement learning (RL) and imitation learning (IL) based on reward
function reliance. For video games with dense rewards (e.g., ALE platform (Bellemare et al., 2013)),
online RL algorithms can achieve superhuman performance (Mnih et al., 2015; Badia et al., 2020)
but suffer from low efficiency, risky interactions, and limited generalization. These challenges restrict
their applicability to physical (Padalkar et al., 2023) or embodied environments (Guss et al., 2019),
where rewards and cheap interactions are unavailable. IL, as a supervised learning paradigm, addresses
these issues through batch efficiency and scalability with large datasets, leveraging Transformer
architectures (Zhang & Chai, 2021; Pashevich et al., 2021; Jang et al., 2022). The RT-X series (Brohan
et al., 2022; 2023; Padalkar et al., 2023) advances robotic manipulation by training Transformers
on large expert demonstration datasets, achieving strong zero-shot generalization. Similarly, Baker
et al. (2022) developed a Transformer-based policy for Minecraft using internet-scale gameplay data,
solving the diamond challenge. Building on this, Schmidhuber (2019) frames RL as supervised
learning, while Chen et al. (2021); Lee et al. (2022) introduce “decision transformers” to model joint
distributions of rewards, states, and actions from offline data, highlighting the potential for unified
policy learning within Transformers.

Learning Policies to Follow Instructions. Enabling policies to follow instructions is key to building
general-purpose agents. A common approach involves using language annotations from offline
demonstrations to train language-conditioned policies (Abramson et al., 2020; Brohan et al., 2022;
Reed et al., 2022; Cai et al., 2023a; Huang et al., 2023; Raad et al., 2024; Wang et al., 2023a;b),
leveraging the compositionality of natural language for generalization. However, obtaining high-
quality annotations is costly. An alternative uses anticipated outcomes as instructions. Majumdar
et al. (2022) trained an image-goal conditioned navigation policy via hindsight relabeling (HER)
(Andrychowicz et al., 2017) and aligned goal spaces with text. Similarly, Lifshitz et al. (2023) used
this strategy for open-ended tasks in Minecraft. Generative latent variable models offer another
solution, using label-free demonstrations to train plan-conditioned policies (Lynch et al., 2020b; Ajay
et al., 2020). Extending this, Cai et al. (2023b) applied a posterior encoder to interpret reference
videos in Minecraft. Policy learning with weak supervision remains less explored. Lynch & Sermanet
(2020) proposed a shared latent space conditioned on language and HER-generated goal images,
while Jang et al. (2022) replaced goal images with video labels under full supervision. Jain et al.
(2024) trained robots using human videos as task representations but required extensive paired video-
trajectory data. Myers et al. (2023) combined labeled and unlabeled trajectories, aligning start-goal
pairs with language via contrastive learning, effective for Table Manipulation but limited in handling
complex tasks or generalizing to partially observable environments like Minecraft.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

This paper investigates the joint learning of a latent intention space and a multimodal instruction-
following policy under weak supervision. We identify the “latent space ambiguity” issue in latent
variable generative models when handling text-free trajectory data, arising from the absence of
direct human guidance in shaping the latent space. To address this, we propose a weakly supervised
algorithm for training GROOT-2. Evaluations across four diverse environments, from video games
to robotic manipulation, demonstrate GROOT-2 ’s generality and flexibility in following multimodal
instructions. However, GROOT-2 ’s reliance on trajectory data for training limits its applicability to
video data, which lacks action labels. Considering the abundance and diversity of video data available
online compared to trajectory data, extending the weak supervision framework to leverage both play
and trajectory data would be a promising avenue for future work.
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A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

This section outlines the architectural design choices employed in our approach. GROOT-2 utilizes
a Transformer encoder-decoder architecture, augmented with a probabilistic latent space. We detail
the components of the model in a structured sequence: extract representations, encode instructions,
and decode actions.

Extract Representations. This paragraph elaborates on the backbone networks used to extract repre-
sentations from various data modalities. We denote the modalities of image observation, language
instruction, and expected returns as o1:N , w1:M , and r, respectively. For vision inputs, we utilize
a pre-trained Vision Transformer (ViT) (Dosovitskiy et al., 2020) initialized with CLIP (Radford
et al., 2021) weights. Specifically, the t−step image observation ot is resized to 224 × 224 and
processed to extract 7× 7 patch embeddings xo

t =
〈
xo
t,[1], · · · , x

o
t,[49]

〉
. The video representation

xv is then composed of the averages of these embeddings across the video frames, denoted as
xv = ⟨avg(xo

1), · · · , avg(xo
N )⟩, where avg(·) refers to spatial average pooling to minimize com-

putational overhead and N represents the video length. Textual inputs are processed using the
BERT encoder (Devlin et al., 2019) of the CLIP model. Rather than utilizing the [CLS] token as the
final representation, we retain all word embeddings generated by BERT as xw =

〈
xw
[1], · · ·

〉
. The

BERT model parameters are kept frozen during training. For the scalar-form modality of expected
returns, we employ a simple Multi-Layer Perceptron (MLP) to process these values, represented as
xr ← MLP(r). These embeddings are then forwarded to subsequent modules.

Encode Multimodal Instructions with Non-Causal Transformer. Recent works (Reed et al., 2022;
Lu et al., 2023; Team et al., 2023) have demonstrated the Transformer’s effectiveness in capturing
both intra-modal and inter-modal relationships, which inspires us to adopt a unified Transformer
encoder for encoding multimodal instructions. This approach offers two significant advantages:
(1) It eliminates the need for designing separate architectures and tuning hyperparameters for each
modality. (2) It promotes the sharing of underlying representations across different modalities.
Instructions are represented as a sequence of embeddings. Before encoding, each embedding is
augmented with a modality-specific marker. For instance, video instructions are represented as
⟨xv

1 + [VID], · · · , xv
N + [VID]⟩, where [VID] is a learnable embedding.

Decode Action with Causal Transformer. Given a latent z and a temporal sequence of perceptual
observations o1:t, the policy aims to predict the next action at. Following prior works (Baker et al.,
2022; Cai et al., 2023b; Raad et al., 2024), we employ the Transformer-XL model (Dai et al., 2019)
in our policy network, which enables causal attention to past memory states and facilitates smooth
predictions. Additionally, we utilize the shared vision backbone to extract vision representations,
thereby representing perceptual inputs as xo

1:t. A significant challenge with this approach is low
efficiency: each new observation xo

t adds up to 49 tokens to the input sequence, substantially
increasing memory and computational demands. To address this issue, we introduce a pre-fusion
mechanism inspired by Abramson et al. (2020); Lynch et al. (2023); Alayrac et al. (2022). Specifically,
we deploy a lightweight cross-attention module XATTN(q = ·; kv = ·) to perform spatial pooling on
xo
t , using z as the query and

〈
xo
t,[1], · · · , x

o
t,[49]

〉
as the keys and values:

xz
t ← XATTN(q = z; kv = xo

t,[1], · · · , x
o
t,[49]). (5)

This pre-fusion mechanism not only reduces the sequence length but also enhances the integration
of perceptual and latent representations. Utilizing the latent-fused representations xz

1:t as the input
sequence, we articulate the action decoding process in an autoregressive manner:

at ← TransformerXL(xz
1, · · · , xz

t ). (6)

A.2 HYPER-PARAMETERS

Hyper-parameters for training GROOT-2 are shown in Table 6.
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Table 6: Hyperparameters for training GROOT-2.

Hyperparameter Value
Optimizer AdamW

Weight Decay 0.001
Learning Rate 0.0000181
Warmup Steps 2000

Number of Workers 4
Parallel Strategy ddp
Type of GPUs NVIDIA A800
Parallel GPUs 8

Accumulate Gradient Batches 1
Batch Size/GPU (Total) 16 (128)

Training Precision bf16
Input Image Size 224× 224
Visual Backbone ViT/32

Encoder Transformer minGPT (w/o causal mask)
Decoder Transformer TransformerXL

Number of Encoder Blocks 8
Number of Decoder Blocks 4

Hidden Dimension 1024
Trajectory Chunk size 128

Attention Memory Size 256
β1 0.1
β2 0.1

B ATARI

Environment Description. Atari 2600 games contain a lot of diverse video games, which is a
widespread benchmark to evaluate the decision-making capability of an agent. The Atari games
do not inherently support multitasking concepts; agents are typically tasked with optimizing for
the highest possible rewards. However, an advanced human player can deliberately control their
gameplay level and achieve any potential score. The ability to “control scores” is generally considered
a higher intelligence level compared with merely “winning the game”. Therefore, this paper does
not emphasize the highest absolute score an agent can achieve in the Atari environment. Instead, it
focuses on evaluating the agent’s ability to follow instructions in the form of videos and "desired
cumulative rewards" and to perform at the appropriate level. Especially when videos serve as
conditions, the agent needs to infer the player’s level demonstrated in the reference gameplay, which
poses a significant challenge for the current agents. To our knowledge, this setting has not been
explored by previous works.

Observation and Action Spaces. We utilize the popular Arcade Learning Environment (ALE) as
our testing platform, where the original observation image provided is 210 × 160, and the action
space consists of 18 discrete actions defined by the joystick controller. Following previous works, the
observation images are typically resized to 84× 84 grayscale images. In implementing GROOT-v2,
we employ the ViT/32 model initialized with OpenAI’s pre-trained CLIP model. The observation
image, 84x84, is resized to a resolution of 224× 224 before being fed into the model for unification.
During the training process, the ViT backbone is jointly fine-tuned. The TransformerXL architecture
used for the decoder has its memory set to a horizon of 128.

Training Dataset. We utilize the trajectories from the Replay Buffer generated during the training
of agents using the DQN algorithm on Atari, provided by Google, as our source of training data.
We access this data through the interface provided in the d4rl-atari project at GitHub*. Specifically,
the trajectory data for each game consists of three parts: mixed, medium, and expert, representing
the environment interaction data from 0-1M steps, 9M-10M steps, and the final 1M steps of a
training session, respectively. We construct training data of 10M steps for each Atari game, with the
proportions of mixed, medium, and expert data being 2:5:3. During training, we use a single model to

*https://github.com/takuseno/d4rl-atari
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Figure B.1: Distribution of episode returns for each Atari game.

fit 35 selected game environments on Atari. Considering the significant differences in absolute scores
across different games, we standardize the reward scores. Specifically, we calculate the cumulative
reward scores for each complete trajectory and adjust them to a mean of 0 and a standard deviation
of 1 using the formula R ← (R − µ)/σ, which represents the game level corresponding to that
trajectory. Figure B.1 illustrates the episode return distributions for each Atari game. Subsequently,
each trajectory is segmented into 128-step fragments with the same label.

Complete Results. We selected trajectory data from 35 Atari games, totaling 350 million frames, to
train GROOT-2, with 30% of the data labeled with returns and the remaining 70% containing only
image observations and actions, aligning with the setup for weakly supervised training. After the
model converged, we tested GROOT-2’s ability to follow return-format and video-format instructions
across these 35 games. When testing return-format instructions, we chose three samples within the
normalized returns space: {−1, 0, 1}. For video-format instructions, we randomly sampled a segment
of 128 frames from the test data with normalized rewards within the range of {−1, 0, 1}, allowing
a deviation of ±0.05. Each instruction was tested 40 times, with the results depicted in Figure B.2.
We observed the following: (1) In the majority of games, GROOT-2’s performance showed a clear
positive correlation with the game level corresponding to the instructions. (2) In certain games (such
as Pong, Seaquest, Skiing, Wizard of Wor), video-format instructions yielded better control over the
agent than return-format instructions. Conversely, in games like Amidar, Battle Zone, and Zaxxon,
return-format instructions demonstrated significantly superior control compared to video-format
instructions.
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Figure B.2: IQM scores (with 95% confidence interval) of GROOT-2 which is jointly trained on 35 Atari
games. GROOT-2 can understand both the returns-format instructions and video-format instructions on most of
the games. The performance of the GROOT-2 exhibits a positive correlation with the game level corresponding
to the provided instructions.

C MINECRAFT

Environment Description. Minecraft is a 3D sandbox game with a global monthly active user base
of 100 million. It features procedurally generated worlds of unlimited size and includes dozens
of biomes such as plains, forests, jungles, and oceans. The game grants players a high degree of
freedom to explore the entire world. The mainstream gameplay includes gathering materials, crafting
items, constructing structures, farming land, engaging in combat mobs, and treasure hunting, among
others. In this game, players need to face situations that are highly similar to the real world, making
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judgments and decisions to deal with various environments and problems. One can easily specify a
task with a natural language description or a demonstration video. Therefore, Minecraft is an ideal
environment to test how an agent behaves in an open-world environment.

Observation and Action Spaces. We use the combination of 1.16.5 version MineRL (Guss et al.,
2019) and MCP-Reborn† as our testing platform, which is consistent with the environment used
by VPT (Baker et al., 2022) STEVE-1 (Lifshitz et al., 2023) and GROOT-1 (Cai et al., 2023b).
Mainly because this platform preserves observation and action space that is consistent with human
players to the fullest extent. On the one hand, this design brings about high challenges, as agents
can only interact with the environment using low-level mouse and keyboard actions, and can only
observe visual information like human players without any in-game privileged information. The
Minecraft simulator first generates an RGB image with dimensions of 640× 360 during the rendering
process. Before inputting to the agent, we resize the image to 224× 224 to enable the agent to see
item icons in the inventory and important details in the environment. When the agent opens the
GUI, the simulator also renders the mouse cursor normally. The RGB image is the only observation
that the agent can obtain from the environment during inference. It is worth noting that to help
the agent see more clearly in extremely dark environments, we have added a night vision effect for
the agent, which increases the brightness of the environment during nighttime. Our action space is
almost identical to that of humans, except for actions that involve inputting strings. It consists of two
parts: the mouse and the keyboard. The mouse movement is responsible for changing the player’s
camera perspective and moving the cursor when the GUI is opened. The left and right buttons are
responsible for attacking and using items. The keyboard is mainly responsible for controlling the
agent’s movement. To avoid predicting null action, we used the same joint hierarchical action space
as Baker et al. (2022), which consists of button space and camera space. Button space encodes all
combinations of keyboard operations and a flag indicating whether the mouse is used, resulting in
a total of 8461 candidate actions. The camera space discretizes the range of one mouse movement
into 121 actions. Therefore, the action head of the agent is a multi-classification network with 8461
dimensions and a multi-classification network with 121 dimensions.

Training Dataset. The contractor data is a Minecraft offline trajectory dataset provided by Baker
et al. (2022), which is recorded by professional human players. In this dataset, human players play
the game while the system records the image sequence o1:N , action sequence a1:N , and metadata
e1:N generated by the players. Excluding frames containing empty actions, the dataset contains 1.6
billion frames with a duration of approximately 2000 hours. The metadata records the 7 kinds of
events triggered by the agent in the game at each timestep, i.e. craft item, pickup, mine block, drop
item, kill entity, use item, and custom. We augment each event with a text description using the
OpenAI chatGPT service. To construct trajectory data with textual labels, we enumerate all timesteps
within the trajectory where an event occurs. From this point, we count 112 frames backward and
16 frames forward to form a segment of 128 frames. The textual label for this segment is derived
from the text associated with the event. It is important to note that many events occur frequently; for
example, when the player is mining a tunnel, the event "mine block: cobblestone" is triggered on
average twice per second. To address this issue, if a segment generated by an event overlaps with a
previously generated segment, it is skipped. Each event collects a maximum of 2000 segments, and
across all 1518 events, 414,387 segments are included. It is noteworthy that a significant amount of
duplication persists within these segments, as a single segment may encompass multiple events.

D LANGUAGE TABLE

Environment Description. Language Table (Lynch et al., 2023) is a comprehensive evaluation suite
proposed by the Google for assessing a robot’s ability to follow natural language instructions to solve
Table Manipulation tasks. It includes a dataset, environment, benchmarks, and a baseline policy.
The evaluation benchmark encompasses over 87, 000 diverse behaviors and more than 600, 000
trajectories annotated with text instruction. In addition to data from real environments, the suite also
provides a simulator akin to a real environment along with corresponding simulated data.

Observation and Action Spaces. Language Table’s simulated environment resembles the real-world
tabletop manipulation scenario, which consists of an xArm6 robot, constrained to move in a 2D plane
with a cylindrical end-effector, in front of a smooth wooden board with a fixed set of 8 plastic blocks,

†https://github.com/Hexeption/MCP-Reborn
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“put	blue	moon	next	to	
the	blue	pentagon”

“push	the	green	cube	
towards	the	blue	cube”

“slide	the	green	star	
next	to	the	green	cube”

Reference	Video Rollout	Trajectory

Figure C.3: GROOT-2 can infer the intention behind the reference video and follow it to complete tasks.
The left visualizes three reference videos along with their textual descriptions. The right figure displays the
policy’s rollout trajectories when conditioned on the reference videos. The white dashed line represents the
arm’s movement trajectory, and the red dashed circle highlights the arm’s final position.

comprising 4 colors and 6 shapes. In both simulation and real collection, they use high-rate human
teleoperation with a 3rd person view (line-of-sight in real). Actions are 2D delta Cartesian setpoints,
from the previous setpoint to the new one. They batch collected training and inference data to 5hz
observations and actions.

Training Dataset. We use the training trajectories from the official Language Table repository.
An oracle script generates the trajectories and covers all 5 task families, each containing 20M
trajectories, in a total of 100M trajectories. The dataset names are: language-table-blocktoblock-
oracle-sim, language-table-blocktoblockrelative-oracle-sim, language-table-blocktoabsolute-oracle-
sim, language-table-blocktorelative-oracle-sim, language-table-separate-oracle-sim.

Task Definition. The evaluation benchmark consists of 5 task families (block2block, block2abs,
block2rel, block2blockrel, separate), totaling 696 distinct task variants. We report the success rate
of the agent within 200 steps on each task as the final metric. Considering that the Language Table
inherently includes instructions in the language modality for its 5 task families, we have curated
a set of reference videos for each task family, each with relatively clear intentions, to serve as a
video instruction set. This is done to evaluate the model’s ability to comprehend video instructions.
The details are in Table 7. We visualize some examples when conditioning GROOT-2 on reference
videos in Figure C.3.

E SIMPLER ENV

Environment Description. Simpler Env is a physical simulator proposed by Li et al. (2024), efficient,
scalable, and informative complements to real-world evaluations. It can be used to evaluate diverse
sets of rigid-body tasks (non-articulated / articulated objects, tabletop / non-tabletop tasks), with
many intra-task variations (e.g., different object combinations; different object/robot positions and
orientations), for each of two robot embodiments (Google Robot and WidowX).

Observation and Action Spaces. The observation and action spaces of Simpler Env are the same as
the Language Table. The action sequence is expected to be a 6D end-effector pose trajectory with a
gripper flag indicating the open/close status. Before feeding the image observation into the policy, we
resize the image to a 224× 224 resolution.
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Table 7: Sampled reference videos to build video instruction set.

Task Family Video Description

block to block put the red moon to the blue moon
block to block put the blue moon towards the yellow star
block to block slide the red pentagon close to the green cube
block to block slide the green star to the red moon
block to block put the green cube next to the red pentagon

block to absolute location slide the blue cube to the upper left corner
block to absolute location push the blue moon to the top left of the board
block to absolute location move the red moon to the bottom left
block to absolute location slide the yellow star to the right side of the board
block to absolute location push the yellow pentagon to the left side

block to block relative location move the green star to the left side of the yellow pentagon
block to block relative location push the green star diagonally up and to the right of the green cube
block to block relative location put the red moon to the bottom left side of the yellow star
block to block relative location slide the yellow pentagon to the bottom left side of the red pentagon
block to block relative location slide the blue cube to the top of the blue moon

block to relative location push the green cube right
block to relative location slide the yellow pentagon downwards and to the right
block to relative location push the blue cube somewhat to the left
block to relative location move the blue moon to the right
block to relative location slide the red pentagon up

separate pull the yellow pentagon apart from the blue moon
separate pull the green star apart from the yellow star
separate pull the blue cube apart from the blue moon and red pentagon
separate move the blue cube away from the yellow star
separate move the green star away from the yellow pentagon
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