
A Auxiliary Lemma

Lemma 8. Let W be a matrix satisfying Assumption A and let xi =
∑n
j=1Wi,ju

j for i = 1, . . . , n,
where u1, . . . , un are some vectors in Rd. Set x̄ = n−1

∑n
i=1 x

i, ū = n−1
∑n
i=1 u

i. Then
n∑
i=1

∥∥xi − x̄∥∥2 ≤ ρ2
n∑
i=1

∥∥ui − ū∥∥2
.

Proof. Introduce the matrices X> = (x1, . . . , xn) ∈ Rd×n, U> = (u1, . . . , un) ∈ Rd×n and the
centering matrix H = I− 1

n11> ∈ Rn×n. Notice that
∑n
i=1

∥∥xi − x̄∥∥2
= Tr(Σ), where Tr(Σ) is

the trace of the matrix

Σ =

n∑
i=1

(xi − x̄)(xi − x̄)> =

n∑
i=1

xi(xi)> − x̄x̄> = X>HX.

It is not hard to check that Tr(Σ) = Tr(U>WHWU). Moreover, as W is symmetric and W1 = 1

we have HW = W − 1
n11> := W = WH . Thus, WHW = WH2W = HW

2
H and

Tr(Σ) = Tr(U>HW
2
HU) ≤ ‖W 2‖∗ Tr(U>H2U) ≤ ρ2Tr(U>HU) = ρ2

n∑
i=1

∥∥ui − ū∥∥2
.

B Proofs for Section 4

Lemma 1. Let f : Rd → R be a function in Fβ(L), β ≥ 2, and let the random variables ξ1, . . ., ξd
and ξ′1, . . ., ξ

′
d be independent of r and satisfy E[|ξj |] < ∞, E[|ξ′j |] < ∞, for j = 1, . . ., d. Let the

kernel satisfy conditions (3). If the gradient estimator g of f given by Algorithm 2 then, for all
x ∈ Rd,

‖E[g]−∇f(x)‖ ≤ Lκβ
√
dhβ−1.

Proof. By Taylor expansion we have

f(x+hrej)−f(x−hrej)
2h

=
∂f(x)

∂xj
r +

1

h

∑
2≤m≤`,m odd

(rh)m

m!

∂mf(x)

∂xmj
+
R(hrej)−R(−hrej)

2h
,

where |R(±hrej)| ≤ L‖hrej‖β = L|r|βhβ . Using (3) it follows that∣∣∣E[gj ]−
∂f(x)

∂xj

∣∣∣ =
∣∣∣E [f(x+ hrej)− f(x− hrej)

2h
K(r)

]
− ∂f(x)

∂xj

∣∣∣ ≤ Lκβhβ−1,

which implies the result.

Lemma 2. Let f : Rd → R be 2-smooth and let maxx∈Θ ‖∇f(x)‖ ≤ G, κ ≡
∫
K2(u)du <∞. Let

the random variables ξ1, . . . , ξd and ξ′1, . . . , ξ
′
d be independent of r and E[ξ2

j ] ≤ σ2, E[(ξ′j)
2] ≤ σ2

for j = 1, . . . , d. If g is defined by Algorithm 2, where x is a random variable with values in Θ
independent of r and depending on ξ1, . . . , ξd and ξ′1, . . . , ξ

′
d in an arbitrary way, then

E‖g‖2 ≤ 3dκ

2

(
σ2

h2
+

3L̄2

4
h2

)
+ 9G2κ.

Proof. Fix j ∈ 1, . . . , d. Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and the independence
between r and (ξj , ξ

′
j) we have

E[g2
j ] =

1

4h2
E
[
(f(x+ hrej)− f(x− hrei) + ξi − ξ′i)2K2(r)

]
(14)

≤ 3

4h2
E
[((

f(x+ hrej)− f(x− hrej)
)2

+ 2σ2
)
K2(r)

]
.
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The same calculations as in the proof of Lemma 2.4 in Akhavan et al. [2020] yield(
f(x+ hrej)− f(x− hrej)

)2 ≤ 3

(
L̄2

2
‖hrej‖4 + 4〈∇f(x), hrej〉2

)
,

Finally, we combine this inequality with (14) to obtain

E[g2
j ] ≤ 3

2
κ

(
σ2

h2
+

3L̄2

4
h2

)
+ 9κE[〈∇f(x), ei〉2],

which immediately implies the lemma.

C Proofs for Section 6

Recall the notation ∆(t) = n−1
∑n
i=1 E[

∥∥xi(t)− x̄(t)
∥∥2

], ḡ(t) = 1
n

∑n
i=1 g

i(t), and zi(t) =

ProjΘ
(
xi(t)− ηtgi(t)

)
− (xi(t)− ηtgi(t)). We also set z̄(t) = 1

n

∑n
i=1 z

i(t).

Lemma 3. Let Assumptions A, B, and C hold. Let Θ be a convex compact subset of Rd. Assume that
diam(Θ) ≤ K and maxx∈Θ ‖∇f(x)‖ ≤ G. If the updates xi(t), x̄(t) are defined by Algorithm 1, in
which the gradient estimators for i-th agent are defined by Algorithm 2 with F = fi, i = 1, . . . , n,
and parameters (4) then

∆(t) ≤ A
(

ρ

1− ρ

)2
d

α2
t−

2β−1
β , (5)

where A is a constant independent of t, d, α, n, ρ. The explicit value of A can be found in the proof.

Proof. Set V (t) =
∑n
i=1

∥∥xi(t)− x̄(t)
∥∥2
. The definition of Algorithm 1 and Lemma 8 imply:

V (t+ 1) ≤ ρ2
n∑
i=1

∥∥xi(t)− x̄(t)− ηt(gi(t)− ḡ(t)) + zi(t)− z̄(t)
∥∥2
.

The result is immediate if ρ = 0. Therefore, in rest of the proof we assume that ρ > 0. We have

V (t+ 1) ≤ ρ2
n∑
i=1

[
V (t) + η2

t

∥∥gi(t)− ḡ(t)
∥∥2

+
∥∥zi(t)− z̄(t)∥∥2

(15)

− 2ηt

〈
xi(t)− x̄(t), gi(t)− ḡ(t)

〉
(16)

− 2ηt

〈
gi(t)− ḡ(t), zi(t)− z̄(t)

〉
(17)

+ 2
〈
xi(t)− x̄(t), zi(t)− z̄(t)

〉]
. (18)

For any z ∈ Rd, we have
∑n
i=1

∥∥gi(t)− ḡ(t)
∥∥2 ≤

∑n
i=1

∥∥gi(t)− z∥∥2
, so that

η2
t

n∑
i=1

E
[ ∥∥gi(t)− ḡ(t)

∥∥2 |Ft
]
≤ η2

t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Next, from the definition of the projection,∥∥zi(t)∥∥ =
∥∥∥ProjΘ

(
xi − ηtgi(t)

)
− (xi − ηtgi(t))

∥∥∥
≤
∥∥xi − (xi − ηtgi(t))

∥∥ = ηt
∥∥gi(t)∥∥ . (19)

Therefore, for the term containing
∥∥zi(t)− z̄(t)∥∥2

in (15) we obtain

n∑
i=1

E[
∥∥zi(t)− z̄(t)∥∥2 |Ft] ≤

n∑
i=1

E[
∥∥zi(t)∥∥2 |Ft] ≤ η2

t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.
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For the expression in (16), by decoupling we get

−2ηt

n∑
i=1

E
[〈
xi(t)− x̄(t), gi(t)− ḡ(t)

〉
|Ft
]
≤ λV (t) +

η2
t

λ

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
,

where λ > 0 is a value to be chosen later. For the expression in (17), we have

−2ηt

n∑
i=1

E
[〈
gi(t)− ḡ(t), zi(t)− z̄(t)

〉
|Ft
]
≤ η2

t

n∑
i=1

E
[ ∥∥gi(t)− ḡ(t)

∥∥2 |Ft
]

+

n∑
i=1

E
[ ∥∥zi(t)− z̄(t)∥∥2 |Ft

]
≤ 2η2

t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Similarly, for the expression in (18), using the Cauchy–Schwarz inequality we get

2

n∑
i=1

E
[〈
xi(t)− x̄(t), zi(t)− z̄(t)

〉
|Ft
]
≤ 2

n∑
i=1

E
[ ∥∥xi(t)− x̄(t)

∥∥∥∥zi(t)− z̄(t)∥∥ |Ft]
≤ λV (t) +

1

λ

n∑
i=1

E
[ ∥∥zi(t)− z̄(t)∥∥2 |Ft

]
≤ λV (t) +

η2
t

λ

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
.

Combining the above inequalities yields

E[V (t+ 1)|Ft] ≤ ρ2(1 + 2λ)V (t) + ρ2
(

4 +
2

λ

)
η2
t

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
. (20)

Taking expectations in (20) and applying Lemma 2 we obtain

∆(t+ 1) ≤ ρ2(1 + 2λ)∆(t) + ρ2
(

4 +
2

λ

)
η2
t

(
9κG2 + d

(9h2
tκL̄

2

8
+

3κσ2

2h2
t

))
.

Choose here λ = 1−ρ
2ρ . Then, using the fact that ηt = 2

αt , ht = t−
1
2β we find

∆(t+ 1) ≤ ρ∆(t) +A1
ρ2

1− ρ
· d
α2
t−

2β−1
β , (21)

where A1 = 144κG2

d + 18κL̄2 + 24κσ2. Due to the recursion in (21) we have, for any t ≥ 3,

∆(t+ 1) ≤ ρt∆(1) +A1
ρ2

1−ρ
· d
α2

t∑
s=1

s−
2β−1
β ρt−s

≤ A1
ρ2

1−ρ
· d
α2

( 1

b t2c

b t2 c∑
s=1

s−
2β−1
β

t−1∑
k=t−b t2 c

ρk +
1

b t2c

t∑
s=b t2 c+1

s−
2β−1
β

t−b t2 c−1∑
k=0

ρk
)
, (22)

where ∆(1) = 0 by the choice of initial values and the last inequality uses the fact that if the function
φ1(·) is monotone decreasing and φ2(·) is monotone increasing then

1

S

S∑
s=1

φ1(s)φ2(s) ≤

(
1

S

S∑
s=1

φ1(s)

)(
1

S

S∑
s=1

φ2(s)

)
,

see, e.g., [Devroye et al., 1996, Theorem A.19]. The sums in (22) satisfy

b t2 c∑
s=1

s−
2β−1
β ≤ 1+

∫ ∞
1

s−
2β−1
β =

2β − 1

β − 1
,

t∑
s=b t2 c+1

s−
2β−1
β ≤ t

2

(
t

2

)− 2β−1
β

= 2
β−1
β t−

β−1
β ,
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t−b t2 c−1∑
k=0

ρk ≤ 1

1− ρ
,

t−1∑
k=t−b t2 c

ρk ≤
t−1∑
k=b t2 c

ρk ≤ tρb t2 c/2 ≤ 8

log(1/ρ)t
,

where the last inequality follows from the fact that ρk ≤ 1
log(1/ρ)k2 for any positive integer k.

Plugging the above inequalities in (22) gives

∆(t+ 1) ≤ A1
ρ2

1− ρ
d

α2

( 24

log(1/ρ)t2
2β − 1

β − 1
+ 3(2

β−1
β )

t−
2β−1
β

1− ρ

)
≤ A2

ρ2

(1− ρ)2

d

α2
t−

2β−1
β ,

where A2 =
(

24 2β−1
β−1 + 3(2

β−1
β )
)
A1. Therefore, setting A := 2A2 we conclude that, for t ≥ 3,

∆(t) ≤ A ρ2

(1− ρ)2

d

α2
t−

2β−1
β .

For t ∈ {1, 2} the bound of the lemma holds trivially since x̄ and all xi belong to the compact Θ.

Theorem 4. Let f be an α-strongly convex function and let the assumptions of Lemma 3 be satisfied.
Then for any x ∈ Θ the cumulative regret satisfies

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ d

α(1− ρ)
T

1
β

0

(
B1 + B2ρ

2
)

+
B3

α(1− ρ)
(log(T0) + 1),

where the positive constants Bi are independent of T0, d, α, n, ρ. The explicit values of these constants
can be found in the proof. Furthermore, if x∗ is the minimizer of f over Θ the optimization error of
the averaged estimator x̂(T0) = 1

T0

∑T0

t=1 x̄(t) satisfies

E[f(x̂(T0))− f(x∗)] ≤ d

α(1− ρ)
T
− β−1

β

0

(
B1 + B2ρ

2
)

+
B3

α(1− ρ)

( log(T0) + 1

T0

)
. (7)

Proof. From the definition of Algorithm 1 and (19) we obtain

‖x̄(t+ 1)− x‖2 = ‖x̄(t)− x‖2 + ‖z̄(t)‖2 + η2
t ‖ḡ(t)‖2

− 2ηt〈ḡ(t), x̄(t)− x〉+ 2〈z̄(t), x̄(t)− x〉 − 2ηt〈z̄(t), ḡ(t)〉

≤ ‖x̄(t)− x‖2 − 2ηt〈ḡ(t), x̄(t)− x〉+ 2〈z̄(t), x̄(t)− x〉+
4η2
t

n

n∑
i=1

∥∥gi(t)∥∥2
.

It follows that

〈ḡ(t), x̄(t)− x〉 ≤ ‖x̄(t)− x‖2 − ‖x̄(t+ 1)− x‖2

2ηt
+

1

ηt
〈z̄(t), x̄(t)− x〉+

2ηt
n

n∑
i=1

∥∥gi(t)∥∥2
.

The strong convexity assumption implies

f(x̄(t))− f(x) ≤ 〈∇f(x̄(t)), x̄(t)− x〉 − α

2
‖x̄(t)− x‖2 .

Combining the last two displays and taking conditional expectations from both sides we get

E
[
f(x̄(t))− f(x)|Ft

]
≤
∥∥E
[
ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ‖x̄(t)− x‖+
1

2ηt
E
[
at − at+1|Ft

]
+

2ηt
n

n∑
i=1

E
[ ∥∥gi(t)∥∥2 |Ft

]
− α

2
at +

1

ηt
E
[
〈z̄(t), x̄(t)− x〉|Ft

]
, (23)
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where at = ‖x̄(t)− x‖2.

The first term in right hand side of (23) is bounded as follows

∥∥E
[
ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ‖x̄(t)− x‖ ≤
[ ∥∥∥∥∥E

[
ḡ(t)|Ft

]
− 1

n

n∑
i=1

∇fi(xi(t))

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(xi(t))−
1

n

n∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
]
‖x̄(t)− x‖

≤ κβL
√
dhβ−1

t ‖x̄(t)− x‖+
L̄

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥ ‖x̄(t)− x‖ , (24)

where the last inequality is due to Lemma 1 and Assumption B(ii). We now decouple the terms in
(24) using the fact that ab ≤ a2

v + vb2

4 , ∀a, b ≥ 0, v > 0. Thus, we obtain

κβL
√
dhβ−1

t ‖x̄(t)− x‖ ≤ (κβL)2

α
dh

2(β−1)
t +

α

4
‖x̄(t)− x‖2 (25)

and, taking v = tα(1− ρ),

L̄

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥ ‖x̄(t)− x‖ ≤ L̄tα(1− ρ)

n

n∑
i=1

∥∥xi(t)− x̄∥∥2
+

L̄K2

4tα(1− ρ)
. (26)

The bound (26) brings us to the quantity
∑n
i=1

∥∥xi(t)− x̄(t)
∥∥2

that can be controlled in expectation
via Lemma 3. Note that the choice of v = tα(1− ρ) here is motivated by the fact that, once Lemma
3 is applied (see the end of this proof), it minimizes the final bound in ρ and α. We could have kept v
in the form v = v0t (with an arbitrary parameter v0 > 0) until the application of Lemma 3 and then
optimize over v0. However, we prefer to insert the optimal value v0 = α(1− ρ) already at this stage.

Combining (25) and (26) with (24) gives

∥∥E
[
ḡ(t)|Ft

]
−∇f(x̄(t))

∥∥ ‖x̄(t)− x‖ ≤ (κβL)2

α
dh

2(β−1)
t +

α

4
‖x̄(t)− x‖2 +

+
L̄tα(1− ρ)

n

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥2

+
L̄K2

4tα(1− ρ)
.

(27)

Next, we have

1

ηt
〈z̄(t), x̄(t)− x〉 =

1

nηt

n∑
i=1

〈zi(t), x̄(t)− x〉

≤ 1

nηt

n∑
i=1

〈zi(t), x̄(t)−
(
xi(t)− ηtgi(t)

)
〉+ 〈zi(t),

(
xi(t)− ηtgi(t)

)
− x〉.

(28)

Since ProjΘ(·) is the Euclidean projection on the convex set Θ, for any w ∈ Rd, x ∈ Θ we have
〈ProjΘ(w)− w,ProjΘ(w)− x〉 ≤ 0, which implies

〈ProjΘ(w)− w,w − x〉 = −‖ProjΘ(w)− w‖2 + 〈ProjΘ(w)− w,ProjΘ(w)− x〉 ≤ 0.

Therefore,

〈zi(t), xi − ηtgi(t)− x〉 = 〈ProjΘ(xi(t)− ηtgi(t))− (xi(t)− ηtgi(t)), xi(t)− ηtgi(t)− x〉 ≤ 0.
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Applying this inequality in (28) and using (19) we find

1

ηt
〈z̄(t), x̄(t)− x〉 ≤ 1

nηt

n∑
i=1

〈zi(t),
(
x̄(t)− xi(t)

)
+ ηtg

i(t)〉

≤ 1

nηt

n∑
i=1

∥∥zi(t)∥∥∥∥xi(t)− x̄(t)
∥∥+

1

n

n∑
i=1

∥∥zi(t)∥∥∥∥gi(t)∥∥
≤ 1

2nηt

n∑
i=1

[η2
t

∥∥gi(t)∥∥2

1− ρ
+ (1− ρ)

∥∥xi − x̄(t)
∥∥2
]

+
ηt
n

n∑
i=1

∥∥gi(t)∥∥2

≤ 3ηt
2(1− ρ)n

n∑
i=1

∥∥gi(t)∥∥2
+

1− ρ
2nηt

n∑
i=1

∥∥xi(t)− x̄(t)
∥∥2
. (29)

Inserting (29) and (27) in (23) and using the fact that ηt = 2
αt we get

E[f(x̄(t))− f(x)|Ft] ≤
1

2ηt
E[at − at+1|Ft]−

α

4
at

+
(1 + 4L̄)tα(1− ρ)

4n

n∑
i=1

∥∥xi − x̄(t)
∥∥2

+

+
7ηt

2(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] +

(κβL)2

α
dh

2(β−1)
t +

L̄K2

4tα(1− ρ)
.

where the last inequality follows from. Taking the expectations, setting rt := E[at] and applying
Lemma 2 we get

E
[
f(x̄(t))− f(x)

]
≤ rt − rt+1

2ηt
− α

4
rt +

(1 + 4L̄)tα(1− ρ)

4
∆(t)+ (30)

+
7

α(1− ρ)t

(
9κG2 + d

(9h2
tκL̄

2

8
+

3κσ2

2h2
t

))
+

(κβL)2

α
dh

2(β−1)
t +

L̄K2

4tα(1− ρ)
.

Notice that for our choice of ηt = 2
αt we have

T0∑
t=1

(
rt − rt+1

2ηt
− α

4
rt

)
≤ 0.

Recall that ht = t−
1
2β . We can see now that this choice of ht is the minimizer of the main term

depending on ht on the right hand side of (30), which is (up to multiplicative constant) of the order
of h2(β−1)

t + 1
th2
t

. By substituting this ht in (30) and summing over t we get

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ (1 + 4L̄)α(1− ρ)

4

T0∑
t=1

t∆(t) + B1
d

α(1− ρ)
T

1
β

0 +
L̄K2

4α(1− ρ)

(
log(T0) + 1

)
,

where B1 = 7β
(

9κG2

d + ( 9κL̄2

8 + 3κσ2

2 )
)

+ β(κβL)2. Finally, using Lemma 3 we obtain

T0∑
t=1

E
[
f(x̄(t))− f(x)

]
≤ B1

d

α(1− ρ)
T

1
β

0 + B2
ρ2

1− ρ
d

α
T

1
β

0 +
B3

α(1− ρ)

(
log(T0) + 1

)
,

where B2 = β(1+4L̄)
4 A, and B3 = L̄K2. This proves the first bound of the theorem. The second

bound (7) follows immediately by the convexity of f .

Corollary 5. Let Assumptions A, B, and C hold. Let Θ be a convex compact subset of Rd. Assume
that diam(Θ) ≤ K and maxx∈Θ ‖∇f(x)‖ ≤ G. If the updates xi(t) are defined by Algorithm

18



1, in which the gradient estimators for i-th agent are defined by Algorithm 2 with F = fi, i =

1, . . . , n, and parameters ηt = 4
α(t+1) , ht = t−

1
2β then the local average estimator x̂i(T0) =

2
T0(T0+1)

∑T0

t=1 tx
i(t) satisfies

E[‖x̂i(T0)− x∗‖2] ≤ Cmin

{
1,

d

α2(1− ρ)
T
− β−1

β

0

(
1 +

nρ2

(1− ρ)T0

)}
, i = 1, . . . , n,

where C > 0 is a positive constant independent of T0, d, α, n, ρ.

Proof. In contrast to the previous proofs, now we have ηt = 4
α(t+1) rather than ηt = 2

αt .

1◦. Inspection of the proof of Lemma 3 immediately yields that Lemma 3 remains valid with
ηt = 4

α(t+1) instead of ηt = 2
αt , up to a change in constant A. Thus,

∆(t) ≤ Ā
(

ρ

1− ρ

)2
d

α2
t−

2β−1
β , (31)

E
[
‖x̂i(t)− x̄(t)‖2

]
≤ Ān

(
ρ

1− ρ

)2
d

α2
t−

2β−1
β , i = 1, . . . , n, (32)

where Ā > 0 is a constant independent of t, d, α, n, ρ.

2◦. Next, we show that, up to changes in constants Bi, the bound (7) of Theorem 4 remains valid
with ηt = 4

α(t+1) instead of ηt = 2
αt if we replace x̂(T0) in (7) by the estimator

x̂?(T0) :=
2

T0(T0 + 1)

T0∑
t=1

tx̄(t).

Indeed, repeating the proof of Theorem 4 until (30), multiplying both sides of (30) by t, summing up
from t = 1 to T0 and using the fact that

T0∑
t=1

(
t(rt − rt+1)

2ηt
− α

4
trt

)
≤ 0 if ηt =

4

α(t+ 1)
,

we find that, for all x ∈ Θ,
T0∑
t=1

tE
[
f(x̄(t))− f(x)

]
≤ (1 + 4L̄)α(1− ρ)

4

T0∑
t=1

t2∆(t) + B̄1
d

α
T

1+ 1
β

0 +
L̄K2

4α(1− ρ)
T0,

where B̄1 is a positive constant independent of T0, d, α, n, ρ. Using (31) we get, for all x ∈ Θ,

2

T0(T0 + 1)

T0∑
t=1

tE
[
f(x̄(t))− f(x)

]
≤ B̄2

d

α(1− ρ)
T
−1+ 1

β

0 ,

where B̄2 is a positive constant independent of T0, d, α, n, ρ. In view of the convexity of f , it follows
that

E
[
f(x̂?(T0))− f(x∗)

]
≤ B̄2

d

α(1− ρ)
T
−1+ 1

β

0 .

As f is strongly convex we also have

E
[
‖x̂?(T0)− x∗‖2

]
≤ 2B̄2

d

α2(1− ρ)
T
−1+ 1

β

0 . (33)

On the other hand, convexity of function ‖ · ‖2 implies that

‖x̂i(T0)− x̂?(T0)‖2 =
∥∥∥ 2

T0(T0 + 1)

T0∑
t=1

t(xi(t)− x̄(t))
∥∥∥2

≤ 2

T0(T0 + 1)

T0∑
t=1

t‖xi(t)− x̄(t)‖2. (34)
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Combining (32) and (34) we obtain

E
[
‖x̂i(T0)− x̂?(T0)‖2

]
≤ C̄n

(
ρ

1− ρ

)2
d

α2
T
− 2β−1

β

0 , (35)

where C̄ > 0 is a constant independent of T0, d, α, n, ρ. The desired result now follows from (33),
(35) and the fact that ‖x̂i(T0)− x∗‖ is trivially bounded by the diameter of Θ.

D Proofs for Section 7

We first restate the following three lemmas from Akhavan et al. [2020].
Lemma 9. Let for β = 2, Assumptions B and D hold. Let ḡ(t) be the average of gradient estimators
for n agents defined each by (12), and h = ht. If maxx∈Θ ‖∇fi(x)‖ ≤ G, for 1 ≤ i ≤ n, then

E[‖ḡ(t)‖2] ≤ 9κ
(
G2d+

L2d2h2
t

2

)
+

3κd2σ2

2h2
t

.

Introduce the notation
f̂t(x) = Ef(x+ htζ̃), ∀x ∈ Rd,

and
f̂ it (x) = Efi(x+ htζ̃), ∀x ∈ Rd.

Lemma 10. Suppose fi is differentiable. For the conditional expectation given Ft, we have

E[gi(t)|Ft] = ∇f̂ it (xi(t)).

Lemma 11. If f is α-strongly convex then f̂t is α-strongly convex. If f ∈ F2(L), for any x ∈ Rd

and ht > 0, we have
|f̂t(x)− f(x)| ≤ Lh2

t ,

and
|Ef(x± htζt)− f(x)| ≤ Lh2

t .

Lemma 12. Let Assumptions A, B, and D hold with β = 2. Let Θ be a convex compact subset of
Rd, and assume that diam(Θ) ≤ K. Assume that maxx∈Θ ‖∇fi(x)‖ ≤ G, for 1 ≤ i ≤ n. Let the
updates xi(t), x̄(t) be defined by Algorithm 1, in which the gradient estimator for i-th agent is defined

by (12), and ηt = 1
αt , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4

. Then

∆(t) ≤
( ρ

1− ρ

)2(
A
′

1

d

α3/2
t−

3
2 +A

′

2

d2

α2
t−2
)
,

where A′1 and A′2 are positive constants independent of T, d, α, n, ρ.

Proof. Similarly to Lemma 3 we obtain

E[V (t+ 1)|Ft] ≤ ρ2(1 + 2λ)V (t) + ρ2(4 +
2

λ
)η2
t

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft].

Choosing λ = 1−ρ
2ρ and using Lemma 9 we get

E[V (t+ 1)|Ft] ≤ ρV (t) +
4ρ2

1− ρ
η2
t

(
9(G2d+

L2d2h2
t

2
) +

3d2σ2

2h2
t

)
.

Taking here the expectations and setting ηt = 1
αt and ht =

(
3d2σ2

2Lαt+9L2d2

)1/4

yields

∆(t+ 1) ≤ ρ∆(t) +
ρ2

1− ρ

(
A
′

3

d

α3/2t3/2
+A

′

4

d2

α2t2

)
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with A′3 = 2
√

6Lσ, and A′4 = 12
√

3Lσ + 36G2

d . On the other hand, by recursion we have

∆(t+ 1) ≤ ρt∆(1) +
ρ2

1− ρ
d

α3/2

(
A
′

3

t∑
s=1

s−
3
2 ρt−s +A

′

4

d

α1/2
+

t∑
s=1

s−2ρt−s
)
.

Here ∆(1) = 0 due to the initialization. The sums on right hand side can be estimated by using an
argument, which is quite analogous to what was done in the proof of Lemma 3, after equation (22),
leading to the result of the lemma.

Lemma 13. Let the assumptions of Lemma 12 hold and let f be an α-strongly convex function. Then

E[‖x̄(t)− x∗‖2] ≤ C
1− ρ

(
d

t1/2α3/2
+

d2

tα2

)
,

where C > 0 is a constant independent of T, d, α, n, ρ.

Proof. First note that due to the strong convexity assumption we have

‖x̄(1)− x∗‖2 ≤ G2

α2
.

Therefore, for t = 1 the result holds. For t ≥ 2, by the definition of the algorithm we have

‖x̄(t+ 1)− x∗‖2 ≤ ‖x̄(t)− x∗‖2 + η2
t ‖ḡ(t)‖2 + ‖z̄(t)‖2 − 2ηt〈ḡ(t), z̄(t)〉−

− 2ηt〈ḡ(t), x̄(t)− x∗〉+ 2〈x̄(t)− x∗, z̄(t)〉.

Taking conditional expectations we get

E[at+1|Ft] ≤ at +
2η2
t

n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft]− 2ηtE[〈ḡ(t), z̄(t)〉|Ft]− (36)

− 2ηtE[〈ḡ(t), x̄(t)− x∗〉|Ft] + 2E[〈x̄(t)− x∗, z̄(t)〉|Ft], (37)

where we used the fact that
∥∥zi(t)∥∥ ≤ ηt ∥∥gi(t)∥∥ for 1 ≤ i ≤ n.

For the term −2ηtE[〈ḡ(t), x̄(t)− x∗〉|Ft] in (36), we have

−2ηtE[〈ḡ(t), x̄(t)− x∗〉|Ft] ≤ −
2ηt
n

n∑
i=1

(
E[〈gi(t)−∇f̂ it (xi(t)), x̄(t)− x∗〉|Ft]+ (38)

+ 〈∇f̂ it (xi(t))−∇f̂ it (x̄(t)), x̄(t)− x∗〉+ (39)

+ 〈∇f̂t(x̄(t)), x̄(t)− x∗〉
)

(40)

For the term in (38), by Lemma 10 we have

−2ηt
n

n∑
i=1

E[〈gi(t)−∇f̂ it (xi(t)), x̄(t)− x∗〉|Ft] = 0.

For the term in (39), decoupling yields

−2ηt
n

n∑
i=1

〈∇f̂ it (xi(t))−∇f̂ it (x̄(t)), x̄(t)− x∗〉 ≤ ηttα

n
(1− ρ)V (t) +

L̄2ηt
tα

1

1− ρ
at.

Next, we use the strong convexity (cf. Lemma 11) to handle (40):

−2ηt〈∇f̂t(x̄(t)), x̄(t)− x∗〉 ≤ −2ηtαat.

Finally, for the term containing 2〈x̄(t)− x∗, z̄(t)〉 in (37) we obtain similarly to (29) that

2E[〈x̄(t)− x∗, z̄(t)〉|Ft] ≤
3η2
t

(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] +

1− ρ
n

V (t).
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Combining the above inequalities yields

E[at+1|Ft] ≤ (1− 2ηtα)at +
2η2
t

n

n∑
i=1

E[‖ḡ(t)‖2 |Ft]− 2ηtE[〈ḡ(t), z̄(t)〉|Ft] +
ηtL̄

2K2

tα(1− ρ)
+

+
ηttα+ 1

n
(1− ρ)V (t) +

3η2
t

(1− ρ)n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft].

Now, recalling that ηt = 1
tα , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4

, taking the expectations and applying Lemma 9
we find

rt+1 ≤
(

1− 2

t

)
rt + 2(1− ρ)∆(t) +

C

(1− ρ)

( d

t3/2α3/2
+

d2

t2α2

)
, (41)

where rt = E[at], and C > 0 is a constant independent of T, d, α, n, ρ. Using Lemma 12 to bound
∆(t) in (41) we get

rt+1 ≤
(

1− 2

t

)
rt +

C ′

(1− ρ)

( d

t3/2α3/2
+

d2

t2α2

)
,

where C ′ > 0 is a constant independent of T, d, α, n, ρ. The desired result follows from this recursion
by applying [Akhavan et al., 2020, Lemma D.1].

Theorem 7. Let f be an α-strongly convex function. Let Assumptions A, B, and D hold with
β = 2. Let Θ be a convex compact subset of Rd, and assume that diam(Θ) ≤ K. Assume that
maxx∈Θ ‖∇fi(x)‖ ≤ G, for 1 ≤ i ≤ n. Let the updates xi(t), x̄(t) be defined by Algorithm 1, in

which the gradient estimator for i-th agent is defined by (12), and ηt = 1
αt , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4

.

Then for the estimator x̃(T ) = 1
T−bT/2c

∑T
t=bT/2c+1 x̄(t) we have

E[f(x̃(T ))− f(x∗)] ≤ B
1− ρ

(
d√
αT

+
d2

αT

)
,

where B > 0 is a constant independent of T, d, α, n, ρ.

Proof. Fix x ∈ Θ. Due to the α-strong convexity of f̂t, we have

f̂t(x̄(t))− f̂t(x∗) ≤ 〈∇f̂t(x̄(t)), x̄(t)− x∗〉 − α

2
‖x̄(t)− x∗‖2 .

Thus, by Lemma 11 we get

f(x̄(t))− f(x∗) ≤ 2Lh2
t + 〈∇f̂t(x̄(t)), x̄(t)− x∗〉 − α

2
‖x̄(t)− x∗‖2 .

Let at = ‖x̄(t)− x∗‖2. Taking conditional expectations and applying Lemma 10 we obtain

E[f(x̄(t))− f(x∗)|Ft] ≤ 2Lh2
t +

1

n

n∑
i=1

〈∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗〉 − α

2
at

+ E[〈ḡ(t), x̄(t)− x∗〉|Ft]

≤ 2Lh2
t +

1

n

n∑
i=1

E[〈∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗〉|Ft]

− α

2
at +

at − E[at+1|Ft]
2ηt

+
1

ηt
E[〈z̄(t), x̄(t)− x∗〉|Ft] +

2ηt
n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft], (42)

where the last inequality uses the definition of the algorithm. Now, by decoupling we find

1

n

n∑
i=1

〈∇f̂ it (x̄(t))−∇f̂ it (xi(t)), x̄(t)− x∗〉 ≤ tα

2n
(1− ρ)V (t) +

1

2(1− ρ)

L̄2

tα
K2, (43)
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while similarly to (29) we also have

1

ηt
E[〈z̄(t), x̄(t)− x∗〉|Ft] ≤

1

1− ρ
3ηt
2n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft] + (1− ρ)

1

2nηt
V (t). (44)

Combining the above inequalities and applying Lemma 9 yields

E[f(x̄(t))− f(x∗)|Ft] ≤
( 1

ηt
+ tα

)1− ρ
2n

V (t) +
1

2(1− ρ)

L̄2

tα
K2 − α

2
at +

at − E[at+1|Ft]
2ηt

+

+ 2Lh2
t +

(
2 +

3

2(1− ρ)

)
ηt
n

n∑
i=1

E[
∥∥gi(t)∥∥2 |Ft]. (45)

Let rt = E[at]. Using the fact that ηt = 1
αt , ht =

(
3d2σ2

2Lαt+9L2d2

)1/4

, taking the expectations in (45)
and applying Lemma 9 we find

E[f(x̄(t))− f(x∗)] ≤ tα
(rt − rt+1

2

)
− α

2
rt + (1− ρ)αt∆(t) +

C1

1− ρ

( d√
αt

+
d2

αt

)
,

where C1 > 0 is a constant independent of T, d, α, n, ρ. Summing up both sides over t gives
T∑

t=bT2 c+1

E[f(x̄(t))− f(x∗)] ≤ rbT2 c+1

bT2 cα
2

+ (1− ρ)α

T∑
t=bT2 c+1

t∆(t) +
C2

1− ρ

(d√T√
α

+
d2

α

)
where C2 > 0 is a constant independent of T, d, α, n, ρ. We now apply Lemma 12 to bound ∆(t)
and Lemma 13 to bound rbT2 c+1. It follows that

T∑
t=bT2 c+1

E[f(x̄(t))− f(x∗)] ≤ C3

1− ρ

(d√T√
α

+
d2

α

)
,

where C3 > 0 is a constant independent of T, d, α, n, ρ. The desired bound for E[f(x̃(T ))− f(x∗)]
follows from this inequality by the convexity of f .

E Numerical Experiments

In this section we present a numerical comparison between the proposed method and the zero-order
method in Akhavan et al. [2020] based on 2-point gradient estimator. Since the goal is to study the
effect of the new gradient estimator, we consider the standard (undistributed) setting.

We wish to minimize the following function f : Rd → R,

f(x) =
α

2
x>Ax+ Lh3

d∑
i=1

ψ(h−1xi), (46)

where α,L, h are positive parameters, A is a positive definite matrix in Rd×d with smallest eigenvalue
equal to 1, and ψ(x) =

∫ x
−∞

∫ z
−∞ φ(t)dtdz, with

φ(x) =


0 if x < −a
2
ax+ 2 if − a ≤ x < −a2
− 2
ax if − a

2 ≤ x ≤
a
2

2
ax− 2 if a2 ≤ x ≤ a
0 if a < x,

where a > 0. A direct computation gives that

ψ(x) =



0 if x < −a
x3

3a + ax2 + ax+ a2

3 if − a ≤ x < −a2
−x

3

3a + a
2x+ a2

4 if − a
2 ≤ x ≤

a
2

x3

3a − ax
2 + ax+ a2

6 if a2 ≤ x ≤ a
a2

2 if a < x.
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Let Θ = {x ∈ Rd : ‖x‖ ≤ 1, and xi ≤ 0, for 1 ≤ i ≤ d}. Since for any x ∈ Θ, φ(x) ≥ 0, then
ψ is convex on Θ, which implies α-strong convexity of f on Θ. Also, the second derivative of
Lh3ψ(h−1x) is Lipschitz continuous with Lipschitz constant equal to 2L

a . Therefore f is β-Hölder
with β = 3. We choose the kernel function, K : [−1, 1]→ R, such that K(x) = 15

8 x(5− 7x3). For
each iteration t, we fix ht = t−

1
6 , and ηt = 2

αt . Function evaluations at a fixed point x ∈ Rd are
obtained in the form f(x) + ζ where ζ is a random variable uniformly distributed in [−5, 5].

In this implementation we assign α = 2, h = 10−3, L = 107.5, a = 10. We also let A = B + I,
where B is a randomly generated sparse positive definite matrix in Rd×d and I is the d-dimensional
identity matrix. For the initialization, we generate a d-dimensional Gaussian random variable and
project it on Θ.

Figure 1: Optimization error vs. number of function evaluations for the 2-Point Estimator in
Akhavan et al. [2020] and our method, run on function (46) for different number of variables
(d = 25, 50, 100, 150 clockwise from top-left).

The design of f in (46) is inspired by the function that has been used in the proof of the lower bound
in Akhavan et al. [2020]. It is a quadratic function plus the perturbation Lh3

∑d
i=1 ψ(h−1xi), which

adds difficulty to estimation of the minimizer. We have chosen this worst case function to provide a
comparison between two algorithms in a long run and growing dimension. In Figure 1 we display the
average optimization error of the method proposed in this paper and that of the 2-Point estimator from
Akhavan et al. [2020] versus the total number of function evaluations, for different dimensions d.
This result is averaged over 40 trials, corresponding to different random initialization, noisy function
evaluations and randomization in the optimization procedures. We would like to emphasize that both
methods are considered with the same budget of function evaluations, which means that the number
of iterations for the two algorithms differ. Thus, if T is the total number of function evaluations, the
2-point estimator makes T/2 iterations, while the proposed method makes only T/(2d) iterations.
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